1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
|
# Copyright (c) 2019 Guo Yejun
#
# This file is part of FFmpeg.
#
# FFmpeg is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License as published by the Free Software Foundation; either
# version 2.1 of the License, or (at your option) any later version.
#
# FFmpeg is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public
# License along with FFmpeg; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
# ==============================================================================
import tensorflow as tf
import numpy as np
import sys, struct
import convert_header as header
__all__ = ['convert_from_tensorflow']
class Operand(object):
IOTYPE_INPUT = 1
IOTYPE_OUTPUT = 2
IOTYPE_INTERMEDIATE = IOTYPE_INPUT | IOTYPE_OUTPUT
DTYPE_FLOAT = 1
DTYPE_UINT8 = 4
index = 0
def __init__(self, name, dtype, dims):
self.name = name
self.dtype = dtype
self.dims = dims
self.iotype = 0
self.used_count = 0
self.index = Operand.index
Operand.index = Operand.index + 1
self.iotype2str = {Operand.IOTYPE_INPUT: 'in', Operand.IOTYPE_OUTPUT: 'out', Operand.IOTYPE_INTERMEDIATE: 'inout'}
self.dtype2str = {Operand.DTYPE_FLOAT: 'DT_FLOAT', Operand.DTYPE_UINT8: 'DT_UINT8'}
def add_iotype(self, iotype):
self.iotype = self.iotype | iotype
if iotype == Operand.IOTYPE_INPUT:
self.used_count = self.used_count + 1
def __str__(self):
return "{}: (name: {}, iotype: {}, dtype: {}, dims: ({},{},{},{}) used_count: {})".format(self.index,
self.name, self.iotype2str[self.iotype], self.dtype2str[self.dtype],
self.dims[0], self.dims[1], self.dims[2], self.dims[3], self.used_count)
def __lt__(self, other):
return self.index < other.index
class TFConverter:
def __init__(self, graph_def, nodes, outfile, dump4tb):
self.graph_def = graph_def
self.nodes = nodes
self.outfile = outfile
self.dump4tb = dump4tb
self.layer_number = 0
self.output_names = []
self.name_node_dict = {}
self.edges = {}
self.conv_activations = {'Relu':0, 'Tanh':1, 'Sigmoid':2, 'None':3, 'LeakyRelu':4}
self.conv_paddings = {'VALID':0, 'SAME':1}
self.pool_paddings = {'VALID':0, 'SAME':1}
self.converted_nodes = set()
self.conv2d_scope_names = set()
self.conv2d_scopename_inputname_dict = {}
self.op2code = {'Conv2D':1, 'DepthToSpace':2, 'MirrorPad':3, 'Maximum':4,
'MathBinary':5, 'MathUnary':6, 'AvgPool':7}
self.mathbin2code = {'Sub':0, 'Add':1, 'Mul':2, 'RealDiv':3, 'Minimum':4, 'FloorMod':5}
self.mathun2code = {'Abs':0, 'Sin':1, 'Cos':2, 'Tan':3, 'Asin':4,
'Acos':5, 'Atan':6, 'Sinh':7, 'Cosh':8, 'Tanh':9, 'Asinh':10,
'Acosh':11, 'Atanh':12, 'Ceil':13, 'Floor':14, 'Round':15}
self.mirrorpad_mode = {'CONSTANT':0, 'REFLECT':1, 'SYMMETRIC':2}
self.name_operand_dict = {}
def add_operand(self, name, type):
node = self.name_node_dict[name]
if name not in self.name_operand_dict:
dtype = node.attr['dtype'].type
if dtype == 0:
dtype = node.attr['T'].type
dims = [-1,-1,-1,-1]
if 'shape' in node.attr:
dims[0] = node.attr['shape'].shape.dim[0].size
dims[1] = node.attr['shape'].shape.dim[1].size
dims[2] = node.attr['shape'].shape.dim[2].size
dims[3] = node.attr['shape'].shape.dim[3].size
operand = Operand(name, dtype, dims)
self.name_operand_dict[name] = operand;
self.name_operand_dict[name].add_iotype(type)
return self.name_operand_dict[name].index
def dump_for_tensorboard(self):
graph = tf.get_default_graph()
tf.import_graph_def(self.graph_def, name="")
tf.summary.FileWriter('/tmp/graph', graph)
print('graph saved, run "tensorboard --logdir=/tmp/graph" to see it')
def get_conv2d_params(self, conv2d_scope_name):
knode = self.name_node_dict[conv2d_scope_name + '/kernel']
bnode = self.name_node_dict[conv2d_scope_name + '/bias']
if conv2d_scope_name + '/dilation_rate' in self.name_node_dict:
dnode = self.name_node_dict[conv2d_scope_name + '/dilation_rate']
else:
dnode = None
# the BiasAdd name is possible be changed into the output name,
# if activation is None, and BiasAdd.next is the last op which is Identity
if conv2d_scope_name + '/BiasAdd' in self.edges:
anode = self.edges[conv2d_scope_name + '/BiasAdd'][0]
if anode.op not in self.conv_activations:
anode = None
else:
anode = None
return knode, bnode, dnode, anode
def dump_complex_conv2d_to_file(self, node, f):
assert(node.op == 'Conv2D')
self.layer_number = self.layer_number + 1
self.converted_nodes.add(node.name)
scope_name = TFConverter.get_scope_name(node.name)
#knode for kernel, bnode for bias, dnode for dilation, anode for activation
knode, bnode, dnode, anode = self.get_conv2d_params(scope_name)
if dnode is not None:
dilation = struct.unpack('i', dnode.attr['value'].tensor.tensor_content[0:4])[0]
else:
dilation = 1
if anode is not None:
activation = anode.op
else:
activation = 'None'
padding = node.attr['padding'].s.decode("utf-8")
# conv2d with dilation > 1 generates tens of nodes, not easy to parse them, so use this tricky method.
if dilation > 1 and scope_name + '/stack' in self.name_node_dict:
if self.name_node_dict[scope_name + '/stack'].op == "Const":
padding = 'SAME'
padding = self.conv_paddings[padding]
ktensor = knode.attr['value'].tensor
filter_height = ktensor.tensor_shape.dim[0].size
filter_width = ktensor.tensor_shape.dim[1].size
in_channels = ktensor.tensor_shape.dim[2].size
out_channels = ktensor.tensor_shape.dim[3].size
kernel = np.frombuffer(ktensor.tensor_content, dtype=np.float32)
kernel = kernel.reshape(filter_height, filter_width, in_channels, out_channels)
kernel = np.transpose(kernel, [3, 0, 1, 2])
has_bias = 1
np.array([self.op2code[node.op], dilation, padding, self.conv_activations[activation], in_channels, out_channels, filter_height, has_bias], dtype=np.uint32).tofile(f)
kernel.tofile(f)
btensor = bnode.attr['value'].tensor
if btensor.tensor_shape.dim[0].size == 1:
bias = struct.pack("f", btensor.float_val[0])
else:
bias = btensor.tensor_content
f.write(bias)
input_name = self.conv2d_scopename_inputname_dict[scope_name]
input_operand_index = self.add_operand(input_name, Operand.IOTYPE_INPUT)
if anode is not None:
output_operand_index = self.add_operand(anode.name, Operand.IOTYPE_OUTPUT)
else:
output_operand_index = self.add_operand(self.edges[bnode.name][0].name, Operand.IOTYPE_OUTPUT)
np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f)
def dump_simple_conv2d_to_file(self, node, f):
assert(node.op == 'Conv2D')
self.layer_number = self.layer_number + 1
self.converted_nodes.add(node.name)
node0 = self.name_node_dict[node.input[0]]
node1 = self.name_node_dict[node.input[1]]
if node0.op == 'Const':
knode = node0
input_name = node.input[1]
else:
knode = node1
input_name = node.input[0]
ktensor = knode.attr['value'].tensor
filter_height = ktensor.tensor_shape.dim[0].size
filter_width = ktensor.tensor_shape.dim[1].size
in_channels = ktensor.tensor_shape.dim[2].size
out_channels = ktensor.tensor_shape.dim[3].size
if filter_height * filter_width * in_channels * out_channels == 1:
kernel = np.float32(ktensor.float_val[0])
else:
kernel = np.frombuffer(ktensor.tensor_content, dtype=np.float32)
kernel = kernel.reshape(filter_height, filter_width, in_channels, out_channels)
kernel = np.transpose(kernel, [3, 0, 1, 2])
has_bias = 0
dilation = 1
padding = node.attr['padding'].s.decode("utf-8")
np.array([self.op2code[node.op], dilation, self.conv_paddings[padding], self.conv_activations['None'],
in_channels, out_channels, filter_height, has_bias], dtype=np.uint32).tofile(f)
kernel.tofile(f)
input_operand_index = self.add_operand(input_name, Operand.IOTYPE_INPUT)
output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT)
np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f)
def dump_depth2space_to_file(self, node, f):
assert(node.op == 'DepthToSpace')
self.layer_number = self.layer_number + 1
block_size = node.attr['block_size'].i
np.array([self.op2code[node.op], block_size], dtype=np.uint32).tofile(f)
self.converted_nodes.add(node.name)
input_operand_index = self.add_operand(node.input[0], Operand.IOTYPE_INPUT)
output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT)
np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f)
def dump_mirrorpad_to_file(self, node, f):
assert(node.op == 'MirrorPad')
self.layer_number = self.layer_number + 1
mode = node.attr['mode'].s
mode = self.mirrorpad_mode[mode.decode("utf-8")]
np.array([self.op2code[node.op], mode], dtype=np.uint32).tofile(f)
pnode = self.name_node_dict[node.input[1]]
self.converted_nodes.add(pnode.name)
paddings = pnode.attr['value'].tensor.tensor_content
f.write(paddings)
self.converted_nodes.add(node.name)
input_operand_index = self.add_operand(node.input[0], Operand.IOTYPE_INPUT)
output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT)
np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f)
def dump_maximum_to_file(self, node, f):
assert(node.op == 'Maximum')
self.layer_number = self.layer_number + 1
ynode = self.name_node_dict[node.input[1]]
y = ynode.attr['value'].tensor.float_val[0]
np.array([self.op2code[node.op]], dtype=np.uint32).tofile(f)
np.array([y], dtype=np.float32).tofile(f)
self.converted_nodes.add(node.name)
input_operand_index = self.add_operand(node.input[0], Operand.IOTYPE_INPUT)
output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT)
np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f)
def dump_mathbinary_to_file(self, node, f):
self.layer_number = self.layer_number + 1
self.converted_nodes.add(node.name)
i0_node = self.name_node_dict[node.input[0]]
i1_node = self.name_node_dict[node.input[1]]
np.array([self.op2code['MathBinary'], self.mathbin2code[node.op]], dtype=np.uint32).tofile(f)
if i0_node.op == 'Const':
scalar = i0_node.attr['value'].tensor.float_val[0]
np.array([1], dtype=np.uint32).tofile(f) # broadcast: 1
np.array([scalar], dtype=np.float32).tofile(f)
np.array([0], dtype=np.uint32).tofile(f) # broadcast: 0
input_operand_index = self.add_operand(i1_node.name, Operand.IOTYPE_INPUT)
np.array([input_operand_index], dtype=np.uint32).tofile(f)
elif i1_node.op == 'Const':
scalar = i1_node.attr['value'].tensor.float_val[0]
np.array([0], dtype=np.uint32).tofile(f)
input_operand_index = self.add_operand(i0_node.name, Operand.IOTYPE_INPUT)
np.array([input_operand_index], dtype=np.uint32).tofile(f)
np.array([1], dtype=np.uint32).tofile(f)
np.array([scalar], dtype=np.float32).tofile(f)
else:
np.array([0], dtype=np.uint32).tofile(f)
input_operand_index = self.add_operand(i0_node.name, Operand.IOTYPE_INPUT)
np.array([input_operand_index], dtype=np.uint32).tofile(f)
np.array([0], dtype=np.uint32).tofile(f)
input_operand_index = self.add_operand(i1_node.name, Operand.IOTYPE_INPUT)
np.array([input_operand_index], dtype=np.uint32).tofile(f)
output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT)
np.array([output_operand_index], dtype=np.uint32).tofile(f)
def dump_mathunary_to_file(self, node, f):
self.layer_number = self.layer_number + 1
self.converted_nodes.add(node.name)
i0_node = self.name_node_dict[node.input[0]]
np.array([self.op2code['MathUnary'], self.mathun2code[node.op]], dtype=np.uint32).tofile(f)
input_operand_index = self.add_operand(i0_node.name, Operand.IOTYPE_INPUT)
np.array([input_operand_index], dtype=np.uint32).tofile(f)
output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT)
np.array([output_operand_index],dtype=np.uint32).tofile(f)
def dump_avg_pool_to_file(self, node, f):
assert(node.op == 'AvgPool')
self.layer_number = self.layer_number + 1
self.converted_nodes.add(node.name)
node0 = self.name_node_dict[node.input[0]]
strides = node.attr['strides']
# Tensorflow do not support pooling strides in batch dimension and
# current native NN do not support pooling strides in channel dimension, added assert() here.
assert(strides.list.i[1]==strides.list.i[2])
assert(strides.list.i[0]==1)
assert(strides.list.i[3]==1)
strides = strides.list.i[1]
filter_node = node.attr['ksize']
input_name = node.input[0]
# Tensorflow do not support pooling ksize in batch dimension and channel dimension.
assert(filter_node.list.i[0]==1)
assert(filter_node.list.i[3]==1)
filter_height = filter_node.list.i[1]
filter_width = filter_node.list.i[2]
padding = node.attr['padding'].s.decode("utf-8")
np.array([self.op2code[node.op], strides, self.pool_paddings[padding], filter_height],
dtype=np.uint32).tofile(f)
input_operand_index = self.add_operand(input_name, Operand.IOTYPE_INPUT)
output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT)
np.array([input_operand_index, output_operand_index],dtype=np.uint32).tofile(f)
def dump_layers_to_file(self, f):
for node in self.nodes:
if node.name in self.converted_nodes:
continue
# conv2d with dilation generates very complex nodes, so handle it in special
if self.in_conv2d_scope(node.name):
if node.op == 'Conv2D':
self.dump_complex_conv2d_to_file(node, f)
continue
if node.op == 'Conv2D':
self.dump_simple_conv2d_to_file(node, f)
if node.op == 'AvgPool':
self.dump_avg_pool_to_file(node, f)
elif node.op == 'DepthToSpace':
self.dump_depth2space_to_file(node, f)
elif node.op == 'MirrorPad':
self.dump_mirrorpad_to_file(node, f)
elif node.op == 'Maximum':
self.dump_maximum_to_file(node, f)
elif node.op in self.mathbin2code:
self.dump_mathbinary_to_file(node, f)
elif node.op in self.mathun2code:
self.dump_mathunary_to_file(node, f)
def dump_operands_to_file(self, f):
operands = sorted(self.name_operand_dict.values())
for operand in operands:
#print('{}'.format(operand))
np.array([operand.index, len(operand.name)], dtype=np.uint32).tofile(f)
f.write(operand.name.encode('utf-8'))
np.array([operand.iotype, operand.dtype], dtype=np.uint32).tofile(f)
np.array([operand.dims[0], operand.dims[1], operand.dims[2], operand.dims[3]], dtype=np.uint32).tofile(f)
def dump_to_file(self):
with open(self.outfile, 'wb') as f:
f.write(header.str.encode('utf-8'))
np.array([header.major, header.minor], dtype=np.uint32).tofile(f)
self.dump_layers_to_file(f)
self.dump_operands_to_file(f)
np.array([self.layer_number, len(self.name_operand_dict)], dtype=np.uint32).tofile(f)
def generate_name_node_dict(self):
for node in self.nodes:
self.name_node_dict[node.name] = node
def generate_output_names(self):
used_names = []
for node in self.nodes:
for input in node.input:
used_names.append(input)
for node in self.nodes:
if node.name not in used_names:
self.output_names.append(node.name)
def remove_identity(self):
id_nodes = []
id_dict = {}
for node in self.nodes:
if node.op == 'Identity':
name = node.name
input = node.input[0]
id_nodes.append(node)
# do not change the output name
if name in self.output_names:
self.name_node_dict[input].name = name
self.name_node_dict[name] = self.name_node_dict[input]
del self.name_node_dict[input]
else:
id_dict[name] = input
for idnode in id_nodes:
self.nodes.remove(idnode)
for node in self.nodes:
for i in range(len(node.input)):
input = node.input[i]
if input in id_dict:
node.input[i] = id_dict[input]
def generate_edges(self):
for node in self.nodes:
for input in node.input:
if input in self.edges:
self.edges[input].append(node)
else:
self.edges[input] = [node]
@staticmethod
def get_scope_name(name):
index = name.rfind('/')
if index == -1:
return ""
return name[0:index]
def in_conv2d_scope(self, name):
inner_scope = TFConverter.get_scope_name(name)
if inner_scope == "":
return False;
for scope in self.conv2d_scope_names:
index = inner_scope.find(scope)
if index == 0:
return True
return False
def generate_conv2d_scope_info(self):
# mostly, conv2d is a sub block in graph, get the scope name
for node in self.nodes:
if node.op == 'Conv2D':
scope = TFConverter.get_scope_name(node.name)
# for the case tf.nn.conv2d is called directly
if scope == '':
continue
# for the case tf.nn.conv2d is called within a scope
if scope + '/kernel' not in self.name_node_dict:
continue
self.conv2d_scope_names.add(scope)
# get the input name to the conv2d sub block
for node in self.nodes:
scope = TFConverter.get_scope_name(node.name)
if scope in self.conv2d_scope_names:
if node.op == 'Conv2D' or node.op == 'Shape':
for inp in node.input:
if TFConverter.get_scope_name(inp) != scope:
self.conv2d_scopename_inputname_dict[scope] = inp
def run(self):
self.generate_name_node_dict()
self.generate_output_names()
self.remove_identity()
self.generate_edges()
self.generate_conv2d_scope_info()
if self.dump4tb:
self.dump_for_tensorboard()
self.dump_to_file()
def convert_from_tensorflow(infile, outfile, dump4tb):
with open(infile, 'rb') as f:
# read the file in .proto format
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
nodes = graph_def.node
converter = TFConverter(graph_def, nodes, outfile, dump4tb)
converter.run()
|