aboutsummaryrefslogtreecommitdiffstats
path: root/tests/checkasm/sw_scale.c
blob: 7504f8b45fe4f52a3336c18e798714295ae27579 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
/*
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License along
 * with FFmpeg; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 */

#include <string.h>

#include "libavutil/common.h"
#include "libavutil/intreadwrite.h"
#include "libavutil/mem.h"
#include "libavutil/mem_internal.h"

#include "libswscale/swscale.h"
#include "libswscale/swscale_internal.h"

#include "checkasm.h"

#define randomize_buffers(buf, size)      \
    do {                                  \
        int j;                            \
        for (j = 0; j < size; j+=4)       \
            AV_WN32(buf + j, rnd());      \
    } while (0)

// This reference function is the same approximate algorithm employed by the
// SIMD functions
static void ref_function(const int16_t *filter, int filterSize,
                                                 const int16_t **src, uint8_t *dest, int dstW,
                                                 const uint8_t *dither, int offset)
{
    int i, d;
    d = ((filterSize - 1) * 8 + dither[0]) >> 4;
    for ( i = 0; i < dstW; i++) {
        int16_t val = d;
        int j;
        union {
            int val;
            int16_t v[2];
        } t;
        for (j = 0; j < filterSize; j++){
            t.val = (int)src[j][i + offset] * (int)filter[j];
            val += t.v[1];
        }
        dest[i]= av_clip_uint8(val>>3);
    }
}

static void check_yuv2yuvX(void)
{
    struct SwsContext *ctx;
    int fsi, osi, isi, i, j;
    int dstW;
#define LARGEST_FILTER 16
#define FILTER_SIZES 4
    static const int filter_sizes[FILTER_SIZES] = {1, 4, 8, 16};
#define LARGEST_INPUT_SIZE 512
#define INPUT_SIZES 4
    static const int input_sizes[INPUT_SIZES] = {128, 144, 256, 512};

    declare_func_emms(AV_CPU_FLAG_MMX, void, const int16_t *filter,
                      int filterSize, const int16_t **src, uint8_t *dest,
                      int dstW, const uint8_t *dither, int offset);

    const int16_t **src;
    LOCAL_ALIGNED_8(int16_t, src_pixels, [LARGEST_FILTER * LARGEST_INPUT_SIZE]);
    LOCAL_ALIGNED_8(int16_t, filter_coeff, [LARGEST_FILTER]);
    LOCAL_ALIGNED_8(uint8_t, dst0, [LARGEST_INPUT_SIZE]);
    LOCAL_ALIGNED_8(uint8_t, dst1, [LARGEST_INPUT_SIZE]);
    LOCAL_ALIGNED_8(uint8_t, dither, [LARGEST_INPUT_SIZE]);
    union VFilterData{
        const int16_t *src;
        uint16_t coeff[8];
    } *vFilterData;
    uint8_t d_val = rnd();
    randomize_buffers(filter_coeff, LARGEST_FILTER);
    randomize_buffers(src_pixels, LARGEST_FILTER * LARGEST_INPUT_SIZE);
    ctx = sws_alloc_context();
    if (sws_init_context(ctx, NULL, NULL) < 0)
        fail();

    ff_getSwsFunc(ctx);
    for(i = 0; i < LARGEST_INPUT_SIZE; ++i){
        dither[i] = d_val;
    }
    for(isi = 0; isi < INPUT_SIZES; ++isi){
        dstW = input_sizes[isi];
        for(osi = 0; osi < 64; osi += 16){
            for(fsi = 0; fsi < FILTER_SIZES; ++fsi){
                src = av_malloc(sizeof(int16_t*) * filter_sizes[fsi]);
                vFilterData = av_malloc((filter_sizes[fsi] + 2) * sizeof(union VFilterData));
                memset(vFilterData, 0, (filter_sizes[fsi] + 2) * sizeof(union VFilterData));
                for(i = 0; i < filter_sizes[fsi]; ++i){
                    src[i] = &src_pixels[i * LARGEST_INPUT_SIZE];
                    vFilterData[i].src = src[i];
                    for(j = 0; j < 4; ++j)
                        vFilterData[i].coeff[j + 4] = filter_coeff[i];
                }
                if (check_func(ctx->yuv2planeX, "yuv2yuvX_%d_%d", filter_sizes[fsi], osi)){
                    memset(dst0, 0, LARGEST_INPUT_SIZE * sizeof(dst0[0]));
                    memset(dst1, 0, LARGEST_INPUT_SIZE * sizeof(dst1[0]));

                    // The reference function is not the scalar function selected when mmx
                    // is deactivated as the SIMD functions do not give the same result as
                    // the scalar ones due to rounding. The SIMD functions are activated by
                    // the flag SWS_ACCURATE_RND
                    ref_function(&filter_coeff[0], filter_sizes[fsi], src, dst0, dstW - osi, dither, osi);
                    // There's no point in calling new for the reference function
                    if(ctx->use_mmx_vfilter){
                        call_new((const int16_t*)vFilterData, filter_sizes[fsi], src, dst1, dstW - osi, dither, osi);
                        if (memcmp(dst0, dst1, LARGEST_INPUT_SIZE * sizeof(dst0[0])))
                            fail();
                        if(dstW == LARGEST_INPUT_SIZE)
                            bench_new((const int16_t*)vFilterData, filter_sizes[fsi], src, dst1, dstW - osi, dither, osi);
                    }
                }
                av_freep(&src);
                av_freep(&vFilterData);
            }
        }
    }
    sws_freeContext(ctx);
#undef FILTER_SIZES
}

#undef SRC_PIXELS
#define SRC_PIXELS 128

static void check_hscale(void)
{
#define MAX_FILTER_WIDTH 40
#define FILTER_SIZES 5
    static const int filter_sizes[FILTER_SIZES] = { 4, 8, 16, 32, 40 };

#define HSCALE_PAIRS 2
    static const int hscale_pairs[HSCALE_PAIRS][2] = {
        { 8, 14 },
        { 8, 18 },
    };

    int i, j, fsi, hpi, width;
    struct SwsContext *ctx;

    // padded
    LOCAL_ALIGNED_32(uint8_t, src, [FFALIGN(SRC_PIXELS + MAX_FILTER_WIDTH - 1, 4)]);
    LOCAL_ALIGNED_32(uint32_t, dst0, [SRC_PIXELS]);
    LOCAL_ALIGNED_32(uint32_t, dst1, [SRC_PIXELS]);

    // padded
    LOCAL_ALIGNED_32(int16_t, filter, [SRC_PIXELS * MAX_FILTER_WIDTH + MAX_FILTER_WIDTH]);
    LOCAL_ALIGNED_32(int32_t, filterPos, [SRC_PIXELS]);

    // The dst parameter here is either int16_t or int32_t but we use void* to
    // just cover both cases.
    declare_func_emms(AV_CPU_FLAG_MMX, void, void *c, void *dst, int dstW,
                      const uint8_t *src, const int16_t *filter,
                      const int32_t *filterPos, int filterSize);

    ctx = sws_alloc_context();
    if (sws_init_context(ctx, NULL, NULL) < 0)
        fail();

    randomize_buffers(src, SRC_PIXELS + MAX_FILTER_WIDTH - 1);

    for (hpi = 0; hpi < HSCALE_PAIRS; hpi++) {
        for (fsi = 0; fsi < FILTER_SIZES; fsi++) {
            width = filter_sizes[fsi];

            ctx->srcBpc = hscale_pairs[hpi][0];
            ctx->dstBpc = hscale_pairs[hpi][1];
            ctx->hLumFilterSize = ctx->hChrFilterSize = width;

            for (i = 0; i < SRC_PIXELS; i++) {
                filterPos[i] = i;

                // These filter cofficients are chosen to try break two corner
                // cases, namely:
                //
                // - Negative filter coefficients. The filters output signed
                //   values, and it should be possible to end up with negative
                //   output values.
                //
                // - Positive clipping. The hscale filter function has clipping
                //   at (1<<15) - 1
                //
                // The coefficients sum to the 1.0 point for the hscale
                // functions (1 << 14).

                for (j = 0; j < width; j++) {
                    filter[i * width + j] = -((1 << 14) / (width - 1));
                }
                filter[i * width + (rnd() % width)] = ((1 << 15) - 1);
            }

            for (i = 0; i < MAX_FILTER_WIDTH; i++) {
                // These values should be unused in SIMD implementations but
                // may still be read, random coefficients here should help show
                // issues where they are used in error.

                filter[SRC_PIXELS * width + i] = rnd();
            }
            ff_getSwsFunc(ctx);

            if (check_func(ctx->hcScale, "hscale_%d_to_%d_width%d", ctx->srcBpc, ctx->dstBpc + 1, width)) {
                memset(dst0, 0, SRC_PIXELS * sizeof(dst0[0]));
                memset(dst1, 0, SRC_PIXELS * sizeof(dst1[0]));

                call_ref(NULL, dst0, SRC_PIXELS, src, filter, filterPos, width);
                call_new(NULL, dst1, SRC_PIXELS, src, filter, filterPos, width);
                if (memcmp(dst0, dst1, SRC_PIXELS * sizeof(dst0[0])))
                    fail();
                bench_new(NULL, dst0, SRC_PIXELS, src, filter, filterPos, width);
            }
        }
    }
    sws_freeContext(ctx);
}

void checkasm_check_sw_scale(void)
{
    check_hscale();
    report("hscale");
    check_yuv2yuvX();
    report("yuv2yuvX");
}