aboutsummaryrefslogtreecommitdiffstats
path: root/tests/checkasm/vp9dsp.c
blob: 25f9dd1f9d0d93bf7ffdca3cd27de6006f08eee6 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
/*
 * Copyright (c) 2015 Ronald S. Bultje <rsbultje@gmail.com>
 *
 * This file is part of Libav.
 *
 * Libav is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * Libav is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License along
 * with Libav; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 */

#include <math.h>
#include <string.h>

#include "libavutil/common.h"
#include "libavutil/internal.h"
#include "libavutil/intreadwrite.h"
#include "libavutil/mathematics.h"

#include "libavcodec/vp9.h"
#include "libavcodec/vp9data.h"

#include "checkasm.h"

static const uint32_t pixel_mask[3] = { 0xffffffff, 0x03ff03ff, 0x0fff0fff };

#define BIT_DEPTH 8
#define SIZEOF_PIXEL ((BIT_DEPTH + 7) / 8)

#define randomize_buffers() \
    do { \
        uint32_t mask = pixel_mask[(BIT_DEPTH - 8) >> 1];                  \
        for (y = 0; y < sz; y++) {                                         \
            for (x = 0; x < sz * SIZEOF_PIXEL; x += 4) {                   \
                uint32_t r = rnd() & mask;                                 \
                AV_WN32A(dst + y * sz * SIZEOF_PIXEL + x, r);              \
                AV_WN32A(src + y * sz * SIZEOF_PIXEL + x, rnd() & mask);   \
            }                                                              \
            for (x = 0; x < sz; x++) {                                     \
                if (BIT_DEPTH == 8) {                                      \
                    coef[y * sz + x] = src[y * sz + x] - dst[y * sz + x];  \
                } else {                                                   \
                    ((int32_t *) coef)[y * sz + x] =                       \
                        ((uint16_t *) src)[y * sz + x] -                   \
                        ((uint16_t *) dst)[y * sz + x];                    \
                }                                                          \
            }                                                              \
        }                                                                  \
    } while(0)

// wht function copied from libvpx
static void fwht_1d(double *out, const double *in, int sz)
{
    double t0 = in[0] + in[1];
    double t3 = in[3] - in[2];
    double t4 = trunc((t0 - t3) * 0.5);
    double t1 = t4 - in[1];
    double t2 = t4 - in[2];

    out[0] = t0 - t2;
    out[1] = t2;
    out[2] = t3 + t1;
    out[3] = t1;
}

// standard DCT-II
static void fdct_1d(double *out, const double *in, int sz)
{
    int k, n;

    for (k = 0; k < sz; k++) {
        out[k] = 0.0;
        for (n = 0; n < sz; n++)
            out[k] += in[n] * cos(M_PI * (2 * n + 1) * k / (sz * 2.0));
    }
    out[0] *= M_SQRT1_2;
}

// see "Towards jointly optimal spatial prediction and adaptive transform in
// video/image coding", by J. Han, A. Saxena, and K. Rose
// IEEE Proc. ICASSP, pp. 726-729, Mar. 2010.
static void fadst4_1d(double *out, const double *in, int sz)
{
    int k, n;

    for (k = 0; k < sz; k++) {
        out[k] = 0.0;
        for (n = 0; n < sz; n++)
            out[k] += in[n] * sin(M_PI * (n + 1) * (2 * k + 1) / (sz * 2.0 + 1.0));
    }
}

// see "A Butterfly Structured Design of The Hybrid Transform Coding Scheme",
// by Jingning Han, Yaowu Xu, and Debargha Mukherjee
// http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/41418.pdf
static void fadst_1d(double *out, const double *in, int sz)
{
    int k, n;

    for (k = 0; k < sz; k++) {
        out[k] = 0.0;
        for (n = 0; n < sz; n++)
            out[k] += in[n] * sin(M_PI * (2 * n + 1) * (2 * k + 1) / (sz * 4.0));
    }
}

typedef void (*ftx1d_fn)(double *out, const double *in, int sz);
static void ftx_2d(double *out, const double *in, enum TxfmMode tx,
                   enum TxfmType txtp, int sz)
{
    static const double scaling_factors[5][4] = {
        { 4.0, 16.0 * M_SQRT1_2 / 3.0, 16.0 * M_SQRT1_2 / 3.0, 32.0 / 9.0 },
        { 2.0, 2.0, 2.0, 2.0 },
        { 1.0, 1.0, 1.0, 1.0 },
        { 0.25 },
        { 4.0 }
    };
    static const ftx1d_fn ftx1d_tbl[5][4][2] = {
        {
            { fdct_1d, fdct_1d },
            { fadst4_1d, fdct_1d },
            { fdct_1d, fadst4_1d },
            { fadst4_1d, fadst4_1d },
        }, {
            { fdct_1d, fdct_1d },
            { fadst_1d, fdct_1d },
            { fdct_1d, fadst_1d },
            { fadst_1d, fadst_1d },
        }, {
            { fdct_1d, fdct_1d },
            { fadst_1d, fdct_1d },
            { fdct_1d, fadst_1d },
            { fadst_1d, fadst_1d },
        }, {
            { fdct_1d, fdct_1d },
        }, {
            { fwht_1d, fwht_1d },
        },
    };
    double temp[1024];
    double scaling_factor = scaling_factors[tx][txtp];
    int i, j;

    // cols
    for (i = 0; i < sz; ++i) {
        double temp_out[32];

        ftx1d_tbl[tx][txtp][0](temp_out, &in[i * sz], sz);
        // scale and transpose
        for (j = 0; j < sz; ++j)
            temp[j * sz + i] = temp_out[j] * scaling_factor;
    }

    // rows
    for (i = 0; i < sz; i++)
        ftx1d_tbl[tx][txtp][1](&out[i * sz], &temp[i * sz], sz);
}

static void ftx(int16_t *buf, enum TxfmMode tx,
                enum TxfmType txtp, int sz, int bit_depth)
{
    double ind[1024], outd[1024];
    int n;

    emms_c();
    for (n = 0; n < sz * sz; n++) {
        if (bit_depth == 8)
            ind[n] = buf[n];
        else
            ind[n] = ((int32_t *) buf)[n];
    }
    ftx_2d(outd, ind, tx, txtp, sz);
    for (n = 0; n < sz * sz; n++) {
        if (bit_depth == 8)
            buf[n] = lrint(outd[n]);
        else
            ((int32_t *) buf)[n] = lrint(outd[n]);
    }
}

static int copy_subcoefs(int16_t *out, const int16_t *in, enum TxfmMode tx,
                         enum TxfmType txtp, int sz, int sub, int bit_depth)
{
    // copy the topleft coefficients such that the return value (being the
    // coefficient scantable index for the eob token) guarantees that only
    // the topleft $sub out of $sz (where $sz >= $sub) coefficients in both
    // dimensions are non-zero. This leads to braching to specific optimized
    // simd versions (e.g. dc-only) so that we get full asm coverage in this
    // test

    int n;
    const int16_t *scan = ff_vp9_scans[tx][txtp];
    int eob;

    for (n = 0; n < sz * sz; n++) {
        int rc = scan[n], rcx = rc % sz, rcy = rc / sz;

        // find eob for this sub-idct
        if (rcx >= sub || rcy >= sub)
            break;

        // copy coef
        if (bit_depth == 8) {
            out[rc] = in[rc];
        } else {
            AV_COPY32(&out[rc * 2], &in[rc * 2]);
        }
    }

    eob = n;

    for (; n < sz * sz; n++) {
        int rc = scan[n];

        // zero
        if (bit_depth == 8) {
            out[rc] = 0;
        } else {
            AV_ZERO32(&out[rc * 2]);
        }
    }

    return eob;
}

static int iszero(const int16_t *c, int sz)
{
    int n;

    for (n = 0; n < sz / sizeof(int16_t); n += 2)
        if (AV_RN32A(&c[n]))
            return 0;

    return 1;
}

#define SIZEOF_COEF (2 * ((BIT_DEPTH + 7) / 8))

static void check_itxfm(void)
{
    LOCAL_ALIGNED_32(uint8_t, src, [32 * 32 * 2]);
    LOCAL_ALIGNED(32, uint8_t, dst, [32 * 32 * 2]);
    LOCAL_ALIGNED(32, uint8_t, dst0, [32 * 32 * 2]);
    LOCAL_ALIGNED(32, uint8_t, dst1, [32 * 32 * 2]);
    LOCAL_ALIGNED(32, int16_t, coef, [32 * 32 * 2]);
    LOCAL_ALIGNED(32, int16_t, subcoef0, [32 * 32 * 2]);
    LOCAL_ALIGNED(32, int16_t, subcoef1, [32 * 32 * 2]);
    declare_func(void, uint8_t *dst, ptrdiff_t stride, int16_t *block, int eob);
    VP9DSPContext dsp;
    int y, x, tx, txtp, sub;
    static const char *const txtp_types[N_TXFM_TYPES] = {
        [DCT_DCT] = "dct_dct", [DCT_ADST] = "adst_dct",
        [ADST_DCT] = "dct_adst", [ADST_ADST] = "adst_adst"
    };

    ff_vp9dsp_init(&dsp);

    for (tx = TX_4X4; tx <= N_TXFM_SIZES /* 4 = lossless */; tx++) {
        int sz = 4 << (tx & 3);
        int n_txtps = tx < TX_32X32 ? N_TXFM_TYPES : 1;

        for (txtp = 0; txtp < n_txtps; txtp++) {
            // skip testing sub-IDCTs for WHT or ADST since they don't
            // implement it in any of the SIMD functions. If they do,
            // consider changing this to ensure we have complete test
            // coverage
            for (sub = (txtp == 0 && tx < 4) ? 1 : sz; sub <= sz; sub <<= 1) {
                if (check_func(dsp.itxfm_add[tx][txtp],
                               "vp9_inv_%s_%dx%d_sub%d_add",
                               tx == 4 ? "wht_wht" : txtp_types[txtp],
                               sz, sz, sub)) {
                    int eob;

                    randomize_buffers();
                    ftx(coef, tx, txtp, sz, BIT_DEPTH);

                    if (sub < sz) {
                        eob = copy_subcoefs(subcoef0, coef, tx, txtp,
                                            sz, sub, BIT_DEPTH);
                    } else {
                        eob = sz * sz;
                        memcpy(subcoef0, coef, sz * sz * SIZEOF_COEF);
                    }

                    memcpy(dst0, dst, sz * sz * SIZEOF_PIXEL);
                    memcpy(dst1, dst, sz * sz * SIZEOF_PIXEL);
                    memcpy(subcoef1, subcoef0, sz * sz * SIZEOF_COEF);
                    call_ref(dst0, sz * SIZEOF_PIXEL, subcoef0, eob);
                    call_new(dst1, sz * SIZEOF_PIXEL, subcoef1, eob);
                    if (memcmp(dst0, dst1, sz * sz * SIZEOF_PIXEL) ||
                        !iszero(subcoef0, sz * sz * SIZEOF_COEF) ||
                        !iszero(subcoef1, sz * sz * SIZEOF_COEF))
                        fail();

                    bench_new(dst, sz * SIZEOF_PIXEL, coef, eob);
                }
            }
        }
    }
    report("itxfm");
}

#undef randomize_buffers

#define setpx(a,b,c) \
    do { \
        if (SIZEOF_PIXEL == 1) { \
            buf0[(a) + (b) * jstride] = av_clip_uint8(c); \
        } else { \
            ((uint16_t *)buf0)[(a) + (b) * jstride] = av_clip_uintp2(c, BIT_DEPTH); \
        } \
    } while (0)
#define setdx(a,b,c,d) setpx(a,b,c-(d)+(rnd()%((d)*2+1)))
#define setsx(a,b,c,d) setdx(a,b,c,(d) << (BIT_DEPTH - 8))

static void randomize_loopfilter_buffers(int bidx, int lineoff, int str,
                                         int bit_depth, int dir,
                                         const int *E, const int *F,
                                         const int *H, const int *I,
                                         uint8_t *buf0, uint8_t *buf1)
{
    uint32_t mask = (1 << BIT_DEPTH) - 1;
    int off = dir ? lineoff : lineoff * 16;
    int istride = dir ? 1 : 16;
    int jstride = dir ? str : 1;
    int i, j;
    for (i = 0; i < 2; i++) /* flat16 */ {
        int idx = off + i * istride, p0, q0;
        setpx(idx,  0, q0 = rnd() & mask);
        setsx(idx, -1, p0 = q0, E[bidx] >> 2);
        for (j = 1; j < 8; j++) {
            setsx(idx, -1 - j, p0, F[bidx]);
            setsx(idx, j, q0, F[bidx]);
        }
    }
    for (i = 2; i < 4; i++) /* flat8 */ {
        int idx = off + i * istride, p0, q0;
        setpx(idx,  0, q0 = rnd() & mask);
        setsx(idx, -1, p0 = q0, E[bidx] >> 2);
        for (j = 1; j < 4; j++) {
            setsx(idx, -1 - j, p0, F[bidx]);
            setsx(idx, j, q0, F[bidx]);
        }
        for (j = 4; j < 8; j++) {
            setpx(idx, -1 - j, rnd() & mask);
            setpx(idx, j, rnd() & mask);
        }
    }
    for (i = 4; i < 6; i++) /* regular */ {
        int idx = off + i * istride, p2, p1, p0, q0, q1, q2;
        setpx(idx,  0, q0 = rnd() & mask);
        setsx(idx,  1, q1 = q0, I[bidx]);
        setsx(idx,  2, q2 = q1, I[bidx]);
        setsx(idx,  3, q2,      I[bidx]);
        setsx(idx, -1, p0 = q0, E[bidx] >> 2);
        setsx(idx, -2, p1 = p0, I[bidx]);
        setsx(idx, -3, p2 = p1, I[bidx]);
        setsx(idx, -4, p2,      I[bidx]);
        for (j = 4; j < 8; j++) {
            setpx(idx, -1 - j, rnd() & mask);
            setpx(idx, j, rnd() & mask);
        }
    }
    for (i = 6; i < 8; i++) /* off */ {
        int idx = off + i * istride;
        for (j = 0; j < 8; j++) {
            setpx(idx, -1 - j, rnd() & mask);
            setpx(idx, j, rnd() & mask);
        }
    }
}

#define randomize_buffers(bidx, lineoff, str)                        \
    randomize_loopfilter_buffers(bidx, lineoff, str, BIT_DEPTH, dir, \
                                 E, F, H, I, buf0, buf1)

static void check_loopfilter(void)
{
    LOCAL_ALIGNED_32(uint8_t, base0, [32 + 16 * 16 * 2]);
    LOCAL_ALIGNED_32(uint8_t, base1, [32 + 16 * 16 * 2]);
    VP9DSPContext dsp;
    int dir, wd, wd2;
    static const char *const dir_name[2] = { "h", "v" };
    static const int E[2] = { 20, 28 }, I[2] = { 10, 16 };
    static const int H[2] = {  7, 11 }, F[2] = {  1,  1 };
    declare_func(void, uint8_t *dst, ptrdiff_t stride, int E, int I, int H);

    ff_vp9dsp_init(&dsp);

    for (dir = 0; dir < 2; dir++) {
        uint8_t *buf0, *buf1;
        int midoff = (dir ? 8 * 8 : 8) * SIZEOF_PIXEL;
        int midoff_aligned = (dir ? 8 * 8 : 16) * SIZEOF_PIXEL;

        buf0 = base0 + midoff_aligned;
        buf1 = base1 + midoff_aligned;

        for (wd = 0; wd < 3; wd++) {
            // 4/8/16wd_8px
            if (check_func(dsp.loop_filter_8[wd][dir],
                           "vp9_loop_filter_%s_%d_8",
                           dir_name[dir], 4 << wd)) {
                randomize_buffers(0, 0, 8);
                memcpy(buf1 - midoff, buf0 - midoff,
                       16 * 8 * SIZEOF_PIXEL);
                call_ref(buf0, 16 * SIZEOF_PIXEL >> dir, E[0], I[0], H[0]);
                call_new(buf1, 16 * SIZEOF_PIXEL >> dir, E[0], I[0], H[0]);
                if (memcmp(buf0 - midoff, buf1 - midoff, 16 * 8 * SIZEOF_PIXEL))
                    fail();
                bench_new(buf1, 16 * SIZEOF_PIXEL >> dir, E[0], I[0], H[0]);
            }
        }

        midoff = (dir ? 16 * 8 : 8) * SIZEOF_PIXEL;
        midoff_aligned = (dir ? 16 * 8 : 16) * SIZEOF_PIXEL;

        buf0 = base0 + midoff_aligned;
        buf1 = base1 + midoff_aligned;

        // 16wd_16px loopfilter
        if (check_func(dsp.loop_filter_16[dir],
                       "vp9_loop_filter_%s_16_16",
                       dir_name[dir])) {
            randomize_buffers(0, 0, 16);
            randomize_buffers(0, 8, 16);
            memcpy(buf1 - midoff, buf0 - midoff, 16 * 16 * SIZEOF_PIXEL);
            call_ref(buf0, 16 * SIZEOF_PIXEL, E[0], I[0], H[0]);
            call_new(buf1, 16 * SIZEOF_PIXEL, E[0], I[0], H[0]);
            if (memcmp(buf0 - midoff, buf1 - midoff, 16 * 16 * SIZEOF_PIXEL))
                fail();
            bench_new(buf1, 16 * SIZEOF_PIXEL, E[0], I[0], H[0]);
        }

        for (wd = 0; wd < 2; wd++) {
            for (wd2 = 0; wd2 < 2; wd2++) {
                // mix2 loopfilter
                if (check_func(dsp.loop_filter_mix2[wd][wd2][dir],
                               "vp9_loop_filter_mix2_%s_%d%d_16",
                               dir_name[dir], 4 << wd, 4 << wd2)) {
                    randomize_buffers(0, 0, 16);
                    randomize_buffers(1, 8, 16);
                    memcpy(buf1 - midoff, buf0 - midoff, 16 * 16 * SIZEOF_PIXEL);
#define M(a) ((a[1] << 8) | a[0])
                    call_ref(buf0, 16 * SIZEOF_PIXEL, M(E), M(I), M(H));
                    call_new(buf1, 16 * SIZEOF_PIXEL, M(E), M(I), M(H));
                    if (memcmp(buf0 - midoff, buf1 - midoff, 16 * 16 * SIZEOF_PIXEL))
                        fail();
                    bench_new(buf1, 16 * SIZEOF_PIXEL, M(E), M(I), M(H));
#undef M
                }
            }
        }
    }
    report("loopfilter");
}

#undef setsx
#undef setpx
#undef setdx
#undef randomize_buffers

#define DST_BUF_SIZE (size * size * SIZEOF_PIXEL)
#define SRC_BUF_STRIDE 72
#define SRC_BUF_SIZE ((size + 7) * SRC_BUF_STRIDE * SIZEOF_PIXEL)
#define src (buf + 3 * SIZEOF_PIXEL * (SRC_BUF_STRIDE + 1))

#define randomize_buffers()                               \
    do {                                                  \
        uint32_t mask = pixel_mask[(BIT_DEPTH - 8) >> 1]; \
        int k;                                            \
        for (k = 0; k < SRC_BUF_SIZE; k += 4) {           \
            uint32_t r = rnd() & mask;                    \
            AV_WN32A(buf + k, r);                         \
        }                                                 \
        if (op == 1) {                                    \
            for (k = 0; k < DST_BUF_SIZE; k += 4) {       \
                uint32_t r = rnd() & mask;                \
                AV_WN32A(dst0 + k, r);                    \
                AV_WN32A(dst1 + k, r);                    \
            }                                             \
        }                                                 \
    } while (0)

static void check_mc(void)
{
    static const char *const filter_names[4] = {
        "8tap_smooth", "8tap_regular", "8tap_sharp", "bilin"
    };
    static const char *const subpel_names[2][2] = { { "", "h" }, { "v", "hv" } };
    static const char *const op_names[2] = { "put", "avg" };

    LOCAL_ALIGNED_32(uint8_t, buf,  [72 * 72 * 2]);
    LOCAL_ALIGNED_32(uint8_t, dst0, [64 * 64 * 2]);
    LOCAL_ALIGNED_32(uint8_t, dst1, [64 * 64 * 2]);
    char str[256];
    VP9DSPContext dsp;
    int op, hsize, filter, dx, dy;

    declare_func_emms(AV_CPU_FLAG_MMX | AV_CPU_FLAG_MMXEXT,
                      void, uint8_t *dst, ptrdiff_t dst_stride,
                      const uint8_t *ref, ptrdiff_t ref_stride,
                      int h, int mx, int my);

    for (op = 0; op < 2; op++) {
        ff_vp9dsp_init(&dsp);
        for (hsize = 0; hsize < 5; hsize++) {
            int size = 64 >> hsize;

            for (filter = 0; filter < 4; filter++) {
                for (dx = 0; dx < 2; dx++) {
                    for (dy = 0; dy < 2; dy++) {
                        if (dx || dy) {
                            snprintf(str, sizeof(str), "%s_%s_%d%s", op_names[op],
                                     filter_names[filter], size,
                                     subpel_names[dy][dx]);
                        } else {
                            snprintf(str, sizeof(str), "%s%d", op_names[op], size);
                        }
                        if (check_func(dsp.mc[hsize][filter][op][dx][dy],
                                       "vp9_%s", str)) {
                            int mx = dx ? 1 + (rnd() % 14) : 0;
                            int my = dy ? 1 + (rnd() % 14) : 0;
                            randomize_buffers();
                            call_ref(dst0, size * SIZEOF_PIXEL,
                                     src, SRC_BUF_STRIDE * SIZEOF_PIXEL,
                                     size, mx, my);
                            call_new(dst1, size * SIZEOF_PIXEL,
                                     src, SRC_BUF_STRIDE * SIZEOF_PIXEL,
                                     size, mx, my);
                            if (memcmp(dst0, dst1, DST_BUF_SIZE))
                                fail();

                            // SIMD implementations for each filter of subpel
                            // functions are identical
                            if (filter >= 1 && filter <= 2) continue;

                            bench_new(dst1, size * SIZEOF_PIXEL,
                                      src, SRC_BUF_STRIDE * SIZEOF_PIXEL,
                                      size, mx, my);
                        }
                    }
                }
            }
        }
    }
    report("mc");
}

void checkasm_check_vp9dsp(void)
{
    check_itxfm();
    check_loopfilter();
    check_mc();
}