1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
|
;*****************************************************************************
;* x86-optimized functions for gblur filter
;*
;* This file is part of FFmpeg.
;*
;* FFmpeg is free software; you can redistribute it and/or
;* modify it under the terms of the GNU Lesser General Public
;* License as published by the Free Software Foundation; either
;* version 2.1 of the License, or (at your option) any later version.
;*
;* FFmpeg is distributed in the hope that it will be useful,
;* but WITHOUT ANY WARRANTY; without even the implied warranty of
;* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;* Lesser General Public License for more details.
;*
;* You should have received a copy of the GNU Lesser General Public
;* License along with FFmpeg; if not, write to the Free Software
;* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
;******************************************************************************
%include "libavutil/x86/x86util.asm"
SECTION .text
; void ff_horiz_slice_sse4(float *ptr, int width, int height, int steps,
; float nu, float bscale)
%macro HORIZ_SLICE 0
%if UNIX64
cglobal horiz_slice, 4, 9, 9, ptr, width, height, steps, x, y, step, stride, remain
%else
cglobal horiz_slice, 4, 9, 9, ptr, width, height, steps, nu, bscale, x, y, step, stride, remain
%endif
%if WIN64
movss m0, num
movss m1, bscalem
DEFINE_ARGS ptr, width, height, steps, x, y, step, stride, remain
%endif
movsxdifnidn widthq, widthd
mulss m2, m0, m0 ; nu ^ 2
mulss m3, m2, m0 ; nu ^ 3
mulss m4, m3, m0 ; nu ^ 4
xor xq, xq
xor yd, yd
mov strideq, widthq
; stride = width * 4
shl strideq, 2
; w = w - ((w - 1) & 3)
mov remainq, widthq
sub remainq, 1
and remainq, 3
sub widthq, remainq
shufps m0, m0, 0
shufps m2, m2, 0
shufps m3, m3, 0
shufps m4, m4, 0
.loop_y:
xor stepd, stepd
.loop_step:
; p0 *= bscale
mulss m5, m1, [ptrq + xq * 4]
movss [ptrq + xq * 4], m5
inc xq
; filter rightwards
; Here we are vectorizing the c version by 4
; for (x = 1; x < width; x++)
; ptr[x] += nu * ptr[x - 1];
; let p0 stands for ptr[x-1], the data from last loop
; and [p1,p2,p3,p4] be the vector data for this loop.
; Unrolling the loop, we get:
; p1' = p1 + p0*nu
; p2' = p2 + p1*nu + p0*nu^2
; p3' = p3 + p2*nu + p1*nu^2 + p0*nu^3
; p4' = p4 + p3*nu + p2*nu^2 + p1*nu^3 + p0*nu^4
; so we can do it in simd:
; [p1',p2',p3',p4'] = [p1,p2,p3,p4] + [p0,p1,p2,p3]*nu +
; [0,p0,p1,p2]*nu^2 + [0,0,p0,p1]*nu^3 +
; [0,0,0,p0]*nu^4
.loop_x:
movu m6, [ptrq + xq * 4] ; s = [p1,p2,p3,p4]
pslldq m7, m6, 4 ; [0, p1,p2,p3]
movss m7, m5 ; [p0,p1,p2,p3]
FMULADD_PS m6, m7, m0, m6, m8 ; s += [p0,p1,p2,p3] * nu
pslldq m7, 4 ; [0,p0,p1,p2]
FMULADD_PS m6, m7, m2, m6, m8 ; s += [0,p0,p1,p2] * nu^2
pslldq m7, 4
FMULADD_PS m6, m7, m3, m6, m8 ; s += [0,0,p0,p1] * nu^3
pslldq m7, 4
FMULADD_PS m6, m7, m4, m6, m8 ; s += [0,0,0,p0] * nu^4
movu [ptrq + xq * 4], m6
shufps m5, m6, m6, q3333
add xq, 4
cmp xq, widthq
jl .loop_x
add widthq, remainq
cmp xq, widthq
je .end_scalar
.loop_scalar:
; ptr[x] += nu * ptr[x-1]
movss m5, [ptrq + 4*xq - 4]
mulss m5, m0
addss m5, [ptrq + 4*xq]
movss [ptrq + 4*xq], m5
inc xq
cmp xq, widthq
jl .loop_scalar
.end_scalar:
; ptr[width - 1] *= bscale
dec xq
mulss m5, m1, [ptrq + 4*xq]
movss [ptrq + 4*xq], m5
shufps m5, m5, 0
; filter leftwards
; for (; x > 0; x--)
; ptr[x - 1] += nu * ptr[x];
; The idea here is basically the same as filter rightwards.
; But we need to take care as the data layout is different.
; Let p0 stands for the ptr[x], which is the data from last loop.
; The way we do it in simd as below:
; [p-4', p-3', p-2', p-1'] = [p-4, p-3, p-2, p-1]
; + [p-3, p-2, p-1, p0] * nu
; + [p-2, p-1, p0, 0] * nu^2
; + [p-1, p0, 0, 0] * nu^3
; + [p0, 0, 0, 0] * nu^4
.loop_x_back:
sub xq, 4
movu m6, [ptrq + xq * 4] ; s = [p-4, p-3, p-2, p-1]
psrldq m7, m6, 4 ; [p-3, p-2, p-1, 0 ]
blendps m7, m5, 0x8 ; [p-3, p-2, p-1, p0 ]
FMULADD_PS m6, m7, m0, m6, m8 ; s+= [p-3, p-2, p-1, p0 ] * nu
psrldq m7, 4 ;
FMULADD_PS m6, m7, m2, m6, m8 ; s+= [p-2, p-1, p0, 0] * nu^2
psrldq m7, 4
FMULADD_PS m6, m7, m3, m6, m8 ; s+= [p-1, p0, 0, 0] * nu^3
psrldq m7, 4
FMULADD_PS m6, m7, m4, m6, m8 ; s+= [p0, 0, 0, 0] * nu^4
movu [ptrq + xq * 4], m6
shufps m5, m6, m6, 0 ; m5 = [p-4', p-4', p-4', p-4']
cmp xq, remainq
jg .loop_x_back
cmp xq, 0
je .end_scalar_back
.loop_scalar_back:
; ptr[x-1] += nu * ptr[x]
movss m5, [ptrq + 4*xq]
mulss m5, m0
addss m5, [ptrq + 4*xq - 4]
movss [ptrq + 4*xq - 4], m5
dec xq
cmp xq, 0
jg .loop_scalar_back
.end_scalar_back:
; reset aligned width for next line
sub widthq, remainq
inc stepd
cmp stepd, stepsd
jl .loop_step
add ptrq, strideq
inc yd
cmp yd, heightd
jl .loop_y
RET
%endmacro
%if ARCH_X86_64
INIT_XMM sse4
HORIZ_SLICE
INIT_XMM avx2
HORIZ_SLICE
%endif
|