1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
|
/*
* Copyright (c) 2018 Sergey Lavrushkin
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* Filter implementing image super-resolution using deep convolutional networks.
* https://arxiv.org/abs/1501.00092
* https://arxiv.org/abs/1609.05158
*/
#include "avfilter.h"
#include "formats.h"
#include "internal.h"
#include "libavutil/opt.h"
#include "libavformat/avio.h"
#include "libswscale/swscale.h"
#include "dnn_interface.h"
typedef enum {SRCNN, ESPCN} SRModel;
typedef struct SRContext {
const AVClass *class;
SRModel model_type;
char *model_filename;
DNNBackendType backend_type;
DNNModule *dnn_module;
DNNModel *model;
DNNData input, output;
int scale_factor;
struct SwsContext *sws_context;
int sws_slice_h;
} SRContext;
#define OFFSET(x) offsetof(SRContext, x)
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM | AV_OPT_FLAG_VIDEO_PARAM
static const AVOption sr_options[] = {
{ "model", "specifies what DNN model to use", OFFSET(model_type), AV_OPT_TYPE_FLAGS, { .i64 = 0 }, 0, 1, FLAGS, "model_type" },
{ "srcnn", "Super-Resolution Convolutional Neural Network model (scale factor should be specified for custom SRCNN model)", 0, AV_OPT_TYPE_CONST, { .i64 = 0 }, 0, 0, FLAGS, "model_type" },
{ "espcn", "Efficient Sub-Pixel Convolutional Neural Network model", 0, AV_OPT_TYPE_CONST, { .i64 = 1 }, 0, 0, FLAGS, "model_type" },
{ "dnn_backend", "DNN backend used for model execution", OFFSET(backend_type), AV_OPT_TYPE_FLAGS, { .i64 = 0 }, 0, 1, FLAGS, "backend" },
{ "native", "native backend flag", 0, AV_OPT_TYPE_CONST, { .i64 = 0 }, 0, 0, FLAGS, "backend" },
#if (CONFIG_LIBTENSORFLOW == 1)
{ "tensorflow", "tensorflow backend flag", 0, AV_OPT_TYPE_CONST, { .i64 = 1 }, 0, 0, FLAGS, "backend" },
#endif
{"scale_factor", "scale factor for SRCNN model", OFFSET(scale_factor), AV_OPT_TYPE_INT, { .i64 = 2 }, 2, 4, FLAGS},
{ "model_filename", "path to model file specifying network architecture and its parameters", OFFSET(model_filename), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, FLAGS },
{ NULL }
};
AVFILTER_DEFINE_CLASS(sr);
static av_cold int init(AVFilterContext *context)
{
SRContext *sr_context = context->priv;
sr_context->dnn_module = ff_get_dnn_module(sr_context->backend_type);
if (!sr_context->dnn_module){
av_log(context, AV_LOG_ERROR, "could not create DNN module for requested backend\n");
return AVERROR(ENOMEM);
}
if (!sr_context->model_filename){
av_log(context, AV_LOG_VERBOSE, "model file for network was not specified, using default network for x2 upsampling\n");
sr_context->scale_factor = 2;
switch (sr_context->model_type){
case SRCNN:
sr_context->model = (sr_context->dnn_module->load_default_model)(DNN_SRCNN);
break;
case ESPCN:
sr_context->model = (sr_context->dnn_module->load_default_model)(DNN_ESPCN);
}
}
else{
sr_context->model = (sr_context->dnn_module->load_model)(sr_context->model_filename);
}
if (!sr_context->model){
av_log(context, AV_LOG_ERROR, "could not load DNN model\n");
return AVERROR(EIO);
}
return 0;
}
static int query_formats(AVFilterContext *context)
{
const enum AVPixelFormat pixel_formats[] = {AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV444P,
AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV411P, AV_PIX_FMT_GRAY8,
AV_PIX_FMT_NONE};
AVFilterFormats *formats_list;
formats_list = ff_make_format_list(pixel_formats);
if (!formats_list){
av_log(context, AV_LOG_ERROR, "could not create formats list\n");
return AVERROR(ENOMEM);
}
return ff_set_common_formats(context, formats_list);
}
static int config_props(AVFilterLink *inlink)
{
AVFilterContext *context = inlink->dst;
SRContext *sr_context = context->priv;
AVFilterLink *outlink = context->outputs[0];
DNNReturnType result;
int sws_src_h, sws_src_w, sws_dst_h, sws_dst_w;
switch (sr_context->model_type){
case SRCNN:
sr_context->input.width = inlink->w * sr_context->scale_factor;
sr_context->input.height = inlink->h * sr_context->scale_factor;
break;
case ESPCN:
sr_context->input.width = inlink->w;
sr_context->input.height = inlink->h;
}
sr_context->input.channels = 1;
result = (sr_context->model->set_input_output)(sr_context->model->model, &sr_context->input, &sr_context->output);
if (result != DNN_SUCCESS){
av_log(context, AV_LOG_ERROR, "could not set input and output for the model\n");
return AVERROR(EIO);
}
else{
outlink->h = sr_context->output.height;
outlink->w = sr_context->output.width;
switch (sr_context->model_type){
case SRCNN:
sr_context->sws_context = sws_getContext(inlink->w, inlink->h, inlink->format,
outlink->w, outlink->h, outlink->format, SWS_BICUBIC, NULL, NULL, NULL);
if (!sr_context->sws_context){
av_log(context, AV_LOG_ERROR, "could not create SwsContext\n");
return AVERROR(ENOMEM);
}
sr_context->sws_slice_h = inlink->h;
break;
case ESPCN:
if (inlink->format == AV_PIX_FMT_GRAY8){
sr_context->sws_context = NULL;
}
else{
sws_src_h = sr_context->input.height;
sws_src_w = sr_context->input.width;
sws_dst_h = sr_context->output.height;
sws_dst_w = sr_context->output.width;
switch (inlink->format){
case AV_PIX_FMT_YUV420P:
sws_src_h = AV_CEIL_RSHIFT(sws_src_h, 1);
sws_src_w = AV_CEIL_RSHIFT(sws_src_w, 1);
sws_dst_h = AV_CEIL_RSHIFT(sws_dst_h, 1);
sws_dst_w = AV_CEIL_RSHIFT(sws_dst_w, 1);
break;
case AV_PIX_FMT_YUV422P:
sws_src_w = AV_CEIL_RSHIFT(sws_src_w, 1);
sws_dst_w = AV_CEIL_RSHIFT(sws_dst_w, 1);
break;
case AV_PIX_FMT_YUV444P:
break;
case AV_PIX_FMT_YUV410P:
sws_src_h = AV_CEIL_RSHIFT(sws_src_h, 2);
sws_src_w = AV_CEIL_RSHIFT(sws_src_w, 2);
sws_dst_h = AV_CEIL_RSHIFT(sws_dst_h, 2);
sws_dst_w = AV_CEIL_RSHIFT(sws_dst_w, 2);
break;
case AV_PIX_FMT_YUV411P:
sws_src_w = AV_CEIL_RSHIFT(sws_src_w, 2);
sws_dst_w = AV_CEIL_RSHIFT(sws_dst_w, 2);
break;
default:
av_log(context, AV_LOG_ERROR, "could not create SwsContext for input pixel format");
return AVERROR(EIO);
}
sr_context->sws_context = sws_getContext(sws_src_w, sws_src_h, AV_PIX_FMT_GRAY8,
sws_dst_w, sws_dst_h, AV_PIX_FMT_GRAY8, SWS_BICUBIC, NULL, NULL, NULL);
if (!sr_context->sws_context){
av_log(context, AV_LOG_ERROR, "could not create SwsContext\n");
return AVERROR(ENOMEM);
}
sr_context->sws_slice_h = sws_src_h;
}
}
return 0;
}
}
typedef struct ThreadData{
uint8_t *data;
int data_linesize, height, width;
} ThreadData;
static int uint8_to_float(AVFilterContext *context, void *arg, int jobnr, int nb_jobs)
{
SRContext *sr_context = context->priv;
const ThreadData *td = arg;
const int slice_start = (td->height * jobnr ) / nb_jobs;
const int slice_end = (td->height * (jobnr + 1)) / nb_jobs;
const uint8_t *src = td->data + slice_start * td->data_linesize;
float *dst = sr_context->input.data + slice_start * td->width;
int y, x;
for (y = slice_start; y < slice_end; ++y){
for (x = 0; x < td->width; ++x){
dst[x] = (float)src[x] / 255.0f;
}
src += td->data_linesize;
dst += td->width;
}
return 0;
}
static int float_to_uint8(AVFilterContext *context, void *arg, int jobnr, int nb_jobs)
{
SRContext *sr_context = context->priv;
const ThreadData *td = arg;
const int slice_start = (td->height * jobnr ) / nb_jobs;
const int slice_end = (td->height * (jobnr + 1)) / nb_jobs;
const float *src = sr_context->output.data + slice_start * td->width;
uint8_t *dst = td->data + slice_start * td->data_linesize;
int y, x;
for (y = slice_start; y < slice_end; ++y){
for (x = 0; x < td->width; ++x){
dst[x] = (uint8_t)(255.0f * FFMIN(src[x], 1.0f));
}
src += td->width;
dst += td->data_linesize;
}
return 0;
}
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
{
AVFilterContext *context = inlink->dst;
SRContext *sr_context = context->priv;
AVFilterLink *outlink = context->outputs[0];
AVFrame *out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
ThreadData td;
int nb_threads;
DNNReturnType dnn_result;
if (!out){
av_log(context, AV_LOG_ERROR, "could not allocate memory for output frame\n");
av_frame_free(&in);
return AVERROR(ENOMEM);
}
av_frame_copy_props(out, in);
out->height = sr_context->output.height;
out->width = sr_context->output.width;
switch (sr_context->model_type){
case SRCNN:
sws_scale(sr_context->sws_context, (const uint8_t **)in->data, in->linesize,
0, sr_context->sws_slice_h, out->data, out->linesize);
td.data = out->data[0];
td.data_linesize = out->linesize[0];
td.height = out->height;
td.width = out->width;
break;
case ESPCN:
if (sr_context->sws_context){
sws_scale(sr_context->sws_context, (const uint8_t **)(in->data + 1), in->linesize + 1,
0, sr_context->sws_slice_h, out->data + 1, out->linesize + 1);
sws_scale(sr_context->sws_context, (const uint8_t **)(in->data + 2), in->linesize + 2,
0, sr_context->sws_slice_h, out->data + 2, out->linesize + 2);
}
td.data = in->data[0];
td.data_linesize = in->linesize[0];
td.height = in->height;
td.width = in->width;
}
nb_threads = ff_filter_get_nb_threads(context);
context->internal->execute(context, uint8_to_float, &td, NULL, FFMIN(td.height, nb_threads));
av_frame_free(&in);
dnn_result = (sr_context->dnn_module->execute_model)(sr_context->model);
if (dnn_result != DNN_SUCCESS){
av_log(context, AV_LOG_ERROR, "failed to execute loaded model\n");
return AVERROR(EIO);
}
td.data = out->data[0];
td.data_linesize = out->linesize[0];
td.height = out->height;
td.width = out->width;
context->internal->execute(context, float_to_uint8, &td, NULL, FFMIN(td.height, nb_threads));
return ff_filter_frame(outlink, out);
}
static av_cold void uninit(AVFilterContext *context)
{
SRContext *sr_context = context->priv;
if (sr_context->dnn_module){
(sr_context->dnn_module->free_model)(&sr_context->model);
av_freep(&sr_context->dnn_module);
}
if (sr_context->sws_context){
sws_freeContext(sr_context->sws_context);
}
}
static const AVFilterPad sr_inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.config_props = config_props,
.filter_frame = filter_frame,
},
{ NULL }
};
static const AVFilterPad sr_outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
},
{ NULL }
};
AVFilter ff_vf_sr = {
.name = "sr",
.description = NULL_IF_CONFIG_SMALL("Apply DNN-based image super resolution to the input."),
.priv_size = sizeof(SRContext),
.init = init,
.uninit = uninit,
.query_formats = query_formats,
.inputs = sr_inputs,
.outputs = sr_outputs,
.priv_class = &sr_class,
.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS,
};
|