1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
|
/*
* Copyright (C) 2024 Niklas Haas
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <assert.h>
#include <string.h>
#include "libavutil/attributes.h"
#include "libavutil/avassert.h"
#include "libavutil/mem.h"
#include "cms.h"
#include "csputils.h"
#include "lut3d.h"
SwsLut3D *sws_lut3d_alloc(void)
{
SwsLut3D *lut3d = av_malloc(sizeof(*lut3d));
if (!lut3d)
return NULL;
lut3d->dynamic = false;
return lut3d;
}
void sws_lut3d_free(SwsLut3D **plut3d)
{
av_freep(plut3d);
}
bool sws_lut3d_test_fmt(enum AVPixelFormat fmt, int output)
{
return fmt == AV_PIX_FMT_RGBA64;
}
enum AVPixelFormat sws_lut3d_pick_pixfmt(SwsFormat fmt, int output)
{
return AV_PIX_FMT_RGBA64;
}
/**
* v0 and v1 are 'black' and 'white'
* v2 and v3 are closest RGB/CMY vertices
* x >= y >= z are relative weights
*/
static av_always_inline
v3u16_t barycentric(int shift, int x, int y, int z,
v3u16_t v0, v3u16_t v1, v3u16_t v2, v3u16_t v3)
{
const int a = (1 << shift) - x;
const int b = x - y;
const int c = y - z;
const int d = z;
av_assert2(x >= y);
av_assert2(y >= z);
return (v3u16_t) {
(a * v0.x + b * v1.x + c * v2.x + d * v3.x) >> shift,
(a * v0.y + b * v1.y + c * v2.y + d * v3.y) >> shift,
(a * v0.z + b * v1.z + c * v2.z + d * v3.z) >> shift,
};
}
static av_always_inline
v3u16_t tetrahedral(const SwsLut3D *lut3d, int Rx, int Gx, int Bx,
int Rf, int Gf, int Bf)
{
const int shift = 16 - INPUT_LUT_BITS;
const int Rn = FFMIN(Rx + 1, INPUT_LUT_SIZE - 1);
const int Gn = FFMIN(Gx + 1, INPUT_LUT_SIZE - 1);
const int Bn = FFMIN(Bx + 1, INPUT_LUT_SIZE - 1);
const v3u16_t c000 = lut3d->input[Bx][Gx][Rx];
const v3u16_t c111 = lut3d->input[Bn][Gn][Rn];
if (Rf > Gf) {
if (Gf > Bf) {
const v3u16_t c100 = lut3d->input[Bx][Gx][Rn];
const v3u16_t c110 = lut3d->input[Bx][Gn][Rn];
return barycentric(shift, Rf, Gf, Bf, c000, c100, c110, c111);
} else if (Rf > Bf) {
const v3u16_t c100 = lut3d->input[Bx][Gx][Rn];
const v3u16_t c101 = lut3d->input[Bn][Gx][Rn];
return barycentric(shift, Rf, Bf, Gf, c000, c100, c101, c111);
} else {
const v3u16_t c001 = lut3d->input[Bn][Gx][Rx];
const v3u16_t c101 = lut3d->input[Bn][Gx][Rn];
return barycentric(shift, Bf, Rf, Gf, c000, c001, c101, c111);
}
} else {
if (Bf > Gf) {
const v3u16_t c001 = lut3d->input[Bn][Gx][Rx];
const v3u16_t c011 = lut3d->input[Bn][Gn][Rx];
return barycentric(shift, Bf, Gf, Rf, c000, c001, c011, c111);
} else if (Bf > Rf) {
const v3u16_t c010 = lut3d->input[Bx][Gn][Rx];
const v3u16_t c011 = lut3d->input[Bn][Gn][Rx];
return barycentric(shift, Gf, Bf, Rf, c000, c010, c011, c111);
} else {
const v3u16_t c010 = lut3d->input[Bx][Gn][Rx];
const v3u16_t c110 = lut3d->input[Bx][Gn][Rn];
return barycentric(shift, Gf, Rf, Bf, c000, c010, c110, c111);
}
}
}
static av_always_inline v3u16_t lookup_input16(const SwsLut3D *lut3d, v3u16_t rgb)
{
const int shift = 16 - INPUT_LUT_BITS;
const int Rx = rgb.x >> shift;
const int Gx = rgb.y >> shift;
const int Bx = rgb.z >> shift;
const int Rf = rgb.x & ((1 << shift) - 1);
const int Gf = rgb.y & ((1 << shift) - 1);
const int Bf = rgb.z & ((1 << shift) - 1);
return tetrahedral(lut3d, Rx, Gx, Bx, Rf, Gf, Bf);
}
static av_always_inline v3u16_t lookup_input8(const SwsLut3D *lut3d, v3u8_t rgb)
{
static_assert(INPUT_LUT_BITS <= 8, "INPUT_LUT_BITS must be <= 8");
const int shift = 8 - INPUT_LUT_BITS;
const int Rx = rgb.x >> shift;
const int Gx = rgb.y >> shift;
const int Bx = rgb.z >> shift;
const int Rf = rgb.x & ((1 << shift) - 1);
const int Gf = rgb.y & ((1 << shift) - 1);
const int Bf = rgb.z & ((1 << shift) - 1);
return tetrahedral(lut3d, Rx, Gx, Bx, Rf, Gf, Bf);
}
/**
* Note: These functions are scaled such that x == (1 << shift) corresponds to
* a value of 1.0. This makes them suitable for use when interpolation LUT
* entries with a fractional part that is just masked away from the index,
* since a fractional coordinate of e.g. 0xFFFF corresponds to a mix weight of
* just slightly *less* than 1.0.
*/
static av_always_inline v2u16_t lerp2u16(v2u16_t a, v2u16_t b, int x, int shift)
{
const int xi = (1 << shift) - x;
return (v2u16_t) {
(a.x * xi + b.x * x) >> shift,
(a.y * xi + b.y * x) >> shift,
};
}
static av_always_inline v3u16_t lerp3u16(v3u16_t a, v3u16_t b, int x, int shift)
{
const int xi = (1 << shift) - x;
return (v3u16_t) {
(a.x * xi + b.x * x) >> shift,
(a.y * xi + b.y * x) >> shift,
(a.z * xi + b.z * x) >> shift,
};
}
static av_always_inline v3u16_t lookup_output(const SwsLut3D *lut3d, v3u16_t ipt)
{
const int Ishift = 16 - OUTPUT_LUT_BITS_I;
const int Cshift = 16 - OUTPUT_LUT_BITS_PT;
const int Ix = ipt.x >> Ishift;
const int Px = ipt.y >> Cshift;
const int Tx = ipt.z >> Cshift;
const int If = ipt.x & ((1 << Ishift) - 1);
const int Pf = ipt.y & ((1 << Cshift) - 1);
const int Tf = ipt.z & ((1 << Cshift) - 1);
const int In = FFMIN(Ix + 1, OUTPUT_LUT_SIZE_I - 1);
const int Pn = FFMIN(Px + 1, OUTPUT_LUT_SIZE_PT - 1);
const int Tn = FFMIN(Tx + 1, OUTPUT_LUT_SIZE_PT - 1);
/* Trilinear interpolation */
const v3u16_t c000 = lut3d->output[Tx][Px][Ix];
const v3u16_t c001 = lut3d->output[Tx][Px][In];
const v3u16_t c010 = lut3d->output[Tx][Pn][Ix];
const v3u16_t c011 = lut3d->output[Tx][Pn][In];
const v3u16_t c100 = lut3d->output[Tn][Px][Ix];
const v3u16_t c101 = lut3d->output[Tn][Px][In];
const v3u16_t c110 = lut3d->output[Tn][Pn][Ix];
const v3u16_t c111 = lut3d->output[Tn][Pn][In];
const v3u16_t c00 = lerp3u16(c000, c100, Tf, Cshift);
const v3u16_t c10 = lerp3u16(c010, c110, Tf, Cshift);
const v3u16_t c01 = lerp3u16(c001, c101, Tf, Cshift);
const v3u16_t c11 = lerp3u16(c011, c111, Tf, Cshift);
const v3u16_t c0 = lerp3u16(c00, c10, Pf, Cshift);
const v3u16_t c1 = lerp3u16(c01, c11, Pf, Cshift);
const v3u16_t c = lerp3u16(c0, c1, If, Ishift);
return c;
}
static av_always_inline v3u16_t apply_tone_map(const SwsLut3D *lut3d, v3u16_t ipt)
{
const int shift = 16 - TONE_LUT_BITS;
const int Ix = ipt.x >> shift;
const int If = ipt.x & ((1 << shift) - 1);
const int In = FFMIN(Ix + 1, TONE_LUT_SIZE - 1);
const v2u16_t w0 = lut3d->tone_map[Ix];
const v2u16_t w1 = lut3d->tone_map[In];
const v2u16_t w = lerp2u16(w0, w1, If, shift);
const int base = (1 << 15) - w.y;
ipt.x = w.x;
ipt.y = base + (ipt.y * w.y >> 15);
ipt.z = base + (ipt.z * w.y >> 15);
return ipt;
}
int sws_lut3d_generate(SwsLut3D *lut3d, enum AVPixelFormat fmt_in,
enum AVPixelFormat fmt_out, const SwsColorMap *map)
{
int ret;
if (!sws_lut3d_test_fmt(fmt_in, 0) || !sws_lut3d_test_fmt(fmt_out, 1))
return AVERROR(EINVAL);
lut3d->dynamic = map->src.frame_peak.num > 0;
lut3d->map = *map;
if (lut3d->dynamic) {
ret = sws_color_map_generate_dynamic(&lut3d->input[0][0][0],
&lut3d->output[0][0][0],
INPUT_LUT_SIZE, OUTPUT_LUT_SIZE_I,
OUTPUT_LUT_SIZE_PT, map);
if (ret < 0)
return ret;
/* Make sure initial state is valid */
sws_lut3d_update(lut3d, &map->src);
return 0;
} else {
return sws_color_map_generate_static(&lut3d->input[0][0][0],
INPUT_LUT_SIZE, map);
}
}
void sws_lut3d_update(SwsLut3D *lut3d, const SwsColor *new_src)
{
if (!new_src || !lut3d->dynamic)
return;
lut3d->map.src.frame_peak = new_src->frame_peak;
lut3d->map.src.frame_avg = new_src->frame_avg;
sws_tone_map_generate(lut3d->tone_map, TONE_LUT_SIZE, &lut3d->map);
}
void sws_lut3d_apply(const SwsLut3D *lut3d, const uint8_t *in, int in_stride,
uint8_t *out, int out_stride, int w, int h)
{
while (h--) {
const uint16_t *in16 = (const uint16_t *) in;
uint16_t *out16 = (uint16_t *) out;
for (int x = 0; x < w; x++) {
v3u16_t c = { in16[0], in16[1], in16[2] };
c = lookup_input16(lut3d, c);
if (lut3d->dynamic) {
c = apply_tone_map(lut3d, c);
c = lookup_output(lut3d, c);
}
out16[0] = c.x;
out16[1] = c.y;
out16[2] = c.z;
out16[3] = in16[3];
in16 += 4;
out16 += 4;
}
in += in_stride;
out += out_stride;
}
}
|