1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
|
/*
* Copyright (C) 2007 Michael Niedermayer <michaelni@gmx.at>
* Copyright (C) 2009 Konstantin Shishkov
* based on public domain SHA-1 code by Steve Reid <steve@edmweb.com>
* and on BSD-licensed SHA-2 code by Aaron D. Gifford
*
* This file is part of Libav.
*
* Libav is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* Libav is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Libav; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <string.h>
#include "attributes.h"
#include "avutil.h"
#include "bswap.h"
#include "sha.h"
#include "intreadwrite.h"
#include "mem.h"
/** hash context */
typedef struct AVSHA {
uint8_t digest_len; ///< digest length in 32-bit words
uint64_t count; ///< number of bytes in buffer
uint8_t buffer[64]; ///< 512-bit buffer of input values used in hash updating
uint32_t state[8]; ///< current hash value
/** function used to update hash for 512-bit input block */
void (*transform)(uint32_t *state, const uint8_t buffer[64]);
} AVSHA;
struct AVSHA *av_sha_alloc(void)
{
return av_mallocz(sizeof(struct AVSHA));
}
#define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits))))
/* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */
#define blk0(i) (block[i] = AV_RB32(buffer + 4 * (i)))
#define blk(i) (block[i] = rol(block[i-3] ^ block[i-8] ^ block[i-14] ^ block[i-16], 1))
#define R0(v,w,x,y,z,i) z += ((w&(x^y))^y) + blk0(i) + 0x5A827999 + rol(v, 5); w = rol(w, 30);
#define R1(v,w,x,y,z,i) z += ((w&(x^y))^y) + blk (i) + 0x5A827999 + rol(v, 5); w = rol(w, 30);
#define R2(v,w,x,y,z,i) z += ( w^x ^y) + blk (i) + 0x6ED9EBA1 + rol(v, 5); w = rol(w, 30);
#define R3(v,w,x,y,z,i) z += (((w|x)&y)|(w&x)) + blk (i) + 0x8F1BBCDC + rol(v, 5); w = rol(w, 30);
#define R4(v,w,x,y,z,i) z += ( w^x ^y) + blk (i) + 0xCA62C1D6 + rol(v, 5); w = rol(w, 30);
/* Hash a single 512-bit block. This is the core of the algorithm. */
static void sha1_transform(uint32_t state[5], const uint8_t buffer[64])
{
uint32_t block[80];
unsigned int i, a, b, c, d, e;
a = state[0];
b = state[1];
c = state[2];
d = state[3];
e = state[4];
#if CONFIG_SMALL
for (i = 0; i < 80; i++) {
int t;
if (i < 16)
t = AV_RB32(buffer + 4 * i);
else
t = rol(block[i-3] ^ block[i-8] ^ block[i-14] ^ block[i-16], 1);
block[i] = t;
t += e + rol(a, 5);
if (i < 40) {
if (i < 20)
t += ((b&(c^d))^d) + 0x5A827999;
else
t += ( b^c ^d) + 0x6ED9EBA1;
} else {
if (i < 60)
t += (((b|c)&d)|(b&c)) + 0x8F1BBCDC;
else
t += ( b^c ^d) + 0xCA62C1D6;
}
e = d;
d = c;
c = rol(b, 30);
b = a;
a = t;
}
#else
for (i = 0; i < 15; i += 5) {
R0(a, b, c, d, e, 0 + i);
R0(e, a, b, c, d, 1 + i);
R0(d, e, a, b, c, 2 + i);
R0(c, d, e, a, b, 3 + i);
R0(b, c, d, e, a, 4 + i);
}
R0(a, b, c, d, e, 15);
R1(e, a, b, c, d, 16);
R1(d, e, a, b, c, 17);
R1(c, d, e, a, b, 18);
R1(b, c, d, e, a, 19);
for (i = 20; i < 40; i += 5) {
R2(a, b, c, d, e, 0 + i);
R2(e, a, b, c, d, 1 + i);
R2(d, e, a, b, c, 2 + i);
R2(c, d, e, a, b, 3 + i);
R2(b, c, d, e, a, 4 + i);
}
for (; i < 60; i += 5) {
R3(a, b, c, d, e, 0 + i);
R3(e, a, b, c, d, 1 + i);
R3(d, e, a, b, c, 2 + i);
R3(c, d, e, a, b, 3 + i);
R3(b, c, d, e, a, 4 + i);
}
for (; i < 80; i += 5) {
R4(a, b, c, d, e, 0 + i);
R4(e, a, b, c, d, 1 + i);
R4(d, e, a, b, c, 2 + i);
R4(c, d, e, a, b, 3 + i);
R4(b, c, d, e, a, 4 + i);
}
#endif
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
state[4] += e;
}
static const uint32_t K256[64] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};
#define Ch(x,y,z) (((x) & ((y) ^ (z))) ^ (z))
#define Maj(x,y,z) ((((x) | (y)) & (z)) | ((x) & (y)))
#define Sigma0_256(x) (rol((x), 30) ^ rol((x), 19) ^ rol((x), 10))
#define Sigma1_256(x) (rol((x), 26) ^ rol((x), 21) ^ rol((x), 7))
#define sigma0_256(x) (rol((x), 25) ^ rol((x), 14) ^ ((x) >> 3))
#define sigma1_256(x) (rol((x), 15) ^ rol((x), 13) ^ ((x) >> 10))
#undef blk
#define blk(i) (block[i] = block[i - 16] + sigma0_256(block[i - 15]) + \
sigma1_256(block[i - 2]) + block[i - 7])
#define ROUND256(a,b,c,d,e,f,g,h) \
T1 += (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[i]; \
(d) += T1; \
(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
i++
#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
T1 = blk0(i); \
ROUND256(a,b,c,d,e,f,g,h)
#define ROUND256_16_TO_63(a,b,c,d,e,f,g,h) \
T1 = blk(i); \
ROUND256(a,b,c,d,e,f,g,h)
static void sha256_transform(uint32_t *state, const uint8_t buffer[64])
{
unsigned int i, a, b, c, d, e, f, g, h;
uint32_t block[64];
uint32_t T1;
a = state[0];
b = state[1];
c = state[2];
d = state[3];
e = state[4];
f = state[5];
g = state[6];
h = state[7];
#if CONFIG_SMALL
for (i = 0; i < 64; i++) {
uint32_t T2;
if (i < 16)
T1 = blk0(i);
else
T1 = blk(i);
T1 += h + Sigma1_256(e) + Ch(e, f, g) + K256[i];
T2 = Sigma0_256(a) + Maj(a, b, c);
h = g;
g = f;
f = e;
e = d + T1;
d = c;
c = b;
b = a;
a = T1 + T2;
}
#else
for (i = 0; i < 16;) {
ROUND256_0_TO_15(a, b, c, d, e, f, g, h);
ROUND256_0_TO_15(h, a, b, c, d, e, f, g);
ROUND256_0_TO_15(g, h, a, b, c, d, e, f);
ROUND256_0_TO_15(f, g, h, a, b, c, d, e);
ROUND256_0_TO_15(e, f, g, h, a, b, c, d);
ROUND256_0_TO_15(d, e, f, g, h, a, b, c);
ROUND256_0_TO_15(c, d, e, f, g, h, a, b);
ROUND256_0_TO_15(b, c, d, e, f, g, h, a);
}
for (; i < 64;) {
ROUND256_16_TO_63(a, b, c, d, e, f, g, h);
ROUND256_16_TO_63(h, a, b, c, d, e, f, g);
ROUND256_16_TO_63(g, h, a, b, c, d, e, f);
ROUND256_16_TO_63(f, g, h, a, b, c, d, e);
ROUND256_16_TO_63(e, f, g, h, a, b, c, d);
ROUND256_16_TO_63(d, e, f, g, h, a, b, c);
ROUND256_16_TO_63(c, d, e, f, g, h, a, b);
ROUND256_16_TO_63(b, c, d, e, f, g, h, a);
}
#endif
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
state[4] += e;
state[5] += f;
state[6] += g;
state[7] += h;
}
av_cold int av_sha_init(AVSHA *ctx, int bits)
{
ctx->digest_len = bits >> 5;
switch (bits) {
case 160: // SHA-1
ctx->state[0] = 0x67452301;
ctx->state[1] = 0xEFCDAB89;
ctx->state[2] = 0x98BADCFE;
ctx->state[3] = 0x10325476;
ctx->state[4] = 0xC3D2E1F0;
ctx->transform = sha1_transform;
break;
case 224: // SHA-224
ctx->state[0] = 0xC1059ED8;
ctx->state[1] = 0x367CD507;
ctx->state[2] = 0x3070DD17;
ctx->state[3] = 0xF70E5939;
ctx->state[4] = 0xFFC00B31;
ctx->state[5] = 0x68581511;
ctx->state[6] = 0x64F98FA7;
ctx->state[7] = 0xBEFA4FA4;
ctx->transform = sha256_transform;
break;
case 256: // SHA-256
ctx->state[0] = 0x6A09E667;
ctx->state[1] = 0xBB67AE85;
ctx->state[2] = 0x3C6EF372;
ctx->state[3] = 0xA54FF53A;
ctx->state[4] = 0x510E527F;
ctx->state[5] = 0x9B05688C;
ctx->state[6] = 0x1F83D9AB;
ctx->state[7] = 0x5BE0CD19;
ctx->transform = sha256_transform;
break;
default:
return -1;
}
ctx->count = 0;
return 0;
}
void av_sha_update(AVSHA* ctx, const uint8_t* data, unsigned int len)
{
unsigned int i, j;
j = ctx->count & 63;
ctx->count += len;
#if CONFIG_SMALL
for (i = 0; i < len; i++) {
ctx->buffer[j++] = data[i];
if (64 == j) {
ctx->transform(ctx->state, ctx->buffer);
j = 0;
}
}
#else
if ((j + len) > 63) {
memcpy(&ctx->buffer[j], data, (i = 64 - j));
ctx->transform(ctx->state, ctx->buffer);
for (; i + 63 < len; i += 64)
ctx->transform(ctx->state, &data[i]);
j = 0;
} else
i = 0;
memcpy(&ctx->buffer[j], &data[i], len - i);
#endif
}
void av_sha_final(AVSHA* ctx, uint8_t *digest)
{
int i;
uint64_t finalcount = av_be2ne64(ctx->count << 3);
av_sha_update(ctx, "\200", 1);
while ((ctx->count & 63) != 56)
av_sha_update(ctx, "", 1);
av_sha_update(ctx, (uint8_t *)&finalcount, 8); /* Should cause a transform() */
for (i = 0; i < ctx->digest_len; i++)
AV_WB32(digest + i*4, ctx->state[i]);
}
|