1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
|
/*
* Rational numbers
* Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/**
* @file rational.c
* Rational numbers
* @author Michael Niedermayer <michaelni@gmx.at>
*/
//#include <math.h>
#include <limits.h>
#include "common.h"
#include "mathematics.h"
#include "rational.h"
int av_reduce(int *dst_nom, int *dst_den, int64_t nom, int64_t den, int64_t max){
AVRational a0={0,1}, a1={1,0};
int sign= (nom<0) ^ (den<0);
int64_t gcd= ff_gcd(ABS(nom), ABS(den));
nom = ABS(nom)/gcd;
den = ABS(den)/gcd;
if(nom<=max && den<=max){
a1= (AVRational){nom, den};
den=0;
}
while(den){
int64_t x = nom / den;
int64_t next_den= nom - den*x;
int64_t a2n= x*a1.num + a0.num;
int64_t a2d= x*a1.den + a0.den;
if(a2n > max || a2d > max) break;
a0= a1;
a1= (AVRational){a2n, a2d};
nom= den;
den= next_den;
}
assert(ff_gcd(a1.num, a1.den) == 1);
*dst_nom = sign ? -a1.num : a1.num;
*dst_den = a1.den;
return den==0;
}
/**
* returns b*c.
*/
AVRational av_mul_q(AVRational b, AVRational c){
av_reduce(&b.num, &b.den, b.num * (int64_t)c.num, b.den * (int64_t)c.den, INT_MAX);
return b;
}
/**
* returns b/c.
*/
AVRational av_div_q(AVRational b, AVRational c){
av_reduce(&b.num, &b.den, b.num * (int64_t)c.den, b.den * (int64_t)c.num, INT_MAX);
return b;
}
/**
* returns b+c.
*/
AVRational av_add_q(AVRational b, AVRational c){
av_reduce(&b.num, &b.den, b.num * (int64_t)c.den + c.num * (int64_t)b.den, b.den * (int64_t)c.den, INT_MAX);
return b;
}
/**
* returns b-c.
*/
AVRational av_sub_q(AVRational b, AVRational c){
av_reduce(&b.num, &b.den, b.num * (int64_t)c.den - c.num * (int64_t)b.den, b.den * (int64_t)c.den, INT_MAX);
return b;
}
/**
* Converts a double precission floating point number to a AVRational.
* @param max the maximum allowed numerator and denominator
*/
AVRational av_d2q(double d, int max){
AVRational a;
int exponent= FFMAX( (int)(log(ABS(d) + 1e-20)/log(2)), 0);
int64_t den= 1LL << (61 - exponent);
av_reduce(&a.num, &a.den, (int64_t)(d * den + 0.5), den, max);
return a;
}
|