aboutsummaryrefslogtreecommitdiffstats
path: root/libswresample/resample.c
blob: df49505bf9505054efc94fb11ba7fd2420f7aa0b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
/*
 * audio resampling
 * Copyright (c) 2004-2012 Michael Niedermayer <michaelni@gmx.at>
 * bessel function: Copyright (c) 2006 Xiaogang Zhang
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/**
 * @file
 * audio resampling
 * @author Michael Niedermayer <michaelni@gmx.at>
 */

#include "libavutil/avassert.h"
#include "resample.h"

static inline double eval_poly(const double *coeff, int size, double x) {
    double sum = coeff[size-1];
    int i;
    for (i = size-2; i >= 0; --i) {
        sum *= x;
        sum += coeff[i];
    }
    return sum;
}

/**
 * 0th order modified bessel function of the first kind.
 * Algorithm taken from the Boost project, source:
 * https://searchcode.com/codesearch/view/14918379/
 * Use, modification and distribution are subject to the
 * Boost Software License, Version 1.0 (see notice below).
 * Boost Software License - Version 1.0 - August 17th, 2003
Permission is hereby granted, free of charge, to any person or organization
obtaining a copy of the software and accompanying documentation covered by
this license (the "Software") to use, reproduce, display, distribute,
execute, and transmit the Software, and to prepare derivative works of the
Software, and to permit third-parties to whom the Software is furnished to
do so, all subject to the following:

The copyright notices in the Software and this entire statement, including
the above license grant, this restriction and the following disclaimer,
must be included in all copies of the Software, in whole or in part, and
all derivative works of the Software, unless such copies or derivative
works are solely in the form of machine-executable object code generated by
a source language processor.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
 */

static double bessel(double x) {
// Modified Bessel function of the first kind of order zero
// minimax rational approximations on intervals, see
// Blair and Edwards, Chalk River Report AECL-4928, 1974
    static const double p1[] = {
        -2.2335582639474375249e+15,
        -5.5050369673018427753e+14,
        -3.2940087627407749166e+13,
        -8.4925101247114157499e+11,
        -1.1912746104985237192e+10,
        -1.0313066708737980747e+08,
        -5.9545626019847898221e+05,
        -2.4125195876041896775e+03,
        -7.0935347449210549190e+00,
        -1.5453977791786851041e-02,
        -2.5172644670688975051e-05,
        -3.0517226450451067446e-08,
        -2.6843448573468483278e-11,
        -1.5982226675653184646e-14,
        -5.2487866627945699800e-18,
    };
    static const double q1[] = {
        -2.2335582639474375245e+15,
         7.8858692566751002988e+12,
        -1.2207067397808979846e+10,
         1.0377081058062166144e+07,
        -4.8527560179962773045e+03,
         1.0,
    };
    static const double p2[] = {
        -2.2210262233306573296e-04,
         1.3067392038106924055e-02,
        -4.4700805721174453923e-01,
         5.5674518371240761397e+00,
        -2.3517945679239481621e+01,
         3.1611322818701131207e+01,
        -9.6090021968656180000e+00,
    };
    static const double q2[] = {
        -5.5194330231005480228e-04,
         3.2547697594819615062e-02,
        -1.1151759188741312645e+00,
         1.3982595353892851542e+01,
        -6.0228002066743340583e+01,
         8.5539563258012929600e+01,
        -3.1446690275135491500e+01,
        1.0,
    };
    double y, r, factor;
    if (x == 0)
        return 1.0;
    x = fabs(x);
    if (x <= 15) {
        y = x * x;
        return eval_poly(p1, FF_ARRAY_ELEMS(p1), y) / eval_poly(q1, FF_ARRAY_ELEMS(q1), y);
    }
    else {
        y = 1 / x - 1.0 / 15;
        r = eval_poly(p2, FF_ARRAY_ELEMS(p2), y) / eval_poly(q2, FF_ARRAY_ELEMS(q2), y);
        factor = exp(x) / sqrt(x);
        return factor * r;
    }
}

/**
 * builds a polyphase filterbank.
 * @param factor resampling factor
 * @param scale wanted sum of coefficients for each filter
 * @param filter_type  filter type
 * @param kaiser_beta  kaiser window beta
 * @return 0 on success, negative on error
 */
static int build_filter(ResampleContext *c, void *filter, double factor, int tap_count, int alloc, int phase_count, int scale,
                        int filter_type, double kaiser_beta){
    int ph, i;
    int ph_nb = phase_count % 2 ? phase_count : phase_count / 2 + 1;
    double x, y, w, t, s;
    double *tab = av_malloc_array(tap_count+1,  sizeof(*tab));
    double *sin_lut = av_malloc_array(ph_nb, sizeof(*sin_lut));
    const int center= (tap_count-1)/2;
    double norm = 0;
    int ret = AVERROR(ENOMEM);

    if (!tab || !sin_lut)
        goto fail;

    av_assert0(tap_count == 1 || tap_count % 2 == 0);

    /* if upsampling, only need to interpolate, no filter */
    if (factor > 1.0)
        factor = 1.0;

    if (factor == 1.0) {
        for (ph = 0; ph < ph_nb; ph++)
            sin_lut[ph] = sin(M_PI * ph / phase_count) * (center & 1 ? 1 : -1);
    }
    for(ph = 0; ph < ph_nb; ph++) {
        s = sin_lut[ph];
        for(i=0;i<tap_count;i++) {
            x = M_PI * ((double)(i - center) - (double)ph / phase_count) * factor;
            if (x == 0) y = 1.0;
            else if (factor == 1.0)
                y = s / x;
            else
                y = sin(x) / x;
            switch(filter_type){
            case SWR_FILTER_TYPE_CUBIC:{
                const float d= -0.5; //first order derivative = -0.5
                x = fabs(((double)(i - center) - (double)ph / phase_count) * factor);
                if(x<1.0) y= 1 - 3*x*x + 2*x*x*x + d*(            -x*x + x*x*x);
                else      y=                       d*(-4 + 8*x - 5*x*x + x*x*x);
                break;}
            case SWR_FILTER_TYPE_BLACKMAN_NUTTALL:
                w = 2.0*x / (factor*tap_count);
                t = -cos(w);
                y *= 0.3635819 - 0.4891775 * t + 0.1365995 * (2*t*t-1) - 0.0106411 * (4*t*t*t - 3*t);
                break;
            case SWR_FILTER_TYPE_KAISER:
                w = 2.0*x / (factor*tap_count*M_PI);
                y *= bessel(kaiser_beta*sqrt(FFMAX(1-w*w, 0)));
                break;
            default:
                av_assert0(0);
            }

            tab[i] = y;
            s = -s;
            if (!ph)
                norm += y;
        }

        /* normalize so that an uniform color remains the same */
        switch(c->format){
        case AV_SAMPLE_FMT_S16P:
            for(i=0;i<tap_count;i++)
                ((int16_t*)filter)[ph * alloc + i] = av_clip_int16(lrintf(tab[i] * scale / norm));
            if (phase_count % 2) break;
            for (i = 0; i < tap_count; i++)
                ((int16_t*)filter)[(phase_count-ph) * alloc + tap_count-1-i] = ((int16_t*)filter)[ph * alloc + i];
            break;
        case AV_SAMPLE_FMT_S32P:
            for(i=0;i<tap_count;i++)
                ((int32_t*)filter)[ph * alloc + i] = av_clipl_int32(llrint(tab[i] * scale / norm));
            if (phase_count % 2) break;
            for (i = 0; i < tap_count; i++)
                ((int32_t*)filter)[(phase_count-ph) * alloc + tap_count-1-i] = ((int32_t*)filter)[ph * alloc + i];
            break;
        case AV_SAMPLE_FMT_FLTP:
            for(i=0;i<tap_count;i++)
                ((float*)filter)[ph * alloc + i] = tab[i] * scale / norm;
            if (phase_count % 2) break;
            for (i = 0; i < tap_count; i++)
                ((float*)filter)[(phase_count-ph) * alloc + tap_count-1-i] = ((float*)filter)[ph * alloc + i];
            break;
        case AV_SAMPLE_FMT_DBLP:
            for(i=0;i<tap_count;i++)
                ((double*)filter)[ph * alloc + i] = tab[i] * scale / norm;
            if (phase_count % 2) break;
            for (i = 0; i < tap_count; i++)
                ((double*)filter)[(phase_count-ph) * alloc + tap_count-1-i] = ((double*)filter)[ph * alloc + i];
            break;
        }
    }
#if 0
    {
#define LEN 1024
        int j,k;
        double sine[LEN + tap_count];
        double filtered[LEN];
        double maxff=-2, minff=2, maxsf=-2, minsf=2;
        for(i=0; i<LEN; i++){
            double ss=0, sf=0, ff=0;
            for(j=0; j<LEN+tap_count; j++)
                sine[j]= cos(i*j*M_PI/LEN);
            for(j=0; j<LEN; j++){
                double sum=0;
                ph=0;
                for(k=0; k<tap_count; k++)
                    sum += filter[ph * tap_count + k] * sine[k+j];
                filtered[j]= sum / (1<<FILTER_SHIFT);
                ss+= sine[j + center] * sine[j + center];
                ff+= filtered[j] * filtered[j];
                sf+= sine[j + center] * filtered[j];
            }
            ss= sqrt(2*ss/LEN);
            ff= sqrt(2*ff/LEN);
            sf= 2*sf/LEN;
            maxff= FFMAX(maxff, ff);
            minff= FFMIN(minff, ff);
            maxsf= FFMAX(maxsf, sf);
            minsf= FFMIN(minsf, sf);
            if(i%11==0){
                av_log(NULL, AV_LOG_ERROR, "i:%4d ss:%f ff:%13.6e-%13.6e sf:%13.6e-%13.6e\n", i, ss, maxff, minff, maxsf, minsf);
                minff=minsf= 2;
                maxff=maxsf= -2;
            }
        }
    }
#endif

    ret = 0;
fail:
    av_free(tab);
    av_free(sin_lut);
    return ret;
}

static void resample_free(ResampleContext **cc){
    ResampleContext *c = *cc;
    if(!c)
        return;
    av_freep(&c->filter_bank);
    av_freep(cc);
}

static ResampleContext *resample_init(ResampleContext *c, int out_rate, int in_rate, int filter_size, int phase_shift, int linear,
                                    double cutoff0, enum AVSampleFormat format, enum SwrFilterType filter_type, double kaiser_beta,
                                    double precision, int cheby, int exact_rational)
{
    double cutoff = cutoff0? cutoff0 : 0.97;
    double factor= FFMIN(out_rate * cutoff / in_rate, 1.0);
    int phase_count= 1<<phase_shift;
    int phase_count_compensation = phase_count;
    int filter_length = FFMAX((int)ceil(filter_size/factor), 1);

    if (filter_length > 1)
        filter_length = FFALIGN(filter_length, 2);

    if (exact_rational) {
        int phase_count_exact, phase_count_exact_den;

        av_reduce(&phase_count_exact, &phase_count_exact_den, out_rate, in_rate, INT_MAX);
        if (phase_count_exact <= phase_count) {
            phase_count_compensation = phase_count_exact * (phase_count / phase_count_exact);
            phase_count = phase_count_exact;
        }
    }

    if (!c || c->phase_count != phase_count || c->linear!=linear || c->factor != factor
           || c->filter_length != filter_length || c->format != format
           || c->filter_type != filter_type || c->kaiser_beta != kaiser_beta) {
        resample_free(&c);
        c = av_mallocz(sizeof(*c));
        if (!c)
            return NULL;

        c->format= format;

        c->felem_size= av_get_bytes_per_sample(c->format);

        switch(c->format){
        case AV_SAMPLE_FMT_S16P:
            c->filter_shift = 15;
            break;
        case AV_SAMPLE_FMT_S32P:
            c->filter_shift = 30;
            break;
        case AV_SAMPLE_FMT_FLTP:
        case AV_SAMPLE_FMT_DBLP:
            c->filter_shift = 0;
            break;
        default:
            av_log(NULL, AV_LOG_ERROR, "Unsupported sample format\n");
            av_assert0(0);
        }

        if (filter_size/factor > INT32_MAX/256) {
            av_log(NULL, AV_LOG_ERROR, "Filter length too large\n");
            goto error;
        }

        c->phase_count   = phase_count;
        c->linear        = linear;
        c->factor        = factor;
        c->filter_length = filter_length;
        c->filter_alloc  = FFALIGN(c->filter_length, 8);
        c->filter_bank   = av_calloc(c->filter_alloc, (phase_count+1)*c->felem_size);
        c->filter_type   = filter_type;
        c->kaiser_beta   = kaiser_beta;
        c->phase_count_compensation = phase_count_compensation;
        if (!c->filter_bank)
            goto error;
        if (build_filter(c, (void*)c->filter_bank, factor, c->filter_length, c->filter_alloc, phase_count, 1<<c->filter_shift, filter_type, kaiser_beta))
            goto error;
        memcpy(c->filter_bank + (c->filter_alloc*phase_count+1)*c->felem_size, c->filter_bank, (c->filter_alloc-1)*c->felem_size);
        memcpy(c->filter_bank + (c->filter_alloc*phase_count  )*c->felem_size, c->filter_bank + (c->filter_alloc - 1)*c->felem_size, c->felem_size);
    }

    c->compensation_distance= 0;
    if(!av_reduce(&c->src_incr, &c->dst_incr, out_rate, in_rate * (int64_t)phase_count, INT32_MAX/2))
        goto error;
    while (c->dst_incr < (1<<20) && c->src_incr < (1<<20)) {
        c->dst_incr *= 2;
        c->src_incr *= 2;
    }
    c->ideal_dst_incr = c->dst_incr;
    c->dst_incr_div   = c->dst_incr / c->src_incr;
    c->dst_incr_mod   = c->dst_incr % c->src_incr;

    c->index= -phase_count*((c->filter_length-1)/2);
    c->frac= 0;

    swri_resample_dsp_init(c);

    return c;
error:
    av_freep(&c->filter_bank);
    av_free(c);
    return NULL;
}

static int rebuild_filter_bank_with_compensation(ResampleContext *c)
{
    uint8_t *new_filter_bank;
    int new_src_incr, new_dst_incr;
    int phase_count = c->phase_count_compensation;
    int ret;

    if (phase_count == c->phase_count)
        return 0;

    av_assert0(!c->frac && !c->dst_incr_mod);

    new_filter_bank = av_calloc(c->filter_alloc, (phase_count + 1) * c->felem_size);
    if (!new_filter_bank)
        return AVERROR(ENOMEM);

    ret = build_filter(c, new_filter_bank, c->factor, c->filter_length, c->filter_alloc,
                       phase_count, 1 << c->filter_shift, c->filter_type, c->kaiser_beta);
    if (ret < 0) {
        av_freep(&new_filter_bank);
        return ret;
    }
    memcpy(new_filter_bank + (c->filter_alloc*phase_count+1)*c->felem_size, new_filter_bank, (c->filter_alloc-1)*c->felem_size);
    memcpy(new_filter_bank + (c->filter_alloc*phase_count  )*c->felem_size, new_filter_bank + (c->filter_alloc - 1)*c->felem_size, c->felem_size);

    if (!av_reduce(&new_src_incr, &new_dst_incr, c->src_incr,
                   c->dst_incr * (int64_t)(phase_count/c->phase_count), INT32_MAX/2))
    {
        av_freep(&new_filter_bank);
        return AVERROR(EINVAL);
    }

    c->src_incr = new_src_incr;
    c->dst_incr = new_dst_incr;
    while (c->dst_incr < (1<<20) && c->src_incr < (1<<20)) {
        c->dst_incr *= 2;
        c->src_incr *= 2;
    }
    c->ideal_dst_incr = c->dst_incr;
    c->dst_incr_div   = c->dst_incr / c->src_incr;
    c->dst_incr_mod   = c->dst_incr % c->src_incr;
    c->index         *= phase_count / c->phase_count;
    c->phase_count    = phase_count;
    av_freep(&c->filter_bank);
    c->filter_bank = new_filter_bank;
    return 0;
}

static int set_compensation(ResampleContext *c, int sample_delta, int compensation_distance){
    int ret;

    if (compensation_distance && sample_delta) {
        ret = rebuild_filter_bank_with_compensation(c);
        if (ret < 0)
            return ret;
    }

    c->compensation_distance= compensation_distance;
    if (compensation_distance)
        c->dst_incr = c->ideal_dst_incr - c->ideal_dst_incr * (int64_t)sample_delta / compensation_distance;
    else
        c->dst_incr = c->ideal_dst_incr;

    c->dst_incr_div   = c->dst_incr / c->src_incr;
    c->dst_incr_mod   = c->dst_incr % c->src_incr;

    return 0;
}

static int multiple_resample(ResampleContext *c, AudioData *dst, int dst_size, AudioData *src, int src_size, int *consumed){
    int i;
    int av_unused mm_flags = av_get_cpu_flags();
    int need_emms = c->format == AV_SAMPLE_FMT_S16P && ARCH_X86_32 &&
                    (mm_flags & (AV_CPU_FLAG_MMX2 | AV_CPU_FLAG_SSE2)) == AV_CPU_FLAG_MMX2;
    int64_t max_src_size = (INT64_MAX/2 / c->phase_count) / c->src_incr;

    if (c->compensation_distance)
        dst_size = FFMIN(dst_size, c->compensation_distance);
    src_size = FFMIN(src_size, max_src_size);

    *consumed = 0;

    if (c->filter_length == 1 && c->phase_count == 1) {
        int64_t index2= (1LL<<32)*c->frac/c->src_incr + (1LL<<32)*c->index;
        int64_t incr= (1LL<<32) * c->dst_incr / c->src_incr;
        int new_size = (src_size * (int64_t)c->src_incr - c->frac + c->dst_incr - 1) / c->dst_incr;

        dst_size = FFMAX(FFMIN(dst_size, new_size), 0);
        if (dst_size > 0) {
            for (i = 0; i < dst->ch_count; i++) {
                c->dsp.resample_one(dst->ch[i], src->ch[i], dst_size, index2, incr);
                if (i+1 == dst->ch_count) {
                    c->index += dst_size * c->dst_incr_div;
                    c->index += (c->frac + dst_size * (int64_t)c->dst_incr_mod) / c->src_incr;
                    av_assert2(c->index >= 0);
                    *consumed = c->index;
                    c->frac   = (c->frac + dst_size * (int64_t)c->dst_incr_mod) % c->src_incr;
                    c->index = 0;
                }
            }
        }
    } else {
        int64_t end_index = (1LL + src_size - c->filter_length) * c->phase_count;
        int64_t delta_frac = (end_index - c->index) * c->src_incr - c->frac;
        int delta_n = (delta_frac + c->dst_incr - 1) / c->dst_incr;
        int (*resample_func)(struct ResampleContext *c, void *dst,
                             const void *src, int n, int update_ctx);

        dst_size = FFMAX(FFMIN(dst_size, delta_n), 0);
        if (dst_size > 0) {
            /* resample_linear and resample_common should have same behavior
             * when frac and dst_incr_mod are zero */
            resample_func = (c->linear && (c->frac || c->dst_incr_mod)) ?
                            c->dsp.resample_linear : c->dsp.resample_common;
            for (i = 0; i < dst->ch_count; i++)
                *consumed = resample_func(c, dst->ch[i], src->ch[i], dst_size, i+1 == dst->ch_count);
        }
    }

    if(need_emms)
        emms_c();

    if (c->compensation_distance) {
        c->compensation_distance -= dst_size;
        if (!c->compensation_distance) {
            c->dst_incr     = c->ideal_dst_incr;
            c->dst_incr_div = c->dst_incr / c->src_incr;
            c->dst_incr_mod = c->dst_incr % c->src_incr;
        }
    }

    return dst_size;
}

static int64_t get_delay(struct SwrContext *s, int64_t base){
    ResampleContext *c = s->resample;
    int64_t num = s->in_buffer_count - (c->filter_length-1)/2;
    num *= c->phase_count;
    num -= c->index;
    num *= c->src_incr;
    num -= c->frac;
    return av_rescale(num, base, s->in_sample_rate*(int64_t)c->src_incr * c->phase_count);
}

static int64_t get_out_samples(struct SwrContext *s, int in_samples) {
    ResampleContext *c = s->resample;
    // The + 2 are added to allow implementations to be slightly inaccurate, they should not be needed currently.
    // They also make it easier to proof that changes and optimizations do not
    // break the upper bound.
    int64_t num = s->in_buffer_count + 2LL + in_samples;
    num *= c->phase_count;
    num -= c->index;
    num = av_rescale_rnd(num, s->out_sample_rate, ((int64_t)s->in_sample_rate) * c->phase_count, AV_ROUND_UP) + 2;

    if (c->compensation_distance) {
        if (num > INT_MAX)
            return AVERROR(EINVAL);

        num = FFMAX(num, (num * c->ideal_dst_incr - 1) / c->dst_incr + 1);
    }
    return num;
}

static int resample_flush(struct SwrContext *s) {
    ResampleContext *c = s->resample;
    AudioData *a= &s->in_buffer;
    int i, j, ret;
    int reflection = (FFMIN(s->in_buffer_count, c->filter_length) + 1) / 2;

    if((ret = swri_realloc_audio(a, s->in_buffer_index + s->in_buffer_count + reflection)) < 0)
        return ret;
    av_assert0(a->planar);
    for(i=0; i<a->ch_count; i++){
        for(j=0; j<reflection; j++){
            memcpy(a->ch[i] + (s->in_buffer_index+s->in_buffer_count+j  )*a->bps,
                a->ch[i] + (s->in_buffer_index+s->in_buffer_count-j-1)*a->bps, a->bps);
        }
    }
    s->in_buffer_count += reflection;
    return 0;
}

// in fact the whole handle multiple ridiculously small buffers might need more thinking...
static int invert_initial_buffer(ResampleContext *c, AudioData *dst, const AudioData *src,
                                 int in_count, int *out_idx, int *out_sz)
{
    int n, ch, num = FFMIN(in_count + *out_sz, c->filter_length + 1), res;

    if (c->index >= 0)
        return 0;

    if ((res = swri_realloc_audio(dst, c->filter_length * 2 + 1)) < 0)
        return res;

    // copy
    for (n = *out_sz; n < num; n++) {
        for (ch = 0; ch < src->ch_count; ch++) {
            memcpy(dst->ch[ch] + ((c->filter_length + n) * c->felem_size),
                   src->ch[ch] + ((n - *out_sz) * c->felem_size), c->felem_size);
        }
    }

    // if not enough data is in, return and wait for more
    if (num < c->filter_length + 1) {
        *out_sz = num;
        *out_idx = c->filter_length;
        return INT_MAX;
    }

    // else invert
    for (n = 1; n <= c->filter_length; n++) {
        for (ch = 0; ch < src->ch_count; ch++) {
            memcpy(dst->ch[ch] + ((c->filter_length - n) * c->felem_size),
                   dst->ch[ch] + ((c->filter_length + n) * c->felem_size),
                   c->felem_size);
        }
    }

    res = num - *out_sz;
    *out_idx = c->filter_length;
    while (c->index < 0) {
        --*out_idx;
        c->index += c->phase_count;
    }
    *out_sz = FFMAX(*out_sz + c->filter_length,
                    1 + c->filter_length * 2) - *out_idx;

    return FFMAX(res, 0);
}

struct Resampler const swri_resampler={
  resample_init,
  resample_free,
  multiple_resample,
  resample_flush,
  set_compensation,
  get_delay,
  invert_initial_buffer,
  get_out_samples,
};