aboutsummaryrefslogtreecommitdiffstats
path: root/libavfilter/vf_xpsnr.c
blob: 097258bf4782fee2d94193bdfc1ea10c7520a23a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
/*
 * Copyright (c) 2024 Christian R. Helmrich
 * Copyright (c) 2024 Christian Lehmann
 * Copyright (c) 2024 Christian Stoffers
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/**
 * @file
 * Calculate the extended perceptually weighted PSNR (XPSNR) between two input videos.
 *
 * Authors: Christian Helmrich, Lehmann, and Stoffers, Fraunhofer HHI, Berlin, Germany
 */

#include "libavutil/avstring.h"
#include "libavutil/file_open.h"
#include "libavutil/mem.h"
#include "libavutil/opt.h"
#include "libavutil/pixdesc.h"
#include "avfilter.h"
#include "drawutils.h"
#include "filters.h"
#include "framesync.h"
#include "xpsnr.h"

/* XPSNR structure definition */

typedef struct XPSNRContext {
    /* required basic variables */
    const AVClass   *class;
    int             bpp; /* unpacked */
    int             depth; /* packed */
    char            comps[4];
    int             num_comps;
    uint64_t        num_frames_64;
    unsigned        frame_rate;
    FFFrameSync     fs;
    int             line_sizes[4];
    int             plane_height[4];
    int             plane_width[4];
    uint8_t         rgba_map[4];
    FILE            *stats_file;
    char            *stats_file_str;
    /* XPSNR specific variables */
    double          *sse_luma;
    double          *weights;
    AVBufferRef     *buf_org   [3];
    AVBufferRef     *buf_org_m1[3];
    AVBufferRef     *buf_org_m2[3];
    AVBufferRef     *buf_rec   [3];
    uint64_t        max_error_64;
    double          sum_wdist [3];
    double          sum_xpsnr [3];
    int             and_is_inf[3];
    int             is_rgb;
    PSNRDSPContext  dsp;
} XPSNRContext;

/* required macro definitions */

#define FLAGS     AV_OPT_FLAG_FILTERING_PARAM | AV_OPT_FLAG_VIDEO_PARAM
#define OFFSET(x) offsetof(XPSNRContext, x)
#define XPSNR_GAMMA 2

static const AVOption xpsnr_options[] = {
    {"stats_file", "Set file where to store per-frame XPSNR information", OFFSET(stats_file_str), AV_OPT_TYPE_STRING, {.str = NULL}, 0, 0, FLAGS},
    {"f",          "Set file where to store per-frame XPSNR information", OFFSET(stats_file_str), AV_OPT_TYPE_STRING, {.str = NULL}, 0, 0, FLAGS},
    { NULL }
};

FRAMESYNC_DEFINE_CLASS(xpsnr, XPSNRContext, fs);

/* XPSNR function definitions */

static uint64_t highds(const int x_act, const int y_act, const int w_act, const int h_act, const int16_t *o_m0, const int o)
{
    uint64_t sa_act = 0;

    for (int y = y_act; y < h_act; y += 2) {
        for (int x = x_act; x < w_act; x += 2) {
            const int f = 12 * ((int)o_m0[ y   *o + x  ] + (int)o_m0[ y   *o + x+1] + (int)o_m0[(y+1)*o + x  ] + (int)o_m0[(y+1)*o + x+1])
                         - 3 * ((int)o_m0[(y-1)*o + x  ] + (int)o_m0[(y-1)*o + x+1] + (int)o_m0[(y+2)*o + x  ] + (int)o_m0[(y+2)*o + x+1])
                         - 3 * ((int)o_m0[ y   *o + x-1] + (int)o_m0[ y   *o + x+2] + (int)o_m0[(y+1)*o + x-1] + (int)o_m0[(y+1)*o + x+2])
                         - 2 * ((int)o_m0[(y-1)*o + x-1] + (int)o_m0[(y-1)*o + x+2] + (int)o_m0[(y+2)*o + x-1] + (int)o_m0[(y+2)*o + x+2])
                             - ((int)o_m0[(y-2)*o + x-1] + (int)o_m0[(y-2)*o + x  ] + (int)o_m0[(y-2)*o + x+1] + (int)o_m0[(y-2)*o + x+2]
                              + (int)o_m0[(y+3)*o + x-1] + (int)o_m0[(y+3)*o + x  ] + (int)o_m0[(y+3)*o + x+1] + (int)o_m0[(y+3)*o + x+2]
                              + (int)o_m0[(y-1)*o + x-2] + (int)o_m0[ y   *o + x-2] + (int)o_m0[(y+1)*o + x-2] + (int)o_m0[(y+2)*o + x-2]
                              + (int)o_m0[(y-1)*o + x+3] + (int)o_m0[ y   *o + x+3] + (int)o_m0[(y+1)*o + x+3] + (int)o_m0[(y+2)*o + x+3]);
            sa_act += (uint64_t) abs(f);
        }
    }
    return sa_act;
}

static uint64_t diff1st(const uint32_t w_act, const uint32_t h_act, const int16_t *o_m0, int16_t *o_m1, const int o)
{
    uint64_t ta_act = 0;

    for (uint32_t y = 0; y < h_act; y += 2) {
        for (uint32_t x = 0; x < w_act; x += 2) {
            const int t = (int)o_m0[y*o + x] + (int)o_m0[y*o + x+1] + (int)o_m0[(y+1)*o + x] + (int)o_m0[(y+1)*o + x+1]
                       - ((int)o_m1[y*o + x] + (int)o_m1[y*o + x+1] + (int)o_m1[(y+1)*o + x] + (int)o_m1[(y+1)*o + x+1]);
            ta_act += (uint64_t) abs(t);
            o_m1[y*o + x  ] = o_m0[y*o + x  ];  o_m1[(y+1)*o + x  ] = o_m0[(y+1)*o + x  ];
            o_m1[y*o + x+1] = o_m0[y*o + x+1];  o_m1[(y+1)*o + x+1] = o_m0[(y+1)*o + x+1];
        }
    }
    return (ta_act * XPSNR_GAMMA);
}

static uint64_t diff2nd(const uint32_t w_act, const uint32_t h_act, const int16_t *o_m0, int16_t *o_m1, int16_t *o_m2, const int o)
{
    uint64_t ta_act = 0;

    for (uint32_t y = 0; y < h_act; y += 2) {
        for (uint32_t x = 0; x < w_act; x += 2) {
            const int t = (int)o_m0[y*o + x] + (int)o_m0[y*o + x+1] + (int)o_m0[(y+1)*o + x] + (int)o_m0[(y+1)*o + x+1]
                   - 2 * ((int)o_m1[y*o + x] + (int)o_m1[y*o + x+1] + (int)o_m1[(y+1)*o + x] + (int)o_m1[(y+1)*o + x+1])
                        + (int)o_m2[y*o + x] + (int)o_m2[y*o + x+1] + (int)o_m2[(y+1)*o + x] + (int)o_m2[(y+1)*o + x+1];
            ta_act += (uint64_t) abs(t);
            o_m2[y*o + x  ] = o_m1[y*o + x  ];  o_m2[(y+1)*o + x  ] = o_m1[(y+1)*o + x  ];
            o_m2[y*o + x+1] = o_m1[y*o + x+1];  o_m2[(y+1)*o + x+1] = o_m1[(y+1)*o + x+1];
            o_m1[y*o + x  ] = o_m0[y*o + x  ];  o_m1[(y+1)*o + x  ] = o_m0[(y+1)*o + x  ];
            o_m1[y*o + x+1] = o_m0[y*o + x+1];  o_m1[(y+1)*o + x+1] = o_m0[(y+1)*o + x+1];
        }
    }
    return (ta_act * XPSNR_GAMMA);
}

static uint64_t sse_line_16bit(const uint8_t *blk_org8, const uint8_t *blk_rec8, int block_width)
{
    const uint16_t *blk_org = (const uint16_t *) blk_org8;
    const uint16_t *blk_rec = (const uint16_t *) blk_rec8;
    uint64_t sse = 0; /* sum for one pixel line */

    for (int x = 0; x < block_width; x++) {
        const int64_t error = (int64_t) blk_org[x] - (int64_t) blk_rec[x];

        sse += error * error;
    }

    /* sum of squared errors for the pixel line */
    return sse;
}

static inline uint64_t calc_squared_error(XPSNRContext const *s,
                                          const int16_t *blk_org,     const uint32_t stride_org,
                                          const int16_t *blk_rec,     const uint32_t stride_rec,
                                          const uint32_t block_width, const uint32_t block_height)
{
    uint64_t sse = 0;  /* sum of squared errors */

    for (uint32_t y = 0; y < block_height; y++) {
        sse += s->dsp.sse_line((const uint8_t *) blk_org, (const uint8_t *) blk_rec, (int) block_width);
        blk_org += stride_org;
        blk_rec += stride_rec;
    }

    /* return nonweighted sum of squared errors */
    return sse;
}

static inline double calc_squared_error_and_weight (XPSNRContext const *s,
                                                    const int16_t *pic_org,     const uint32_t stride_org,
                                                    int16_t       *pic_org_m1,  int16_t       *pic_org_m2,
                                                    const int16_t *pic_rec,     const uint32_t stride_rec,
                                                    const uint32_t offset_x,    const uint32_t offset_y,
                                                    const uint32_t block_width, const uint32_t block_height,
                                                    const uint32_t bit_depth,   const uint32_t int_frame_rate, double *ms_act)
{
    const int         o = (int) stride_org;
    const int         r = (int) stride_rec;
    const int16_t *o_m0 = pic_org    + offset_y * o + offset_x;
    int16_t       *o_m1 = pic_org_m1 + offset_y * o + offset_x;
    int16_t       *o_m2 = pic_org_m2 + offset_y * o + offset_x;
    const int16_t *r_m0 = pic_rec    + offset_y * r + offset_x;
    const int     b_val = (s->plane_width[0] * s->plane_height[0] > 2048 * 1152 ? 2 : 1); /* threshold is a bit more than HD resolution */
    const int     x_act = (offset_x > 0 ? 0 : b_val);
    const int     y_act = (offset_y > 0 ? 0 : b_val);
    const int     w_act = (offset_x + block_width  < (uint32_t) s->plane_width [0] ? (int) block_width  : (int) block_width  - b_val);
    const int     h_act = (offset_y + block_height < (uint32_t) s->plane_height[0] ? (int) block_height : (int) block_height - b_val);

    const double sse = (double) calc_squared_error (s, o_m0, stride_org,
                                                    r_m0, stride_rec,
                                                    block_width, block_height);
    uint64_t sa_act = 0;  /* spatial abs. activity */
    uint64_t ta_act = 0; /* temporal abs. activity */

    if (w_act <= x_act || h_act <= y_act) /* small */
        return sse;

    if (b_val > 1) { /* highpass with downsampling */
        if (w_act > 12)
            sa_act = s->dsp.highds_func(x_act, y_act, w_act, h_act, o_m0, o);
        else
            highds(x_act, y_act, w_act, h_act, o_m0, o);
    } else { /* <=HD highpass without downsampling */
        for (int y = y_act; y < h_act; y++) {
            for (int x = x_act; x < w_act; x++) {
                const int f = 12 * (int)o_m0[y*o + x] - 2 * ((int)o_m0[y*o + x-1] + (int)o_m0[y*o + x+1] + (int)o_m0[(y-1)*o + x] + (int)o_m0[(y+1)*o + x])
                                 - ((int)o_m0[(y-1)*o + x-1] + (int)o_m0[(y-1)*o + x+1] + (int)o_m0[(y+1)*o + x-1] + (int)o_m0[(y+1)*o + x+1]);
                sa_act += (uint64_t) abs(f);
            }
        }
    }

    /* calculate weight (average squared activity) */
    *ms_act = (double) sa_act / ((double) (w_act - x_act) * (double) (h_act - y_act));

    if (b_val > 1) { /* highpass with downsampling */
        if (int_frame_rate < 32) /* 1st-order diff */
            ta_act = s->dsp.diff1st_func(block_width, block_height, o_m0, o_m1, o);
        else /* 2nd-order diff (diff of two diffs) */
            ta_act = s->dsp.diff2nd_func(block_width, block_height, o_m0, o_m1, o_m2, o);
    } else { /* <=HD highpass without downsampling */
        if (int_frame_rate < 32) { /* 1st-order diff */
            for (uint32_t y = 0; y < block_height; y++) {
                for (uint32_t x = 0; x < block_width; x++) {
                    const int t = (int)o_m0[y * o + x] - (int)o_m1[y * o + x];

                    ta_act += XPSNR_GAMMA * (uint64_t) abs(t);
                    o_m1[y * o + x] = o_m0[y * o + x];
                }
            }
        } else { /* 2nd-order diff (diff of 2 diffs) */
            for (uint32_t y = 0; y < block_height; y++) {
                for (uint32_t x = 0; x < block_width; x++) {
                    const int t = (int)o_m0[y * o + x] - 2 * (int)o_m1[y * o + x] + (int)o_m2[y * o + x];

                    ta_act += XPSNR_GAMMA * (uint64_t) abs(t);
                    o_m2[y * o + x] = o_m1[y * o + x];
                    o_m1[y * o + x] = o_m0[y * o + x];
                }
            }
        }
    }

    /* weight += mean squared temporal activity */
    *ms_act += (double) ta_act / ((double) block_width * (double) block_height);

    /* lower limit, accounts for high-pass gain */
    if (*ms_act < (double) (1 << (bit_depth - 6)))
        *ms_act = (double) (1 << (bit_depth - 6));

    *ms_act *= *ms_act; /* since SSE is squared */

    /* return nonweighted sum of squared errors */
    return sse;
}

static inline double get_avg_xpsnr (const double sqrt_wsse_val,  const double sum_xpsnr_val,
                                    const uint32_t image_width,  const uint32_t image_height,
                                    const uint64_t max_error_64, const uint64_t num_frames_64)
{
    if (num_frames_64 == 0)
        return INFINITY;

    if (sqrt_wsse_val >= (double) num_frames_64) { /* square-mean-root average */
        const double avg_dist = sqrt_wsse_val / (double) num_frames_64;
        const uint64_t  num64 = (uint64_t) image_width * (uint64_t) image_height * max_error_64;

        return 10.0 * log10((double) num64 / ((double) avg_dist * (double) avg_dist));
    }

    return sum_xpsnr_val / (double) num_frames_64; /* older log-domain average */
}

static int get_wsse(AVFilterContext *ctx, int16_t **org, int16_t **org_m1, int16_t **org_m2, int16_t **rec,
                    uint64_t *const wsse64)
{
    XPSNRContext *const  s = ctx->priv;
    const uint32_t       w = s->plane_width [0]; /* luma image width in pixels */
    const uint32_t       h = s->plane_height[0];/* luma image height in pixels */
    const double         r = (double)(w * h) / (3840.0 * 2160.0); /* UHD ratio */
    const uint32_t       b = FFMAX(0, 4 * (int32_t) (32.0 * sqrt(r) +
                                                     0.5)); /* block size, integer multiple of 4 for SIMD */
    const uint32_t   w_blk = (w + b - 1) / b; /* luma width in units of blocks */
    const double   avg_act = sqrt(16.0 * (double) (1 << (2 * s->depth - 9)) / sqrt(FFMAX(0.00001,
                                                                                   r))); /* the sqrt(a_pic) */
    const int  *stride_org = (s->bpp == 1 ? s->plane_width : s->line_sizes);
    uint32_t x, y, idx_blk = 0; /* the "16.0" above is due to fixed-point code */
    double *const sse_luma = s->sse_luma;
    double *const  weights = s->weights;
    int c;

    if (!wsse64 || (s->depth < 6) || (s->depth > 16) || (s->num_comps <= 0) ||
        (s->num_comps > 3) || (w == 0) || (h == 0)) {
        av_log(ctx, AV_LOG_ERROR, "Error in XPSNR routine: invalid argument(s).\n");
        return AVERROR(EINVAL);
    }
    if (!weights || (b >= 4 && !sse_luma)) {
        av_log(ctx, AV_LOG_ERROR, "Failed to allocate temporary block memory.\n");
        return AVERROR(ENOMEM);
    }

    if (b >= 4) {
        const int16_t *p_org = org[0];
        const uint32_t s_org = stride_org[0] / s->bpp;
        const int16_t *p_rec = rec[0];
        const uint32_t s_rec = s->plane_width[0];
        int16_t    *p_org_m1 = org_m1[0]; /* pixel  */
        int16_t    *p_org_m2 = org_m2[0]; /* memory */
        double     wsse_luma = 0.0;

        for (y = 0; y < h; y += b) { /* calculate block SSE and perceptual weights */
            const uint32_t block_height = (y + b > h ? h - y : b);

            for (x = 0; x < w; x += b, idx_blk++) {
                const uint32_t block_width = (x + b > w ? w - x : b);
                double ms_act = 1.0, ms_act_prev = 0.0;

                sse_luma[idx_blk] = calc_squared_error_and_weight(s, p_org, s_org,
                                                                  p_org_m1, p_org_m2,
                                                                  p_rec, s_rec,
                                                                  x, y,
                                                                  block_width, block_height,
                                                                  s->depth, s->frame_rate, &ms_act);
                weights[idx_blk] = 1.0 / sqrt(ms_act);

                if (w * h <= 640 * 480) { /* in-line "min-smoothing" as in paper */
                    if (x == 0) /* first column */
                        ms_act_prev = (idx_blk > 1 ? weights[idx_blk - 2] : 0);
                    else  /* after first column */
                        ms_act_prev = (x > b ? FFMAX(weights[idx_blk - 2], weights[idx_blk]) : weights[idx_blk]);

                    if (idx_blk > w_blk) /* after the first row and first column */
                        ms_act_prev = FFMAX(ms_act_prev, weights[idx_blk - 1 - w_blk]); /* min (L, T) */
                    if ((idx_blk > 0) && (weights[idx_blk - 1] > ms_act_prev))
                        weights[idx_blk - 1] = ms_act_prev;

                    if ((x + b >= w) && (y + b >= h) && (idx_blk > w_blk)) { /* last block in picture */
                        ms_act_prev = FFMAX(weights[idx_blk - 1], weights[idx_blk - w_blk]);
                        if (weights[idx_blk] > ms_act_prev)
                            weights[idx_blk] = ms_act_prev;
                    }
                }
            } /* for x */
        } /* for y */

        for (y = idx_blk = 0; y < h; y += b) { /* calculate sum for luma (Y) XPSNR */
            for (x = 0; x < w; x += b, idx_blk++) {
                wsse_luma += sse_luma[idx_blk] * weights[idx_blk];
            }
        }
        wsse64[0] = (wsse_luma <= 0.0 ? 0 : (uint64_t) (wsse_luma * avg_act + 0.5));
    } /* b >= 4 */

    for (c = 0; c < s->num_comps; c++) { /* finalize WSSE value for each component */
        const int16_t *p_org = org[c];
        const uint32_t s_org = stride_org[c] / s->bpp;
        const int16_t *p_rec = rec[c];
        const uint32_t s_rec = s->plane_width[c];
        const uint32_t w_pln = s->plane_width[c];
        const uint32_t h_pln = s->plane_height[c];

        if (b < 4) /* picture is too small for XPSNR, calculate nonweighted PSNR */
            wsse64[c] = calc_squared_error (s, p_org, s_org,
                                            p_rec, s_rec,
                                            w_pln, h_pln);
        else if (c > 0) { /* b >= 4 so Y XPSNR has already been calculated above */
            const uint32_t  bx = (b * w_pln) / w;
            const uint32_t  by = (b * h_pln) / h;  /* up to chroma downsampling by 4 */
            double wsse_chroma = 0.0;

            for (y = idx_blk = 0; y < h_pln; y += by) { /* calc chroma (Cb/Cr) XPSNR */
                const uint32_t block_height = (y + by > h_pln ? h_pln - y : by);

                for (x = 0; x < w_pln; x += bx, idx_blk++) {
                    const uint32_t block_width = (x + bx > w_pln ? w_pln - x : bx);

                    wsse_chroma += (double) calc_squared_error (s, p_org + y * s_org + x, s_org,
                                                                p_rec + y * s_rec + x, s_rec,
                                                                block_width, block_height) * weights[idx_blk];
                }
            }
            wsse64[c] = (wsse_chroma <= 0.0 ? 0 : (uint64_t) (wsse_chroma * avg_act + 0.5));
        }
    } /* for c */

    return 0;
}

static void set_meta(AVDictionary **metadata, const char *key, char comp, float d)
{
    char value[128];
    snprintf(value, sizeof(value), "%f", d);
    if (comp) {
        char key2[128];
        snprintf(key2, sizeof(key2), "%s%c", key, comp);
        av_dict_set(metadata, key2, value, 0);
    } else {
        av_dict_set(metadata, key, value, 0);
    }
}

static int do_xpsnr(FFFrameSync *fs)
{
    AVFilterContext  *ctx = fs->parent;
    XPSNRContext *const s = ctx->priv;
    const uint32_t      w = s->plane_width [0];  /* luma image width in pixels */
    const uint32_t      h = s->plane_height[0]; /* luma image height in pixels */
    const uint32_t      b = FFMAX(0, 4 * (int32_t) (32.0 * sqrt((double) (w * h) / (3840.0 * 2160.0)) + 0.5)); /* block size */
    const uint32_t  w_blk = (w + b - 1) / b;  /* luma width in units of blocks */
    const uint32_t  h_blk = (h + b - 1) / b; /* luma height in units of blocks */
    AVFrame *master, *ref = NULL;
    int16_t *porg   [3];
    int16_t *porg_m1[3];
    int16_t *porg_m2[3];
    int16_t *prec   [3];
    uint64_t wsse64 [3] = {0, 0, 0};
    double cur_xpsnr[3] = {INFINITY, INFINITY, INFINITY};
    int c, ret_value;
    AVDictionary **metadata;

    if ((ret_value = ff_framesync_dualinput_get(fs, &master, &ref)) < 0)
        return ret_value;
    if (ctx->is_disabled || !ref)
        return ff_filter_frame(ctx->outputs[0], master);
    metadata = &master->metadata;

    /* prepare XPSNR calculations: allocate temporary picture and block memory */
    if (!s->sse_luma)
        s->sse_luma = av_malloc_array(w_blk * h_blk, sizeof(double));
    if (!s->weights)
        s->weights  = av_malloc_array(w_blk * h_blk, sizeof(double));

    for (c = 0; c < s->num_comps; c++) {  /* create temporal org buffer memory */
        s->line_sizes[c] = master->linesize[c];

        if (c == 0) { /* luma ch. */
            const int stride_org_bpp = (s->bpp == 1 ? s->plane_width[c] : s->line_sizes[c] / s->bpp);

            if (!s->buf_org_m1[c])
                s->buf_org_m1[c] = av_buffer_allocz(stride_org_bpp * s->plane_height[c] * sizeof(int16_t));
            if (!s->buf_org_m2[c])
                s->buf_org_m2[c] = av_buffer_allocz(stride_org_bpp * s->plane_height[c] * sizeof(int16_t));

            porg_m1[c] = (int16_t *) s->buf_org_m1[c]->data;
            porg_m2[c] = (int16_t *) s->buf_org_m2[c]->data;
        }
    }

    if (s->bpp == 1) { /* 8 bit */
        for (c = 0; c < s->num_comps; c++) { /* allocate org/rec buffer memory */
            const int m = s->line_sizes[c];  /* master stride */
            const int r = ref->linesize[c];  /* ref/c stride */
            const int o = s->plane_width[c]; /* XPSNR stride */

            if (!s->buf_org[c])
                s->buf_org[c] = av_buffer_allocz(s->plane_width[c] * s->plane_height[c] * sizeof(int16_t));
            if (!s->buf_rec[c])
                s->buf_rec[c] = av_buffer_allocz(s->plane_width[c] * s->plane_height[c] * sizeof(int16_t));

            porg[c] = (int16_t *) s->buf_org[c]->data;
            prec[c] = (int16_t *) s->buf_rec[c]->data;

            for (int y = 0; y < s->plane_height[c]; y++) {
                for (int x = 0; x < s->plane_width[c]; x++) {
                    porg[c][y * o + x] = (int16_t) master->data[c][y * m + x];
                    prec[c][y * o + x] = (int16_t)    ref->data[c][y * r + x];
                }
            }
        }
    } else {  /* 10, 12, 14 bit */
        for (c = 0; c < s->num_comps; c++) {
            porg[c] = (int16_t *) master->data[c];
            prec[c] = (int16_t *)    ref->data[c];
        }
    }

    /* extended perceptually weighted peak signal-to-noise ratio (XPSNR) value */
    ret_value = get_wsse(ctx, (int16_t **) &porg, (int16_t **) &porg_m1, (int16_t **) &porg_m2,
                         (int16_t **) &prec, wsse64);
    if ( ret_value < 0 )
        return ret_value; /* an error here means something went wrong earlier! */

    for (c = 0; c < s->num_comps; c++) {
        const double sqrt_wsse = sqrt((double) wsse64[c]);

        cur_xpsnr[c] = get_avg_xpsnr (sqrt_wsse, INFINITY,
                                      s->plane_width[c], s->plane_height[c],
                                      s->max_error_64, 1 /* single frame */);
        s->sum_wdist[c] += sqrt_wsse;
        s->sum_xpsnr[c] += cur_xpsnr[c];
        s->and_is_inf[c] &= isinf(cur_xpsnr[c]);
    }
    s->num_frames_64++;

    for (int j = 0; j < s->num_comps; j++) {
        int c = s->is_rgb ? s->rgba_map[j] : j;
        set_meta(metadata, "lavfi.xpsnr.xpsnr.", s->comps[j], cur_xpsnr[c]);
    }

    if (s->stats_file) { /* print out frame- and component-wise XPSNR averages */
        fprintf(s->stats_file, "n: %4"PRId64"", s->num_frames_64);

        for (c = 0; c < s->num_comps; c++)
            fprintf(s->stats_file, "  XPSNR %c: %3.4f", s->comps[c], cur_xpsnr[c]);
        fprintf(s->stats_file, "\n");
    }

    return ff_filter_frame(ctx->outputs[0], master);
}

static av_cold int init(AVFilterContext *ctx)
{
    XPSNRContext *const s = ctx->priv;
    int c;

    if (s->stats_file_str) {
        if (!strcmp(s->stats_file_str, "-")) /* no stats file, so use stdout */
            s->stats_file = stdout;
        else {
            s->stats_file = avpriv_fopen_utf8(s->stats_file_str, "w");

            if (!s->stats_file) {
                const int err = AVERROR(errno);
                char buf[128];

                av_strerror(err, buf, sizeof(buf));
                av_log(ctx, AV_LOG_ERROR, "Could not open statistics file %s: %s\n", s->stats_file_str, buf);
                return err;
            }
        }
    }

    s->sse_luma = NULL;
    s->weights  = NULL;

    for (c = 0; c < 3; c++) { /* initialize XPSNR data of each color component */
        s->buf_org   [c] = NULL;
        s->buf_org_m1[c] = NULL;
        s->buf_org_m2[c] = NULL;
        s->buf_rec   [c] = NULL;
        s->sum_wdist [c] = 0.0;
        s->sum_xpsnr [c] = 0.0;
        s->and_is_inf[c] = 1;
    }

    s->fs.on_event = do_xpsnr;

    return 0;
}

static const enum AVPixelFormat xpsnr_formats[] = {
    AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAY9, AV_PIX_FMT_GRAY10, AV_PIX_FMT_GRAY12, AV_PIX_FMT_GRAY14, AV_PIX_FMT_GRAY16,
#define PF_NOALPHA(suf) AV_PIX_FMT_YUV420##suf,  AV_PIX_FMT_YUV422##suf,  AV_PIX_FMT_YUV444##suf
#define PF_ALPHA(suf)   AV_PIX_FMT_YUVA420##suf, AV_PIX_FMT_YUVA422##suf, AV_PIX_FMT_YUVA444##suf
#define PF(suf)         PF_NOALPHA(suf), PF_ALPHA(suf)
    PF(P), PF(P9), PF(P10), PF_NOALPHA(P12), PF_NOALPHA(P14), PF(P16),
    AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV411P, AV_PIX_FMT_YUV410P,
    AV_PIX_FMT_YUVJ411P, AV_PIX_FMT_YUVJ420P, AV_PIX_FMT_YUVJ422P,
    AV_PIX_FMT_YUVJ440P, AV_PIX_FMT_YUVJ444P,
    AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10,
    AV_PIX_FMT_GBRP12, AV_PIX_FMT_GBRP14, AV_PIX_FMT_GBRP16,
    AV_PIX_FMT_GBRAP, AV_PIX_FMT_GBRAP10, AV_PIX_FMT_GBRAP12, AV_PIX_FMT_GBRAP16,
    AV_PIX_FMT_NONE
};

static int config_input_ref(AVFilterLink *inlink)
{
    const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
    AVFilterContext  *ctx = inlink->dst;
    XPSNRContext *const s = ctx->priv;
    FilterLink *il = ff_filter_link(inlink);

    if ((ctx->inputs[0]->w != ctx->inputs[1]->w) ||
        (ctx->inputs[0]->h != ctx->inputs[1]->h)) {
        av_log(ctx, AV_LOG_ERROR, "Width and height of the input videos must match.\n");
        return AVERROR(EINVAL);
    }
    if (ctx->inputs[0]->format != ctx->inputs[1]->format) {
        av_log(ctx, AV_LOG_ERROR, "The input videos must be of the same pixel format.\n");
        return AVERROR(EINVAL);
    }

    s->bpp =  (desc->comp[0].depth <= 8 ? 1 : 2);
    s->depth = desc->comp[0].depth;
    s->max_error_64 = (1 << s->depth) - 1; /* conventional limit */
    s->max_error_64 *= s->max_error_64;

    s->frame_rate = il->frame_rate.num / il->frame_rate.den;

    s->num_comps = (desc->nb_components > 3 ? 3 : desc->nb_components);

    s->is_rgb = (ff_fill_rgba_map(s->rgba_map, inlink->format) >= 0);
    s->comps[0] = (s->is_rgb ? 'r' : 'y');
    s->comps[1] = (s->is_rgb ? 'g' : 'u');
    s->comps[2] = (s->is_rgb ? 'b' : 'v');
    s->comps[3] = 'a';

    s->plane_width [1] = s->plane_width [2] = AV_CEIL_RSHIFT(inlink->w, desc->log2_chroma_w);
    s->plane_width [0] = s->plane_width [3] = inlink->w;
    s->plane_height[1] = s->plane_height[2] = AV_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h);
    s->plane_height[0] = s->plane_height[3] = inlink->h;

    s->dsp.sse_line = sse_line_16bit;
    s->dsp.highds_func = highds; /* initialize filtering methods */
    s->dsp.diff1st_func = diff1st;
    s->dsp.diff2nd_func = diff2nd;
#if ARCH_X86
    ff_xpsnr_init_x86(&s->dsp, 15); /* initialize x86 SSE method */
#endif

    return 0;
}

static int config_output(AVFilterLink *outlink)
{
    AVFilterContext *ctx = outlink->src;
    XPSNRContext *s = ctx->priv;
    AVFilterLink *mainlink = ctx->inputs[0];
    FilterLink *il = ff_filter_link(mainlink);
    FilterLink *ol = ff_filter_link(outlink);
    int ret;

    if ((ret = ff_framesync_init_dualinput(&s->fs, ctx)) < 0)
        return ret;

    outlink->w = mainlink->w;
    outlink->h = mainlink->h;
    outlink->time_base = mainlink->time_base;
    outlink->sample_aspect_ratio = mainlink->sample_aspect_ratio;
    ol->frame_rate = il->frame_rate;

    if ((ret = ff_framesync_configure(&s->fs)) < 0)
        return ret;

    outlink->time_base = s->fs.time_base;

    if (av_cmp_q(mainlink->time_base, outlink->time_base) ||
        av_cmp_q(ctx->inputs[1]->time_base, outlink->time_base))
        av_log(ctx, AV_LOG_WARNING, "not matching timebases found between first input: %d/%d and second input %d/%d, results may be incorrect!\n",
               mainlink->time_base.num, mainlink->time_base.den,
               ctx->inputs[1]->time_base.num, ctx->inputs[1]->time_base.den);

    return 0;
}

static int activate(AVFilterContext *ctx)
{
    XPSNRContext *s = ctx->priv;

    return ff_framesync_activate(&s->fs);
}

static av_cold void uninit(AVFilterContext *ctx)
{
    XPSNRContext *const s = ctx->priv;
    int c;

    if (s->num_frames_64 > 0) { /* print out overall component-wise mean XPSNR */
        const double xpsnr_luma = get_avg_xpsnr(s->sum_wdist[0],   s->sum_xpsnr[0],
                                                s->plane_width[0], s->plane_height[0],
                                                s->max_error_64,   s->num_frames_64);
        double xpsnr_min = xpsnr_luma;

        /* luma */
        av_log(ctx, AV_LOG_INFO, "XPSNR  %c: %3.4f", s->comps[0], xpsnr_luma);
        if (s->stats_file) {
            fprintf(s->stats_file, "\nXPSNR average, %"PRId64" frames", s->num_frames_64);
            fprintf(s->stats_file, "  %c: %3.4f", s->comps[0], xpsnr_luma);
        }
        /* chroma */
        for (c = 1; c < s->num_comps; c++) {
            const double xpsnr_chroma = get_avg_xpsnr(s->sum_wdist[c],   s->sum_xpsnr[c],
                                                      s->plane_width[c], s->plane_height[c],
                                                      s->max_error_64,   s->num_frames_64);
            if (xpsnr_min > xpsnr_chroma)
                xpsnr_min = xpsnr_chroma;

            av_log(ctx, AV_LOG_INFO, "  %c: %3.4f", s->comps[c], xpsnr_chroma);
            if (s->stats_file && s->stats_file != stdout)
                fprintf(s->stats_file, "  %c: %3.4f", s->comps[c], xpsnr_chroma);
        }
        /* print out line break, and minimum XPSNR across the color components */
        if (s->num_comps > 1) {
            av_log(ctx, AV_LOG_INFO, "  (minimum: %3.4f)\n", xpsnr_min);
            if (s->stats_file && s->stats_file != stdout)
                fprintf(s->stats_file, "  (minimum: %3.4f)\n", xpsnr_min);
        } else {
            av_log(ctx, AV_LOG_INFO, "\n");
            if (s->stats_file && s->stats_file != stdout)
                fprintf(s->stats_file, "\n");
        }
    }

    ff_framesync_uninit(&s->fs); /* free temporary picture or block buf memory */

    if (s->stats_file && s->stats_file != stdout)
        fclose(s->stats_file);

    av_freep(&s->sse_luma);
    av_freep(&s->weights );

    for (c = 0; c < s->num_comps; c++) { /* free extra temporal org buf memory */
        if(s->buf_org_m1[c])
            av_freep(s->buf_org_m1[c]);
        if(s->buf_org_m2[c])
            av_freep(s->buf_org_m2[c]);
    }
    if (s->bpp == 1) { /* 8 bit */
        for (c = 0; c < s->num_comps; c++) { /* and org/rec picture buf memory */
            if(s->buf_org_m2[c])
                av_freep(s->buf_org[c]);
            if(s->buf_rec[c])
                av_freep(s->buf_rec[c]);
        }
    }
}

static const AVFilterPad xpsnr_inputs[] = {
    {
        .name         = "main",
        .type         = AVMEDIA_TYPE_VIDEO,
    }, {
        .name         = "reference",
        .type         = AVMEDIA_TYPE_VIDEO,
        .config_props = config_input_ref,
    }
};

static const AVFilterPad xpsnr_outputs[] = {
    {
        .name         = "default",
        .type         = AVMEDIA_TYPE_VIDEO,
        .config_props = config_output,
    }
};

const AVFilter ff_vf_xpsnr = {
    .name         = "xpsnr",
    .description  = NULL_IF_CONFIG_SMALL("Calculate the extended perceptually weighted peak signal-to-noise ratio (XPSNR) between two video streams."),
    .preinit      = xpsnr_framesync_preinit,
    .init         = init,
    .uninit       = uninit,
    .activate     = activate,
    .priv_size    = sizeof(XPSNRContext),
    .priv_class   = &xpsnr_class,
    FILTER_INPUTS (xpsnr_inputs),
    FILTER_OUTPUTS(xpsnr_outputs),
    FILTER_PIXFMTS_ARRAY(xpsnr_formats),
    .flags        = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL | AVFILTER_FLAG_METADATA_ONLY
};