1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
|
/*
* Copyright (C) 2001-2011 Michael Niedermayer <michaelni@gmx.at>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef SWSCALE_SWSCALE_INTERNAL_H
#define SWSCALE_SWSCALE_INTERNAL_H
#include <stdatomic.h>
#include "config.h"
#include "version.h"
#include "libavutil/avassert.h"
#include "libavutil/avutil.h"
#include "libavutil/common.h"
#include "libavutil/frame.h"
#include "libavutil/intreadwrite.h"
#include "libavutil/log.h"
#include "libavutil/mem_internal.h"
#include "libavutil/pixfmt.h"
#include "libavutil/pixdesc.h"
#include "libavutil/slicethread.h"
#include "libavutil/ppc/util_altivec.h"
#define STR(s) AV_TOSTRING(s) // AV_STRINGIFY is too long
#define YUVRGB_TABLE_HEADROOM 512
#define YUVRGB_TABLE_LUMA_HEADROOM 512
#define MAX_FILTER_SIZE SWS_MAX_FILTER_SIZE
#define DITHER1XBPP
#if HAVE_BIGENDIAN
#define ALT32_CORR (-1)
#else
#define ALT32_CORR 1
#endif
#if ARCH_X86_64
# define APCK_PTR2 8
# define APCK_COEF 16
# define APCK_SIZE 24
#else
# define APCK_PTR2 4
# define APCK_COEF 8
# define APCK_SIZE 16
#endif
#define RETCODE_USE_CASCADE -12345
struct SwsContext;
typedef enum SwsDither {
SWS_DITHER_NONE = 0,
SWS_DITHER_AUTO,
SWS_DITHER_BAYER,
SWS_DITHER_ED,
SWS_DITHER_A_DITHER,
SWS_DITHER_X_DITHER,
NB_SWS_DITHER,
} SwsDither;
typedef enum SwsAlphaBlend {
SWS_ALPHA_BLEND_NONE = 0,
SWS_ALPHA_BLEND_UNIFORM,
SWS_ALPHA_BLEND_CHECKERBOARD,
SWS_ALPHA_BLEND_NB,
} SwsAlphaBlend;
typedef struct Range {
unsigned int start;
unsigned int len;
} Range;
typedef struct RangeList {
Range *ranges;
unsigned int nb_ranges;
int ranges_allocated;
} RangeList;
int ff_range_add(RangeList *r, unsigned int start, unsigned int len);
typedef int (*SwsFunc)(struct SwsContext *context, const uint8_t *src[],
int srcStride[], int srcSliceY, int srcSliceH,
uint8_t *dst[], int dstStride[]);
/**
* Write one line of horizontally scaled data to planar output
* without any additional vertical scaling (or point-scaling).
*
* @param src scaled source data, 15 bits for 8-10-bit output,
* 19 bits for 16-bit output (in int32_t)
* @param dest pointer to the output plane. For >8-bit
* output, this is in uint16_t
* @param dstW width of destination in pixels
* @param dither ordered dither array of type int16_t and size 8
* @param offset Dither offset
*/
typedef void (*yuv2planar1_fn)(const int16_t *src, uint8_t *dest, int dstW,
const uint8_t *dither, int offset);
/**
* Write one line of horizontally scaled data to planar output
* with multi-point vertical scaling between input pixels.
*
* @param filter vertical luma/alpha scaling coefficients, 12 bits [0,4096]
* @param src scaled luma (Y) or alpha (A) source data, 15 bits for
* 8-10-bit output, 19 bits for 16-bit output (in int32_t)
* @param filterSize number of vertical input lines to scale
* @param dest pointer to output plane. For >8-bit
* output, this is in uint16_t
* @param dstW width of destination pixels
* @param offset Dither offset
*/
typedef void (*yuv2planarX_fn)(const int16_t *filter, int filterSize,
const int16_t **src, uint8_t *dest, int dstW,
const uint8_t *dither, int offset);
/**
* Write one line of horizontally scaled chroma to interleaved output
* with multi-point vertical scaling between input pixels.
*
* @param dstFormat destination pixel format
* @param chrDither ordered dither array of type uint8_t and size 8
* @param chrFilter vertical chroma scaling coefficients, 12 bits [0,4096]
* @param chrUSrc scaled chroma (U) source data, 15 bits for 8-10-bit
* output, 19 bits for 16-bit output (in int32_t)
* @param chrVSrc scaled chroma (V) source data, 15 bits for 8-10-bit
* output, 19 bits for 16-bit output (in int32_t)
* @param chrFilterSize number of vertical chroma input lines to scale
* @param dest pointer to the output plane. For >8-bit
* output, this is in uint16_t
* @param dstW width of chroma planes
*/
typedef void (*yuv2interleavedX_fn)(enum AVPixelFormat dstFormat,
const uint8_t *chrDither,
const int16_t *chrFilter,
int chrFilterSize,
const int16_t **chrUSrc,
const int16_t **chrVSrc,
uint8_t *dest, int dstW);
/**
* Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB
* output without any additional vertical scaling (or point-scaling). Note
* that this function may do chroma scaling, see the "uvalpha" argument.
*
* @param c SWS scaling context
* @param lumSrc scaled luma (Y) source data, 15 bits for 8-10-bit output,
* 19 bits for 16-bit output (in int32_t)
* @param chrUSrc scaled chroma (U) source data, 15 bits for 8-10-bit output,
* 19 bits for 16-bit output (in int32_t)
* @param chrVSrc scaled chroma (V) source data, 15 bits for 8-10-bit output,
* 19 bits for 16-bit output (in int32_t)
* @param alpSrc scaled alpha (A) source data, 15 bits for 8-10-bit output,
* 19 bits for 16-bit output (in int32_t)
* @param dest pointer to the output plane. For 16-bit output, this is
* uint16_t
* @param dstW width of lumSrc and alpSrc in pixels, number of pixels
* to write into dest[]
* @param uvalpha chroma scaling coefficient for the second line of chroma
* pixels, either 2048 or 0. If 0, one chroma input is used
* for 2 output pixels (or if the SWS_FLAG_FULL_CHR_INT flag
* is set, it generates 1 output pixel). If 2048, two chroma
* input pixels should be averaged for 2 output pixels (this
* only happens if SWS_FLAG_FULL_CHR_INT is not set)
* @param y vertical line number for this output. This does not need
* to be used to calculate the offset in the destination,
* but can be used to generate comfort noise using dithering
* for some output formats.
*/
typedef void (*yuv2packed1_fn)(struct SwsContext *c, const int16_t *lumSrc,
const int16_t *chrUSrc[2],
const int16_t *chrVSrc[2],
const int16_t *alpSrc, uint8_t *dest,
int dstW, int uvalpha, int y);
/**
* Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB
* output by doing bilinear scaling between two input lines.
*
* @param c SWS scaling context
* @param lumSrc scaled luma (Y) source data, 15 bits for 8-10-bit output,
* 19 bits for 16-bit output (in int32_t)
* @param chrUSrc scaled chroma (U) source data, 15 bits for 8-10-bit output,
* 19 bits for 16-bit output (in int32_t)
* @param chrVSrc scaled chroma (V) source data, 15 bits for 8-10-bit output,
* 19 bits for 16-bit output (in int32_t)
* @param alpSrc scaled alpha (A) source data, 15 bits for 8-10-bit output,
* 19 bits for 16-bit output (in int32_t)
* @param dest pointer to the output plane. For 16-bit output, this is
* uint16_t
* @param dstW width of lumSrc and alpSrc in pixels, number of pixels
* to write into dest[]
* @param yalpha luma/alpha scaling coefficients for the second input line.
* The first line's coefficients can be calculated by using
* 4096 - yalpha
* @param uvalpha chroma scaling coefficient for the second input line. The
* first line's coefficients can be calculated by using
* 4096 - uvalpha
* @param y vertical line number for this output. This does not need
* to be used to calculate the offset in the destination,
* but can be used to generate comfort noise using dithering
* for some output formats.
*/
typedef void (*yuv2packed2_fn)(struct SwsContext *c, const int16_t *lumSrc[2],
const int16_t *chrUSrc[2],
const int16_t *chrVSrc[2],
const int16_t *alpSrc[2],
uint8_t *dest,
int dstW, int yalpha, int uvalpha, int y);
/**
* Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB
* output by doing multi-point vertical scaling between input pixels.
*
* @param c SWS scaling context
* @param lumFilter vertical luma/alpha scaling coefficients, 12 bits [0,4096]
* @param lumSrc scaled luma (Y) source data, 15 bits for 8-10-bit output,
* 19 bits for 16-bit output (in int32_t)
* @param lumFilterSize number of vertical luma/alpha input lines to scale
* @param chrFilter vertical chroma scaling coefficients, 12 bits [0,4096]
* @param chrUSrc scaled chroma (U) source data, 15 bits for 8-10-bit output,
* 19 bits for 16-bit output (in int32_t)
* @param chrVSrc scaled chroma (V) source data, 15 bits for 8-10-bit output,
* 19 bits for 16-bit output (in int32_t)
* @param chrFilterSize number of vertical chroma input lines to scale
* @param alpSrc scaled alpha (A) source data, 15 bits for 8-10-bit output,
* 19 bits for 16-bit output (in int32_t)
* @param dest pointer to the output plane. For 16-bit output, this is
* uint16_t
* @param dstW width of lumSrc and alpSrc in pixels, number of pixels
* to write into dest[]
* @param y vertical line number for this output. This does not need
* to be used to calculate the offset in the destination,
* but can be used to generate comfort noise using dithering
* or some output formats.
*/
typedef void (*yuv2packedX_fn)(struct SwsContext *c, const int16_t *lumFilter,
const int16_t **lumSrc, int lumFilterSize,
const int16_t *chrFilter,
const int16_t **chrUSrc,
const int16_t **chrVSrc, int chrFilterSize,
const int16_t **alpSrc, uint8_t *dest,
int dstW, int y);
/**
* Write one line of horizontally scaled Y/U/V/A to YUV/RGB
* output by doing multi-point vertical scaling between input pixels.
*
* @param c SWS scaling context
* @param lumFilter vertical luma/alpha scaling coefficients, 12 bits [0,4096]
* @param lumSrc scaled luma (Y) source data, 15 bits for 8-10-bit output,
* 19 bits for 16-bit output (in int32_t)
* @param lumFilterSize number of vertical luma/alpha input lines to scale
* @param chrFilter vertical chroma scaling coefficients, 12 bits [0,4096]
* @param chrUSrc scaled chroma (U) source data, 15 bits for 8-10-bit output,
* 19 bits for 16-bit output (in int32_t)
* @param chrVSrc scaled chroma (V) source data, 15 bits for 8-10-bit output,
* 19 bits for 16-bit output (in int32_t)
* @param chrFilterSize number of vertical chroma input lines to scale
* @param alpSrc scaled alpha (A) source data, 15 bits for 8-10-bit output,
* 19 bits for 16-bit output (in int32_t)
* @param dest pointer to the output planes. For 16-bit output, this is
* uint16_t
* @param dstW width of lumSrc and alpSrc in pixels, number of pixels
* to write into dest[]
* @param y vertical line number for this output. This does not need
* to be used to calculate the offset in the destination,
* but can be used to generate comfort noise using dithering
* or some output formats.
*/
typedef void (*yuv2anyX_fn)(struct SwsContext *c, const int16_t *lumFilter,
const int16_t **lumSrc, int lumFilterSize,
const int16_t *chrFilter,
const int16_t **chrUSrc,
const int16_t **chrVSrc, int chrFilterSize,
const int16_t **alpSrc, uint8_t **dest,
int dstW, int y);
struct SwsSlice;
struct SwsFilterDescriptor;
/* This struct should be aligned on at least a 32-byte boundary. */
typedef struct SwsContext {
/**
* info on struct for av_log
*/
const AVClass *av_class;
struct SwsContext *parent;
AVSliceThread *slicethread;
struct SwsContext **slice_ctx;
int *slice_err;
int nb_slice_ctx;
// values passed to current sws_receive_slice() call
int dst_slice_start;
int dst_slice_height;
/**
* Note that src, dst, srcStride, dstStride will be copied in the
* sws_scale() wrapper so they can be freely modified here.
*/
SwsFunc convert_unscaled;
int srcW; ///< Width of source luma/alpha planes.
int srcH; ///< Height of source luma/alpha planes.
int dstH; ///< Height of destination luma/alpha planes.
int chrSrcW; ///< Width of source chroma planes.
int chrSrcH; ///< Height of source chroma planes.
int chrDstW; ///< Width of destination chroma planes.
int chrDstH; ///< Height of destination chroma planes.
int lumXInc, chrXInc;
int lumYInc, chrYInc;
enum AVPixelFormat dstFormat; ///< Destination pixel format.
enum AVPixelFormat srcFormat; ///< Source pixel format.
int dstFormatBpp; ///< Number of bits per pixel of the destination pixel format.
int srcFormatBpp; ///< Number of bits per pixel of the source pixel format.
int dstBpc, srcBpc;
int chrSrcHSubSample; ///< Binary logarithm of horizontal subsampling factor between luma/alpha and chroma planes in source image.
int chrSrcVSubSample; ///< Binary logarithm of vertical subsampling factor between luma/alpha and chroma planes in source image.
int chrDstHSubSample; ///< Binary logarithm of horizontal subsampling factor between luma/alpha and chroma planes in destination image.
int chrDstVSubSample; ///< Binary logarithm of vertical subsampling factor between luma/alpha and chroma planes in destination image.
int vChrDrop; ///< Binary logarithm of extra vertical subsampling factor in source image chroma planes specified by user.
int sliceDir; ///< Direction that slices are fed to the scaler (1 = top-to-bottom, -1 = bottom-to-top).
int nb_threads; ///< Number of threads used for scaling
double param[2]; ///< Input parameters for scaling algorithms that need them.
AVFrame *frame_src;
AVFrame *frame_dst;
RangeList src_ranges;
/* The cascaded_* fields allow spliting a scaler task into multiple
* sequential steps, this is for example used to limit the maximum
* downscaling factor that needs to be supported in one scaler.
*/
struct SwsContext *cascaded_context[3];
int cascaded_tmpStride[4];
uint8_t *cascaded_tmp[4];
int cascaded1_tmpStride[4];
uint8_t *cascaded1_tmp[4];
int cascaded_mainindex;
double gamma_value;
int gamma_flag;
int is_internal_gamma;
uint16_t *gamma;
uint16_t *inv_gamma;
int numDesc;
int descIndex[2];
int numSlice;
struct SwsSlice *slice;
struct SwsFilterDescriptor *desc;
uint32_t pal_yuv[256];
uint32_t pal_rgb[256];
float uint2float_lut[256];
/**
* @name Scaled horizontal lines ring buffer.
* The horizontal scaler keeps just enough scaled lines in a ring buffer
* so they may be passed to the vertical scaler. The pointers to the
* allocated buffers for each line are duplicated in sequence in the ring
* buffer to simplify indexing and avoid wrapping around between lines
* inside the vertical scaler code. The wrapping is done before the
* vertical scaler is called.
*/
//@{
int lastInLumBuf; ///< Last scaled horizontal luma/alpha line from source in the ring buffer.
int lastInChrBuf; ///< Last scaled horizontal chroma line from source in the ring buffer.
//@}
uint8_t *formatConvBuffer;
int needAlpha;
/**
* @name Horizontal and vertical filters.
* To better understand the following fields, here is a pseudo-code of
* their usage in filtering a horizontal line:
* @code
* for (i = 0; i < width; i++) {
* dst[i] = 0;
* for (j = 0; j < filterSize; j++)
* dst[i] += src[ filterPos[i] + j ] * filter[ filterSize * i + j ];
* dst[i] >>= FRAC_BITS; // The actual implementation is fixed-point.
* }
* @endcode
*/
//@{
int16_t *hLumFilter; ///< Array of horizontal filter coefficients for luma/alpha planes.
int16_t *hChrFilter; ///< Array of horizontal filter coefficients for chroma planes.
int16_t *vLumFilter; ///< Array of vertical filter coefficients for luma/alpha planes.
int16_t *vChrFilter; ///< Array of vertical filter coefficients for chroma planes.
int32_t *hLumFilterPos; ///< Array of horizontal filter starting positions for each dst[i] for luma/alpha planes.
int32_t *hChrFilterPos; ///< Array of horizontal filter starting positions for each dst[i] for chroma planes.
int32_t *vLumFilterPos; ///< Array of vertical filter starting positions for each dst[i] for luma/alpha planes.
int32_t *vChrFilterPos; ///< Array of vertical filter starting positions for each dst[i] for chroma planes.
int hLumFilterSize; ///< Horizontal filter size for luma/alpha pixels.
int hChrFilterSize; ///< Horizontal filter size for chroma pixels.
int vLumFilterSize; ///< Vertical filter size for luma/alpha pixels.
int vChrFilterSize; ///< Vertical filter size for chroma pixels.
//@}
int lumMmxextFilterCodeSize; ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code size for luma/alpha planes.
int chrMmxextFilterCodeSize; ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code size for chroma planes.
uint8_t *lumMmxextFilterCode; ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code for luma/alpha planes.
uint8_t *chrMmxextFilterCode; ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code for chroma planes.
int canMMXEXTBeUsed;
int warned_unuseable_bilinear;
int dstY; ///< Last destination vertical line output from last slice.
int flags; ///< Flags passed by the user to select scaler algorithm, optimizations, subsampling, etc...
void *yuvTable; // pointer to the yuv->rgb table start so it can be freed()
// alignment ensures the offset can be added in a single
// instruction on e.g. ARM
DECLARE_ALIGNED(16, int, table_gV)[256 + 2*YUVRGB_TABLE_HEADROOM];
uint8_t *table_rV[256 + 2*YUVRGB_TABLE_HEADROOM];
uint8_t *table_gU[256 + 2*YUVRGB_TABLE_HEADROOM];
uint8_t *table_bU[256 + 2*YUVRGB_TABLE_HEADROOM];
DECLARE_ALIGNED(16, int32_t, input_rgb2yuv_table)[16+40*4]; // This table can contain both C and SIMD formatted values, the C vales are always at the XY_IDX points
#define RY_IDX 0
#define GY_IDX 1
#define BY_IDX 2
#define RU_IDX 3
#define GU_IDX 4
#define BU_IDX 5
#define RV_IDX 6
#define GV_IDX 7
#define BV_IDX 8
#define RGB2YUV_SHIFT 15
int *dither_error[4];
//Colorspace stuff
int contrast, brightness, saturation; // for sws_getColorspaceDetails
int srcColorspaceTable[4];
int dstColorspaceTable[4];
int srcRange; ///< 0 = MPG YUV range, 1 = JPG YUV range (source image).
int dstRange; ///< 0 = MPG YUV range, 1 = JPG YUV range (destination image).
int src0Alpha;
int dst0Alpha;
int srcXYZ;
int dstXYZ;
int src_h_chr_pos;
int dst_h_chr_pos;
int src_v_chr_pos;
int dst_v_chr_pos;
int yuv2rgb_y_offset;
int yuv2rgb_y_coeff;
int yuv2rgb_v2r_coeff;
int yuv2rgb_v2g_coeff;
int yuv2rgb_u2g_coeff;
int yuv2rgb_u2b_coeff;
#define RED_DITHER "0*8"
#define GREEN_DITHER "1*8"
#define BLUE_DITHER "2*8"
#define Y_COEFF "3*8"
#define VR_COEFF "4*8"
#define UB_COEFF "5*8"
#define VG_COEFF "6*8"
#define UG_COEFF "7*8"
#define Y_OFFSET "8*8"
#define U_OFFSET "9*8"
#define V_OFFSET "10*8"
#define LUM_MMX_FILTER_OFFSET "11*8"
#define CHR_MMX_FILTER_OFFSET "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)
#define DSTW_OFFSET "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*2"
#define ESP_OFFSET "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*2+8"
#define VROUNDER_OFFSET "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*2+16"
#define U_TEMP "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*2+24"
#define V_TEMP "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*2+32"
#define Y_TEMP "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*2+40"
#define ALP_MMX_FILTER_OFFSET "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*2+48"
#define UV_OFF_PX "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*3+48"
#define UV_OFF_BYTE "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*3+56"
#define DITHER16 "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*3+64"
#define DITHER32 "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*3+80"
#define DITHER32_INT (11*8+4*4*MAX_FILTER_SIZE*3+80) // value equal to above, used for checking that the struct hasn't been changed by mistake
DECLARE_ALIGNED(8, uint64_t, redDither);
DECLARE_ALIGNED(8, uint64_t, greenDither);
DECLARE_ALIGNED(8, uint64_t, blueDither);
DECLARE_ALIGNED(8, uint64_t, yCoeff);
DECLARE_ALIGNED(8, uint64_t, vrCoeff);
DECLARE_ALIGNED(8, uint64_t, ubCoeff);
DECLARE_ALIGNED(8, uint64_t, vgCoeff);
DECLARE_ALIGNED(8, uint64_t, ugCoeff);
DECLARE_ALIGNED(8, uint64_t, yOffset);
DECLARE_ALIGNED(8, uint64_t, uOffset);
DECLARE_ALIGNED(8, uint64_t, vOffset);
int32_t lumMmxFilter[4 * MAX_FILTER_SIZE];
int32_t chrMmxFilter[4 * MAX_FILTER_SIZE];
int dstW; ///< Width of destination luma/alpha planes.
DECLARE_ALIGNED(8, uint64_t, esp);
DECLARE_ALIGNED(8, uint64_t, vRounder);
DECLARE_ALIGNED(8, uint64_t, u_temp);
DECLARE_ALIGNED(8, uint64_t, v_temp);
DECLARE_ALIGNED(8, uint64_t, y_temp);
int32_t alpMmxFilter[4 * MAX_FILTER_SIZE];
// alignment of these values is not necessary, but merely here
// to maintain the same offset across x8632 and x86-64. Once we
// use proper offset macros in the asm, they can be removed.
DECLARE_ALIGNED(8, ptrdiff_t, uv_off); ///< offset (in pixels) between u and v planes
DECLARE_ALIGNED(8, ptrdiff_t, uv_offx2); ///< offset (in bytes) between u and v planes
DECLARE_ALIGNED(8, uint16_t, dither16)[8];
DECLARE_ALIGNED(8, uint32_t, dither32)[8];
const uint8_t *chrDither8, *lumDither8;
#if HAVE_ALTIVEC
vector signed short CY;
vector signed short CRV;
vector signed short CBU;
vector signed short CGU;
vector signed short CGV;
vector signed short OY;
vector unsigned short CSHIFT;
vector signed short *vYCoeffsBank, *vCCoeffsBank;
#endif
int use_mmx_vfilter;
/* pre defined color-spaces gamma */
#define XYZ_GAMMA (2.6f)
#define RGB_GAMMA (2.2f)
int16_t *xyzgamma;
int16_t *rgbgamma;
int16_t *xyzgammainv;
int16_t *rgbgammainv;
int16_t xyz2rgb_matrix[3][4];
int16_t rgb2xyz_matrix[3][4];
/* function pointers for swscale() */
yuv2planar1_fn yuv2plane1;
yuv2planarX_fn yuv2planeX;
yuv2interleavedX_fn yuv2nv12cX;
yuv2packed1_fn yuv2packed1;
yuv2packed2_fn yuv2packed2;
yuv2packedX_fn yuv2packedX;
yuv2anyX_fn yuv2anyX;
/// Unscaled conversion of luma plane to YV12 for horizontal scaler.
void (*lumToYV12)(uint8_t *dst, const uint8_t *src, const uint8_t *src2, const uint8_t *src3,
int width, uint32_t *pal);
/// Unscaled conversion of alpha plane to YV12 for horizontal scaler.
void (*alpToYV12)(uint8_t *dst, const uint8_t *src, const uint8_t *src2, const uint8_t *src3,
int width, uint32_t *pal);
/// Unscaled conversion of chroma planes to YV12 for horizontal scaler.
void (*chrToYV12)(uint8_t *dstU, uint8_t *dstV,
const uint8_t *src1, const uint8_t *src2, const uint8_t *src3,
int width, uint32_t *pal);
/**
* Functions to read planar input, such as planar RGB, and convert
* internally to Y/UV/A.
*/
/** @{ */
void (*readLumPlanar)(uint8_t *dst, const uint8_t *src[4], int width, int32_t *rgb2yuv);
void (*readChrPlanar)(uint8_t *dstU, uint8_t *dstV, const uint8_t *src[4],
int width, int32_t *rgb2yuv);
void (*readAlpPlanar)(uint8_t *dst, const uint8_t *src[4], int width, int32_t *rgb2yuv);
/** @} */
/**
* Scale one horizontal line of input data using a bilinear filter
* to produce one line of output data. Compared to SwsContext->hScale(),
* please take note of the following caveats when using these:
* - Scaling is done using only 7 bits instead of 14-bit coefficients.
* - You can use no more than 5 input pixels to produce 4 output
* pixels. Therefore, this filter should not be used for downscaling
* by more than ~20% in width (because that equals more than 5/4th
* downscaling and thus more than 5 pixels input per 4 pixels output).
* - In general, bilinear filters create artifacts during downscaling
* (even when <20%), because one output pixel will span more than one
* input pixel, and thus some pixels will need edges of both neighbor
* pixels to interpolate the output pixel. Since you can use at most
* two input pixels per output pixel in bilinear scaling, this is
* impossible and thus downscaling by any size will create artifacts.
* To enable this type of scaling, set SWS_FLAG_FAST_BILINEAR
* in SwsContext->flags.
*/
/** @{ */
void (*hyscale_fast)(struct SwsContext *c,
int16_t *dst, int dstWidth,
const uint8_t *src, int srcW, int xInc);
void (*hcscale_fast)(struct SwsContext *c,
int16_t *dst1, int16_t *dst2, int dstWidth,
const uint8_t *src1, const uint8_t *src2,
int srcW, int xInc);
/** @} */
/**
* Scale one horizontal line of input data using a filter over the input
* lines, to produce one (differently sized) line of output data.
*
* @param dst pointer to destination buffer for horizontally scaled
* data. If the number of bits per component of one
* destination pixel (SwsContext->dstBpc) is <= 10, data
* will be 15 bpc in 16 bits (int16_t) width. Else (i.e.
* SwsContext->dstBpc == 16), data will be 19bpc in
* 32 bits (int32_t) width.
* @param dstW width of destination image
* @param src pointer to source data to be scaled. If the number of
* bits per component of a source pixel (SwsContext->srcBpc)
* is 8, this is 8bpc in 8 bits (uint8_t) width. Else
* (i.e. SwsContext->dstBpc > 8), this is native depth
* in 16 bits (uint16_t) width. In other words, for 9-bit
* YUV input, this is 9bpc, for 10-bit YUV input, this is
* 10bpc, and for 16-bit RGB or YUV, this is 16bpc.
* @param filter filter coefficients to be used per output pixel for
* scaling. This contains 14bpp filtering coefficients.
* Guaranteed to contain dstW * filterSize entries.
* @param filterPos position of the first input pixel to be used for
* each output pixel during scaling. Guaranteed to
* contain dstW entries.
* @param filterSize the number of input coefficients to be used (and
* thus the number of input pixels to be used) for
* creating a single output pixel. Is aligned to 4
* (and input coefficients thus padded with zeroes)
* to simplify creating SIMD code.
*/
/** @{ */
void (*hyScale)(struct SwsContext *c, int16_t *dst, int dstW,
const uint8_t *src, const int16_t *filter,
const int32_t *filterPos, int filterSize);
void (*hcScale)(struct SwsContext *c, int16_t *dst, int dstW,
const uint8_t *src, const int16_t *filter,
const int32_t *filterPos, int filterSize);
/** @} */
/// Color range conversion function for luma plane if needed.
void (*lumConvertRange)(int16_t *dst, int width);
/// Color range conversion function for chroma planes if needed.
void (*chrConvertRange)(int16_t *dst1, int16_t *dst2, int width);
int needs_hcscale; ///< Set if there are chroma planes to be converted.
SwsDither dither;
SwsAlphaBlend alphablend;
// scratch buffer for converting packed rgb0 sources
// filled with a copy of the input frame + fully opaque alpha,
// then passed as input to further conversion
uint8_t *rgb0_scratch;
unsigned int rgb0_scratch_allocated;
// scratch buffer for converting XYZ sources
// filled with the input converted to rgb48
// then passed as input to further conversion
uint8_t *xyz_scratch;
unsigned int xyz_scratch_allocated;
unsigned int dst_slice_align;
atomic_int stride_unaligned_warned;
atomic_int data_unaligned_warned;
} SwsContext;
//FIXME check init (where 0)
SwsFunc ff_yuv2rgb_get_func_ptr(SwsContext *c);
int ff_yuv2rgb_c_init_tables(SwsContext *c, const int inv_table[4],
int fullRange, int brightness,
int contrast, int saturation);
void ff_yuv2rgb_init_tables_ppc(SwsContext *c, const int inv_table[4],
int brightness, int contrast, int saturation);
void ff_updateMMXDitherTables(SwsContext *c, int dstY);
av_cold void ff_sws_init_range_convert(SwsContext *c);
SwsFunc ff_yuv2rgb_init_x86(SwsContext *c);
SwsFunc ff_yuv2rgb_init_ppc(SwsContext *c);
static av_always_inline int is16BPS(enum AVPixelFormat pix_fmt)
{
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
av_assert0(desc);
return desc->comp[0].depth == 16;
}
static av_always_inline int is32BPS(enum AVPixelFormat pix_fmt)
{
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
av_assert0(desc);
return desc->comp[0].depth == 32;
}
static av_always_inline int isNBPS(enum AVPixelFormat pix_fmt)
{
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
av_assert0(desc);
return desc->comp[0].depth >= 9 && desc->comp[0].depth <= 14;
}
static av_always_inline int isBE(enum AVPixelFormat pix_fmt)
{
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
av_assert0(desc);
return desc->flags & AV_PIX_FMT_FLAG_BE;
}
static av_always_inline int isYUV(enum AVPixelFormat pix_fmt)
{
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
av_assert0(desc);
return !(desc->flags & AV_PIX_FMT_FLAG_RGB) && desc->nb_components >= 2;
}
static av_always_inline int isPlanarYUV(enum AVPixelFormat pix_fmt)
{
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
av_assert0(desc);
return ((desc->flags & AV_PIX_FMT_FLAG_PLANAR) && isYUV(pix_fmt));
}
/*
* Identity semi-planar YUV formats. Specifically, those are YUV formats
* where the second and third components (U & V) are on the same plane.
*/
static av_always_inline int isSemiPlanarYUV(enum AVPixelFormat pix_fmt)
{
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
av_assert0(desc);
return (isPlanarYUV(pix_fmt) && desc->comp[1].plane == desc->comp[2].plane);
}
static av_always_inline int isRGB(enum AVPixelFormat pix_fmt)
{
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
av_assert0(desc);
return (desc->flags & AV_PIX_FMT_FLAG_RGB);
}
static av_always_inline int isGray(enum AVPixelFormat pix_fmt)
{
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
av_assert0(desc);
return !(desc->flags & AV_PIX_FMT_FLAG_PAL) &&
!(desc->flags & AV_PIX_FMT_FLAG_HWACCEL) &&
desc->nb_components <= 2 &&
pix_fmt != AV_PIX_FMT_MONOBLACK &&
pix_fmt != AV_PIX_FMT_MONOWHITE;
}
static av_always_inline int isRGBinInt(enum AVPixelFormat pix_fmt)
{
return pix_fmt == AV_PIX_FMT_RGB48BE ||
pix_fmt == AV_PIX_FMT_RGB48LE ||
pix_fmt == AV_PIX_FMT_RGB32 ||
pix_fmt == AV_PIX_FMT_RGB32_1 ||
pix_fmt == AV_PIX_FMT_RGB24 ||
pix_fmt == AV_PIX_FMT_RGB565BE ||
pix_fmt == AV_PIX_FMT_RGB565LE ||
pix_fmt == AV_PIX_FMT_RGB555BE ||
pix_fmt == AV_PIX_FMT_RGB555LE ||
pix_fmt == AV_PIX_FMT_RGB444BE ||
pix_fmt == AV_PIX_FMT_RGB444LE ||
pix_fmt == AV_PIX_FMT_RGB8 ||
pix_fmt == AV_PIX_FMT_RGB4 ||
pix_fmt == AV_PIX_FMT_RGB4_BYTE ||
pix_fmt == AV_PIX_FMT_RGBA64BE ||
pix_fmt == AV_PIX_FMT_RGBA64LE ||
pix_fmt == AV_PIX_FMT_MONOBLACK ||
pix_fmt == AV_PIX_FMT_MONOWHITE;
}
static av_always_inline int isBGRinInt(enum AVPixelFormat pix_fmt)
{
return pix_fmt == AV_PIX_FMT_BGR48BE ||
pix_fmt == AV_PIX_FMT_BGR48LE ||
pix_fmt == AV_PIX_FMT_BGR32 ||
pix_fmt == AV_PIX_FMT_BGR32_1 ||
pix_fmt == AV_PIX_FMT_BGR24 ||
pix_fmt == AV_PIX_FMT_BGR565BE ||
pix_fmt == AV_PIX_FMT_BGR565LE ||
pix_fmt == AV_PIX_FMT_BGR555BE ||
pix_fmt == AV_PIX_FMT_BGR555LE ||
pix_fmt == AV_PIX_FMT_BGR444BE ||
pix_fmt == AV_PIX_FMT_BGR444LE ||
pix_fmt == AV_PIX_FMT_BGR8 ||
pix_fmt == AV_PIX_FMT_BGR4 ||
pix_fmt == AV_PIX_FMT_BGR4_BYTE ||
pix_fmt == AV_PIX_FMT_BGRA64BE ||
pix_fmt == AV_PIX_FMT_BGRA64LE ||
pix_fmt == AV_PIX_FMT_MONOBLACK ||
pix_fmt == AV_PIX_FMT_MONOWHITE;
}
static av_always_inline int isBayer(enum AVPixelFormat pix_fmt)
{
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
av_assert0(desc);
return !!(desc->flags & AV_PIX_FMT_FLAG_BAYER);
}
static av_always_inline int isBayer16BPS(enum AVPixelFormat pix_fmt)
{
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
av_assert0(desc);
return desc->comp[1].depth == 8;
}
static av_always_inline int isAnyRGB(enum AVPixelFormat pix_fmt)
{
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
av_assert0(desc);
return (desc->flags & AV_PIX_FMT_FLAG_RGB) ||
pix_fmt == AV_PIX_FMT_MONOBLACK || pix_fmt == AV_PIX_FMT_MONOWHITE;
}
static av_always_inline int isFloat(enum AVPixelFormat pix_fmt)
{
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
av_assert0(desc);
return desc->flags & AV_PIX_FMT_FLAG_FLOAT;
}
static av_always_inline int isALPHA(enum AVPixelFormat pix_fmt)
{
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
av_assert0(desc);
if (pix_fmt == AV_PIX_FMT_PAL8)
return 1;
return desc->flags & AV_PIX_FMT_FLAG_ALPHA;
}
static av_always_inline int isPacked(enum AVPixelFormat pix_fmt)
{
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
av_assert0(desc);
return (desc->nb_components >= 2 && !(desc->flags & AV_PIX_FMT_FLAG_PLANAR)) ||
pix_fmt == AV_PIX_FMT_PAL8 ||
pix_fmt == AV_PIX_FMT_MONOBLACK || pix_fmt == AV_PIX_FMT_MONOWHITE;
}
static av_always_inline int isPlanar(enum AVPixelFormat pix_fmt)
{
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
av_assert0(desc);
return (desc->nb_components >= 2 && (desc->flags & AV_PIX_FMT_FLAG_PLANAR));
}
static av_always_inline int isPackedRGB(enum AVPixelFormat pix_fmt)
{
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
av_assert0(desc);
return ((desc->flags & (AV_PIX_FMT_FLAG_PLANAR | AV_PIX_FMT_FLAG_RGB)) == AV_PIX_FMT_FLAG_RGB);
}
static av_always_inline int isPlanarRGB(enum AVPixelFormat pix_fmt)
{
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
av_assert0(desc);
return ((desc->flags & (AV_PIX_FMT_FLAG_PLANAR | AV_PIX_FMT_FLAG_RGB)) ==
(AV_PIX_FMT_FLAG_PLANAR | AV_PIX_FMT_FLAG_RGB));
}
static av_always_inline int usePal(enum AVPixelFormat pix_fmt)
{
switch (pix_fmt) {
case AV_PIX_FMT_PAL8:
case AV_PIX_FMT_BGR4_BYTE:
case AV_PIX_FMT_BGR8:
case AV_PIX_FMT_GRAY8:
case AV_PIX_FMT_RGB4_BYTE:
case AV_PIX_FMT_RGB8:
return 1;
default:
return 0;
}
}
extern const uint64_t ff_dither4[2];
extern const uint64_t ff_dither8[2];
extern const uint8_t ff_dither_2x2_4[3][8];
extern const uint8_t ff_dither_2x2_8[3][8];
extern const uint8_t ff_dither_4x4_16[5][8];
extern const uint8_t ff_dither_8x8_32[9][8];
extern const uint8_t ff_dither_8x8_73[9][8];
extern const uint8_t ff_dither_8x8_128[9][8];
extern const uint8_t ff_dither_8x8_220[9][8];
extern const int32_t ff_yuv2rgb_coeffs[11][4];
extern const AVClass ff_sws_context_class;
/**
* Set c->convert_unscaled to an unscaled converter if one exists for the
* specific source and destination formats, bit depths, flags, etc.
*/
void ff_get_unscaled_swscale(SwsContext *c);
void ff_get_unscaled_swscale_ppc(SwsContext *c);
void ff_get_unscaled_swscale_arm(SwsContext *c);
void ff_get_unscaled_swscale_aarch64(SwsContext *c);
void ff_sws_init_scale(SwsContext *c);
void ff_sws_init_input_funcs(SwsContext *c);
void ff_sws_init_output_funcs(SwsContext *c,
yuv2planar1_fn *yuv2plane1,
yuv2planarX_fn *yuv2planeX,
yuv2interleavedX_fn *yuv2nv12cX,
yuv2packed1_fn *yuv2packed1,
yuv2packed2_fn *yuv2packed2,
yuv2packedX_fn *yuv2packedX,
yuv2anyX_fn *yuv2anyX);
void ff_sws_init_swscale_ppc(SwsContext *c);
void ff_sws_init_swscale_vsx(SwsContext *c);
void ff_sws_init_swscale_x86(SwsContext *c);
void ff_sws_init_swscale_aarch64(SwsContext *c);
void ff_sws_init_swscale_arm(SwsContext *c);
void ff_hyscale_fast_c(SwsContext *c, int16_t *dst, int dstWidth,
const uint8_t *src, int srcW, int xInc);
void ff_hcscale_fast_c(SwsContext *c, int16_t *dst1, int16_t *dst2,
int dstWidth, const uint8_t *src1,
const uint8_t *src2, int srcW, int xInc);
int ff_init_hscaler_mmxext(int dstW, int xInc, uint8_t *filterCode,
int16_t *filter, int32_t *filterPos,
int numSplits);
void ff_hyscale_fast_mmxext(SwsContext *c, int16_t *dst,
int dstWidth, const uint8_t *src,
int srcW, int xInc);
void ff_hcscale_fast_mmxext(SwsContext *c, int16_t *dst1, int16_t *dst2,
int dstWidth, const uint8_t *src1,
const uint8_t *src2, int srcW, int xInc);
/**
* Allocate and return an SwsContext.
* This is like sws_getContext() but does not perform the init step, allowing
* the user to set additional AVOptions.
*
* @see sws_getContext()
*/
struct SwsContext *sws_alloc_set_opts(int srcW, int srcH, enum AVPixelFormat srcFormat,
int dstW, int dstH, enum AVPixelFormat dstFormat,
int flags, const double *param);
int ff_sws_alphablendaway(SwsContext *c, const uint8_t *src[],
int srcStride[], int srcSliceY, int srcSliceH,
uint8_t *dst[], int dstStride[]);
static inline void fillPlane16(uint8_t *plane, int stride, int width, int height, int y,
int alpha, int bits, const int big_endian)
{
int i, j;
uint8_t *ptr = plane + stride * y;
int v = alpha ? 0xFFFF>>(16-bits) : (1<<(bits-1));
for (i = 0; i < height; i++) {
#define FILL(wfunc) \
for (j = 0; j < width; j++) {\
wfunc(ptr+2*j, v);\
}
if (big_endian) {
FILL(AV_WB16);
} else {
FILL(AV_WL16);
}
ptr += stride;
}
#undef FILL
}
static inline void fillPlane32(uint8_t *plane, int stride, int width, int height, int y,
int alpha, int bits, const int big_endian, int is_float)
{
int i, j;
uint8_t *ptr = plane + stride * y;
uint32_t v;
uint32_t onef32 = 0x3f800000;
if (is_float)
v = alpha ? onef32 : 0;
else
v = alpha ? 0xFFFFFFFF>>(32-bits) : (1<<(bits-1));
for (i = 0; i < height; i++) {
#define FILL(wfunc) \
for (j = 0; j < width; j++) {\
wfunc(ptr+4*j, v);\
}
if (big_endian) {
FILL(AV_WB32);
} else {
FILL(AV_WL32);
}
ptr += stride;
}
#undef FILL
}
#define MAX_SLICE_PLANES 4
/// Slice plane
typedef struct SwsPlane
{
int available_lines; ///< max number of lines that can be hold by this plane
int sliceY; ///< index of first line
int sliceH; ///< number of lines
uint8_t **line; ///< line buffer
uint8_t **tmp; ///< Tmp line buffer used by mmx code
} SwsPlane;
/**
* Struct which defines a slice of an image to be scaled or an output for
* a scaled slice.
* A slice can also be used as intermediate ring buffer for scaling steps.
*/
typedef struct SwsSlice
{
int width; ///< Slice line width
int h_chr_sub_sample; ///< horizontal chroma subsampling factor
int v_chr_sub_sample; ///< vertical chroma subsampling factor
int is_ring; ///< flag to identify if this slice is a ring buffer
int should_free_lines; ///< flag to identify if there are dynamic allocated lines
enum AVPixelFormat fmt; ///< planes pixel format
SwsPlane plane[MAX_SLICE_PLANES]; ///< color planes
} SwsSlice;
/**
* Struct which holds all necessary data for processing a slice.
* A processing step can be a color conversion or horizontal/vertical scaling.
*/
typedef struct SwsFilterDescriptor
{
SwsSlice *src; ///< Source slice
SwsSlice *dst; ///< Output slice
int alpha; ///< Flag for processing alpha channel
void *instance; ///< Filter instance data
/// Function for processing input slice sliceH lines starting from line sliceY
int (*process)(SwsContext *c, struct SwsFilterDescriptor *desc, int sliceY, int sliceH);
} SwsFilterDescriptor;
// warp input lines in the form (src + width*i + j) to slice format (line[i][j])
// relative=true means first line src[x][0] otherwise first line is src[x][lum/crh Y]
int ff_init_slice_from_src(SwsSlice * s, uint8_t *src[4], int stride[4], int srcW, int lumY, int lumH, int chrY, int chrH, int relative);
// Initialize scaler filter descriptor chain
int ff_init_filters(SwsContext *c);
// Free all filter data
int ff_free_filters(SwsContext *c);
/*
function for applying ring buffer logic into slice s
It checks if the slice can hold more @lum lines, if yes
do nothing otherwise remove @lum least used lines.
It applies the same procedure for @chr lines.
*/
int ff_rotate_slice(SwsSlice *s, int lum, int chr);
/// initializes gamma conversion descriptor
int ff_init_gamma_convert(SwsFilterDescriptor *desc, SwsSlice * src, uint16_t *table);
/// initializes lum pixel format conversion descriptor
int ff_init_desc_fmt_convert(SwsFilterDescriptor *desc, SwsSlice * src, SwsSlice *dst, uint32_t *pal);
/// initializes lum horizontal scaling descriptor
int ff_init_desc_hscale(SwsFilterDescriptor *desc, SwsSlice *src, SwsSlice *dst, uint16_t *filter, int * filter_pos, int filter_size, int xInc);
/// initializes chr pixel format conversion descriptor
int ff_init_desc_cfmt_convert(SwsFilterDescriptor *desc, SwsSlice * src, SwsSlice *dst, uint32_t *pal);
/// initializes chr horizontal scaling descriptor
int ff_init_desc_chscale(SwsFilterDescriptor *desc, SwsSlice *src, SwsSlice *dst, uint16_t *filter, int * filter_pos, int filter_size, int xInc);
int ff_init_desc_no_chr(SwsFilterDescriptor *desc, SwsSlice * src, SwsSlice *dst);
/// initializes vertical scaling descriptors
int ff_init_vscale(SwsContext *c, SwsFilterDescriptor *desc, SwsSlice *src, SwsSlice *dst);
/// setup vertical scaler functions
void ff_init_vscale_pfn(SwsContext *c, yuv2planar1_fn yuv2plane1, yuv2planarX_fn yuv2planeX,
yuv2interleavedX_fn yuv2nv12cX, yuv2packed1_fn yuv2packed1, yuv2packed2_fn yuv2packed2,
yuv2packedX_fn yuv2packedX, yuv2anyX_fn yuv2anyX, int use_mmx);
void ff_sws_slice_worker(void *priv, int jobnr, int threadnr,
int nb_jobs, int nb_threads);
//number of extra lines to process
#define MAX_LINES_AHEAD 4
#endif /* SWSCALE_SWSCALE_INTERNAL_H */
|