aboutsummaryrefslogtreecommitdiffstats
path: root/libavfilter/vf_unsharp.c
blob: 198dbbaa518be59d7ec830d688f493faa41d082b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
/*
 * Original copyright (c) 2002 Remi Guyomarch <rguyom@pobox.com>
 * Port copyright (c) 2010 Daniel G. Taylor <dan@programmer-art.org>
 * Relicensed to the LGPL with permission from Remi Guyomarch.
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/**
 * @file
 * blur / sharpen filter, ported to FFmpeg from MPlayer
 * libmpcodecs/unsharp.c.
 *
 * This code is based on:
 *
 * An Efficient algorithm for Gaussian blur using finite-state machines
 * Frederick M. Waltz and John W. V. Miller
 *
 * SPIE Conf. on Machine Vision Systems for Inspection and Metrology VII
 * Originally published Boston, Nov 98
 *
 * http://www.engin.umd.umich.edu/~jwvm/ece581/21_GBlur.pdf
 */

#include "avfilter.h"
#include "formats.h"
#include "internal.h"
#include "video.h"
#include "libavutil/common.h"
#include "libavutil/imgutils.h"
#include "libavutil/mem.h"
#include "libavutil/opt.h"
#include "libavutil/pixdesc.h"
#include "unsharp.h"

typedef struct TheadData {
    UnsharpFilterParam *fp;
    uint8_t       *dst;
    const uint8_t *src;
    int dst_stride;
    int src_stride;
    int width;
    int height;
} ThreadData;

#define DEF_UNSHARP_SLICE_FUNC(name, nbits)                                                           \
static int name##_##nbits(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)                    \
{                                                                                                     \
    ThreadData *td = arg;                                                                             \
    UnsharpFilterParam *fp = td->fp;                                                                  \
    UnsharpContext *s = ctx->priv;                                                                    \
    uint32_t **sc = fp->sc;                                                                           \
    uint32_t *sr = fp->sr;                                                                            \
    const uint##nbits##_t *src2 = NULL;                                                               \
    const int amount = fp->amount;                                                                    \
    const int steps_x = fp->steps_x;                                                                  \
    const int steps_y = fp->steps_y;                                                                  \
    const int scalebits = fp->scalebits;                                                              \
    const int32_t halfscale = fp->halfscale;                                                          \
                                                                                                      \
    uint##nbits##_t *dst = (uint##nbits##_t*)td->dst;                                                 \
    const uint##nbits##_t *src = (const uint##nbits##_t *)td->src;                                    \
    int dst_stride = td->dst_stride;                                                                  \
    int src_stride = td->src_stride;                                                                  \
    const int width = td->width;                                                                      \
    const int height = td->height;                                                                    \
    const int sc_offset = jobnr * 2 * steps_y;                                                        \
    const int sr_offset = jobnr * (MAX_MATRIX_SIZE - 1);                                              \
    const int slice_start = (height * jobnr) / nb_jobs;                                               \
    const int slice_end = (height * (jobnr+1)) / nb_jobs;                                             \
                                                                                                      \
    int32_t res;                                                                                      \
    int x, y, z;                                                                                      \
    uint32_t tmp1, tmp2;                                                                              \
                                                                                                      \
    if (!amount) {                                                                                    \
        av_image_copy_plane(td->dst + slice_start * dst_stride, dst_stride,                           \
                            td->src + slice_start * src_stride, src_stride,                           \
                            width * s->bps, slice_end - slice_start);                                 \
        return 0;                                                                                     \
    }                                                                                                 \
                                                                                                      \
    for (y = 0; y < 2 * steps_y; y++)                                                                 \
        memset(sc[sc_offset + y], 0, sizeof(sc[y][0]) * (width + 2 * steps_x));                       \
                                                                                                      \
    dst_stride = dst_stride / s->bps;                                                                 \
    src_stride = src_stride / s->bps;                                                                 \
    /* if this is not the first tile, we start from (slice_start - steps_y) */                        \
    /* so we can get smooth result at slice boundary */                                               \
    if (slice_start > steps_y) {                                                                      \
        src += (slice_start - steps_y) * src_stride;                                                  \
        dst += (slice_start - steps_y) * dst_stride;                                                  \
    }                                                                                                 \
                                                                                                      \
    for (y = -steps_y + slice_start; y < steps_y + slice_end; y++) {                                  \
        if (y < height)                                                                               \
            src2 = src;                                                                               \
                                                                                                      \
        memset(sr + sr_offset, 0, sizeof(sr[0]) * (2 * steps_x - 1));                                 \
        for (x = -steps_x; x < width + steps_x; x++) {                                                \
            tmp1 = x <= 0 ? src2[0] : x >= width ? src2[width-1] : src2[x];                           \
            for (z = 0; z < steps_x * 2; z += 2) {                                                    \
                tmp2 = sr[sr_offset + z + 0] + tmp1; sr[sr_offset + z + 0] = tmp1;                    \
                tmp1 = sr[sr_offset + z + 1] + tmp2; sr[sr_offset + z + 1] = tmp2;                    \
            }                                                                                         \
            for (z = 0; z < steps_y * 2; z += 2) {                                                    \
                tmp2 = sc[sc_offset + z + 0][x + steps_x] + tmp1;                                     \
                sc[sc_offset + z + 0][x + steps_x] = tmp1;                                            \
                tmp1 = sc[sc_offset + z + 1][x + steps_x] + tmp2;                                     \
                sc[sc_offset + z + 1][x + steps_x] = tmp2;                                            \
            }                                                                                         \
            if (x >= steps_x && y >= (steps_y + slice_start)) {                                       \
                const uint##nbits##_t *srx = src - steps_y * src_stride + x - steps_x;                \
                uint##nbits##_t *dsx       = dst - steps_y * dst_stride + x - steps_x;                \
                                                                                                      \
                res = (int32_t)*srx + ((((int32_t) * srx -                                            \
                      (int32_t)((tmp1 + halfscale) >> scalebits)) * amount) >> (8+nbits));            \
                *dsx = av_clip_uint##nbits(res);                                                      \
            }                                                                                         \
        }                                                                                             \
        if (y >= 0) {                                                                                 \
            dst += dst_stride;                                                                        \
            src += src_stride;                                                                        \
        }                                                                                             \
    }                                                                                                 \
    return 0;                                                                                         \
}
DEF_UNSHARP_SLICE_FUNC(unsharp_slice, 16)
DEF_UNSHARP_SLICE_FUNC(unsharp_slice, 8)

static int apply_unsharp_c(AVFilterContext *ctx, AVFrame *in, AVFrame *out)
{
    AVFilterLink *inlink = ctx->inputs[0];
    UnsharpContext *s = ctx->priv;
    int i, plane_w[3], plane_h[3];
    UnsharpFilterParam *fp[3];
    ThreadData td;

    plane_w[0] = inlink->w;
    plane_w[1] = plane_w[2] = AV_CEIL_RSHIFT(inlink->w, s->hsub);
    plane_h[0] = inlink->h;
    plane_h[1] = plane_h[2] = AV_CEIL_RSHIFT(inlink->h, s->vsub);
    fp[0] = &s->luma;
    fp[1] = fp[2] = &s->chroma;
    for (i = 0; i < 3; i++) {
        td.fp = fp[i];
        td.dst = out->data[i];
        td.src = in->data[i];
        td.width = plane_w[i];
        td.height = plane_h[i];
        td.dst_stride = out->linesize[i];
        td.src_stride = in->linesize[i];
        ctx->internal->execute(ctx, s->unsharp_slice, &td, NULL, FFMIN(plane_h[i], s->nb_threads));
    }
    return 0;
}

static void set_filter_param(UnsharpFilterParam *fp, int msize_x, int msize_y, float amount)
{
    fp->msize_x = msize_x;
    fp->msize_y = msize_y;
    fp->amount = amount * 65536.0;

    fp->steps_x = msize_x / 2;
    fp->steps_y = msize_y / 2;
    fp->scalebits = (fp->steps_x + fp->steps_y) * 2;
    fp->halfscale = 1 << (fp->scalebits - 1);
}

static av_cold int init(AVFilterContext *ctx)
{
    UnsharpContext *s = ctx->priv;

    set_filter_param(&s->luma,   s->lmsize_x, s->lmsize_y, s->lamount);
    set_filter_param(&s->chroma, s->cmsize_x, s->cmsize_y, s->camount);

    if (s->luma.scalebits >= 26 || s->chroma.scalebits >= 26) {
        av_log(ctx, AV_LOG_ERROR, "luma or chroma matrix size too big\n");
        return AVERROR(EINVAL);
    }
    s->apply_unsharp = apply_unsharp_c;
    return 0;
}

static int query_formats(AVFilterContext *ctx)
{
    static const enum AVPixelFormat pix_fmts[] = {
        AV_PIX_FMT_YUV420P,  AV_PIX_FMT_YUV422P,  AV_PIX_FMT_YUV444P,  AV_PIX_FMT_YUV410P,
        AV_PIX_FMT_YUV411P,  AV_PIX_FMT_YUV440P,  AV_PIX_FMT_YUVJ420P, AV_PIX_FMT_YUVJ422P,
        AV_PIX_FMT_YUV420P9, AV_PIX_FMT_YUV422P9, AV_PIX_FMT_YUV444P9,
        AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV444P10, AV_PIX_FMT_YUV440P10,
        AV_PIX_FMT_YUV420P12, AV_PIX_FMT_YUV422P12, AV_PIX_FMT_YUV444P12, AV_PIX_FMT_YUV440P12,
        AV_PIX_FMT_YUV420P16, AV_PIX_FMT_YUV422P16, AV_PIX_FMT_YUV444P16,
        AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVJ440P, AV_PIX_FMT_NONE
    };

    AVFilterFormats *fmts_list = ff_make_format_list(pix_fmts);
    if (!fmts_list)
        return AVERROR(ENOMEM);
    return ff_set_common_formats(ctx, fmts_list);
}

static int init_filter_param(AVFilterContext *ctx, UnsharpFilterParam *fp, const char *effect_type, int width)
{
    int z;
    UnsharpContext *s = ctx->priv;
    const char *effect = fp->amount == 0 ? "none" : fp->amount < 0 ? "blur" : "sharpen";

    if  (!(fp->msize_x & fp->msize_y & 1)) {
        av_log(ctx, AV_LOG_ERROR,
               "Invalid even size for %s matrix size %dx%d\n",
               effect_type, fp->msize_x, fp->msize_y);
        return AVERROR(EINVAL);
    }

    av_log(ctx, AV_LOG_VERBOSE, "effect:%s type:%s msize_x:%d msize_y:%d amount:%0.2f\n",
           effect, effect_type, fp->msize_x, fp->msize_y, fp->amount / 65535.0);

    fp->sr = av_malloc_array((MAX_MATRIX_SIZE - 1) * s->nb_threads, sizeof(uint32_t));
    fp->sc = av_mallocz_array(2 * fp->steps_y * s->nb_threads, sizeof(uint32_t *));
    if (!fp->sr || !fp->sc)
        return AVERROR(ENOMEM);

    for (z = 0; z < 2 * fp->steps_y * s->nb_threads; z++)
        if (!(fp->sc[z] = av_malloc_array(width + 2 * fp->steps_x,
                                          sizeof(*(fp->sc[z])))))
            return AVERROR(ENOMEM);

    return 0;
}

static int config_input(AVFilterLink *inlink)
{
    UnsharpContext *s = inlink->dst->priv;
    const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
    int ret;

    s->hsub = desc->log2_chroma_w;
    s->vsub = desc->log2_chroma_h;
    s->bitdepth = desc->comp[0].depth;
    s->bps = s->bitdepth > 8 ? 2 : 1;
    s->unsharp_slice = s->bitdepth > 8 ? unsharp_slice_16 : unsharp_slice_8;

    // ensure (height / nb_threads) > 4 * steps_y,
    // so that we don't have too much overlap between two threads
    s->nb_threads = FFMIN(ff_filter_get_nb_threads(inlink->dst),
                          inlink->h / (4 * s->luma.steps_y));

    ret = init_filter_param(inlink->dst, &s->luma,   "luma",   inlink->w);
    if (ret < 0)
        return ret;
    ret = init_filter_param(inlink->dst, &s->chroma, "chroma", AV_CEIL_RSHIFT(inlink->w, s->hsub));
    if (ret < 0)
        return ret;

    return 0;
}

static void free_filter_param(UnsharpFilterParam *fp, int nb_threads)
{
    int z;

    if (fp->sc) {
        for (z = 0; z < 2 * fp->steps_y * nb_threads; z++)
            av_freep(&fp->sc[z]);
        av_freep(&fp->sc);
    }
    av_freep(&fp->sr);
}

static av_cold void uninit(AVFilterContext *ctx)
{
    UnsharpContext *s = ctx->priv;

    free_filter_param(&s->luma, s->nb_threads);
    free_filter_param(&s->chroma, s->nb_threads);
}

static int filter_frame(AVFilterLink *link, AVFrame *in)
{
    UnsharpContext *s = link->dst->priv;
    AVFilterLink *outlink   = link->dst->outputs[0];
    AVFrame *out;
    int ret = 0;

    out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
    if (!out) {
        av_frame_free(&in);
        return AVERROR(ENOMEM);
    }
    av_frame_copy_props(out, in);

    ret = s->apply_unsharp(link->dst, in, out);

    av_frame_free(&in);

    if (ret < 0) {
        av_frame_free(&out);
        return ret;
    }
    return ff_filter_frame(outlink, out);
}

#define OFFSET(x) offsetof(UnsharpContext, x)
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
#define MIN_SIZE 3
#define MAX_SIZE 23
static const AVOption unsharp_options[] = {
    { "luma_msize_x",   "set luma matrix horizontal size",   OFFSET(lmsize_x), AV_OPT_TYPE_INT,   { .i64 = 5 }, MIN_SIZE, MAX_SIZE, FLAGS },
    { "lx",             "set luma matrix horizontal size",   OFFSET(lmsize_x), AV_OPT_TYPE_INT,   { .i64 = 5 }, MIN_SIZE, MAX_SIZE, FLAGS },
    { "luma_msize_y",   "set luma matrix vertical size",     OFFSET(lmsize_y), AV_OPT_TYPE_INT,   { .i64 = 5 }, MIN_SIZE, MAX_SIZE, FLAGS },
    { "ly",             "set luma matrix vertical size",     OFFSET(lmsize_y), AV_OPT_TYPE_INT,   { .i64 = 5 }, MIN_SIZE, MAX_SIZE, FLAGS },
    { "luma_amount",    "set luma effect strength",          OFFSET(lamount),  AV_OPT_TYPE_FLOAT, { .dbl = 1 },       -2,        5, FLAGS },
    { "la",             "set luma effect strength",          OFFSET(lamount),  AV_OPT_TYPE_FLOAT, { .dbl = 1 },       -2,        5, FLAGS },
    { "chroma_msize_x", "set chroma matrix horizontal size", OFFSET(cmsize_x), AV_OPT_TYPE_INT,   { .i64 = 5 }, MIN_SIZE, MAX_SIZE, FLAGS },
    { "cx",             "set chroma matrix horizontal size", OFFSET(cmsize_x), AV_OPT_TYPE_INT,   { .i64 = 5 }, MIN_SIZE, MAX_SIZE, FLAGS },
    { "chroma_msize_y", "set chroma matrix vertical size",   OFFSET(cmsize_y), AV_OPT_TYPE_INT,   { .i64 = 5 }, MIN_SIZE, MAX_SIZE, FLAGS },
    { "cy",             "set chroma matrix vertical size",   OFFSET(cmsize_y), AV_OPT_TYPE_INT,   { .i64 = 5 }, MIN_SIZE, MAX_SIZE, FLAGS },
    { "chroma_amount",  "set chroma effect strength",        OFFSET(camount),  AV_OPT_TYPE_FLOAT, { .dbl = 0 },       -2,        5, FLAGS },
    { "ca",             "set chroma effect strength",        OFFSET(camount),  AV_OPT_TYPE_FLOAT, { .dbl = 0 },       -2,        5, FLAGS },
    { "opencl",         "ignored",                           OFFSET(opencl),   AV_OPT_TYPE_BOOL,  { .i64 = 0 },        0,        1, FLAGS },
    { NULL }
};

AVFILTER_DEFINE_CLASS(unsharp);

static const AVFilterPad avfilter_vf_unsharp_inputs[] = {
    {
        .name         = "default",
        .type         = AVMEDIA_TYPE_VIDEO,
        .filter_frame = filter_frame,
        .config_props = config_input,
    },
    { NULL }
};

static const AVFilterPad avfilter_vf_unsharp_outputs[] = {
    {
        .name = "default",
        .type = AVMEDIA_TYPE_VIDEO,
    },
    { NULL }
};

AVFilter ff_vf_unsharp = {
    .name          = "unsharp",
    .description   = NULL_IF_CONFIG_SMALL("Sharpen or blur the input video."),
    .priv_size     = sizeof(UnsharpContext),
    .priv_class    = &unsharp_class,
    .init          = init,
    .uninit        = uninit,
    .query_formats = query_formats,
    .inputs        = avfilter_vf_unsharp_inputs,
    .outputs       = avfilter_vf_unsharp_outputs,
    .flags         = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS,
};