1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
|
/*
* Copyright (c) 2019 Vladimir Panteleev
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <float.h>
#include "libavutil/imgutils.h"
#include "libavutil/opt.h"
#include "libavutil/pixdesc.h"
#include "avfilter.h"
#include "formats.h"
#include "internal.h"
#include "video.h"
#define MAX_FRAMES 240
#define GRID_SIZE 8
#define NUM_CHANNELS 3
typedef struct PhotosensitivityFrame {
uint8_t grid[GRID_SIZE][GRID_SIZE][4];
} PhotosensitivityFrame;
typedef struct PhotosensitivityContext {
const AVClass *class;
int nb_frames;
int skip;
float threshold_multiplier;
int bypass;
int badness_threshold;
/* Circular buffer */
int history[MAX_FRAMES];
int history_pos;
PhotosensitivityFrame last_frame_e;
AVFrame *last_frame_av;
} PhotosensitivityContext;
#define OFFSET(x) offsetof(PhotosensitivityContext, x)
#define FLAGS AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
static const AVOption photosensitivity_options[] = {
{ "frames", "set how many frames to use", OFFSET(nb_frames), AV_OPT_TYPE_INT, {.i64=30}, 2, MAX_FRAMES, FLAGS },
{ "f", "set how many frames to use", OFFSET(nb_frames), AV_OPT_TYPE_INT, {.i64=30}, 2, MAX_FRAMES, FLAGS },
{ "threshold", "set detection threshold factor (lower is stricter)", OFFSET(threshold_multiplier), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0.1, FLT_MAX, FLAGS },
{ "t", "set detection threshold factor (lower is stricter)", OFFSET(threshold_multiplier), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0.1, FLT_MAX, FLAGS },
{ "skip", "set pixels to skip when sampling frames", OFFSET(skip), AV_OPT_TYPE_INT, {.i64=1}, 1, 1024, FLAGS },
{ "bypass", "leave frames unchanged", OFFSET(bypass), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS },
{ NULL }
};
AVFILTER_DEFINE_CLASS(photosensitivity);
static int query_formats(AVFilterContext *ctx)
{
static const enum AVPixelFormat pixel_fmts[] = {
AV_PIX_FMT_RGB24,
AV_PIX_FMT_BGR24,
AV_PIX_FMT_NONE
};
AVFilterFormats *formats = ff_make_format_list(pixel_fmts);
if (!formats)
return AVERROR(ENOMEM);
return ff_set_common_formats(ctx, formats);
}
typedef struct ThreadData_convert_frame
{
AVFrame *in;
PhotosensitivityFrame *out;
int skip;
} ThreadData_convert_frame;
#define NUM_CELLS (GRID_SIZE * GRID_SIZE)
static int convert_frame_partial(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
int cell, gx, gy, x0, x1, y0, y1, x, y, c, area;
int sum[NUM_CHANNELS];
const uint8_t *p;
ThreadData_convert_frame *td = arg;
const int slice_start = (NUM_CELLS * jobnr) / nb_jobs;
const int slice_end = (NUM_CELLS * (jobnr+1)) / nb_jobs;
int width = td->in->width, height = td->in->height, linesize = td->in->linesize[0], skip = td->skip;
const uint8_t *data = td->in->data[0];
for (cell = slice_start; cell < slice_end; cell++) {
gx = cell % GRID_SIZE;
gy = cell / GRID_SIZE;
x0 = width * gx / GRID_SIZE;
x1 = width * (gx+1) / GRID_SIZE;
y0 = height * gy / GRID_SIZE;
y1 = height * (gy+1) / GRID_SIZE;
for (c = 0; c < NUM_CHANNELS; c++) {
sum[c] = 0;
}
for (y = y0; y < y1; y += skip) {
p = data + y * linesize + x0 * NUM_CHANNELS;
for (x = x0; x < x1; x += skip) {
//av_log(NULL, AV_LOG_VERBOSE, "%d %d %d : (%d,%d) (%d,%d) -> %d,%d | *%d\n", c, gx, gy, x0, y0, x1, y1, x, y, (int)row);
sum[0] += p[0];
sum[1] += p[1];
sum[2] += p[2];
p += NUM_CHANNELS * skip;
// TODO: variable size
}
}
area = ((x1 - x0 + skip - 1) / skip) * ((y1 - y0 + skip - 1) / skip);
for (c = 0; c < NUM_CHANNELS; c++) {
if (area)
sum[c] /= area;
td->out->grid[gy][gx][c] = sum[c];
}
}
return 0;
}
static void convert_frame(AVFilterContext *ctx, AVFrame *in, PhotosensitivityFrame *out, int skip)
{
ThreadData_convert_frame td;
td.in = in;
td.out = out;
td.skip = skip;
ctx->internal->execute(ctx, convert_frame_partial, &td, NULL, FFMIN(NUM_CELLS, ff_filter_get_nb_threads(ctx)));
}
typedef struct ThreadData_blend_frame
{
AVFrame *target;
AVFrame *source;
uint16_t s_mul;
} ThreadData_blend_frame;
static int blend_frame_partial(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
int x, y;
uint8_t *t, *s;
ThreadData_blend_frame *td = arg;
const uint16_t s_mul = td->s_mul;
const uint16_t t_mul = 0x100 - s_mul;
const int slice_start = (td->target->height * jobnr) / nb_jobs;
const int slice_end = (td->target->height * (jobnr+1)) / nb_jobs;
const int linesize = td->target->linesize[0];
for (y = slice_start; y < slice_end; y++) {
t = td->target->data[0] + y * td->target->linesize[0];
s = td->source->data[0] + y * td->source->linesize[0];
for (x = 0; x < linesize; x++) {
*t = (*t * t_mul + *s * s_mul) >> 8;
t++; s++;
}
}
return 0;
}
static void blend_frame(AVFilterContext *ctx, AVFrame *target, AVFrame *source, float factor)
{
ThreadData_blend_frame td;
td.target = target;
td.source = source;
td.s_mul = (uint16_t)(factor * 0x100);
ctx->internal->execute(ctx, blend_frame_partial, &td, NULL, FFMIN(ctx->outputs[0]->h, ff_filter_get_nb_threads(ctx)));
}
static int get_badness(PhotosensitivityFrame *a, PhotosensitivityFrame *b)
{
int badness, x, y, c;
badness = 0;
for (c = 0; c < NUM_CHANNELS; c++) {
for (y = 0; y < GRID_SIZE; y++) {
for (x = 0; x < GRID_SIZE; x++) {
badness += abs((int)a->grid[y][x][c] - (int)b->grid[y][x][c]);
//av_log(NULL, AV_LOG_VERBOSE, "%d - %d -> %d \n", a->grid[y][x], b->grid[y][x], badness);
//av_log(NULL, AV_LOG_VERBOSE, "%d -> %d \n", abs((int)a->grid[y][x] - (int)b->grid[y][x]), badness);
}
}
}
return badness;
}
static int config_input(AVFilterLink *inlink)
{
/* const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format); */
AVFilterContext *ctx = inlink->dst;
PhotosensitivityContext *s = ctx->priv;
s->badness_threshold = (int)(GRID_SIZE * GRID_SIZE * 4 * 256 * s->nb_frames * s->threshold_multiplier / 128);
return 0;
}
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
{
int this_badness, current_badness, fixed_badness, new_badness, i, res;
PhotosensitivityFrame ef;
AVFrame *src, *out;
int free_in = 0;
float factor;
AVDictionary **metadata;
AVFilterContext *ctx = inlink->dst;
AVFilterLink *outlink = ctx->outputs[0];
PhotosensitivityContext *s = ctx->priv;
/* weighted moving average */
current_badness = 0;
for (i = 1; i < s->nb_frames; i++)
current_badness += i * s->history[(s->history_pos + i) % s->nb_frames];
current_badness /= s->nb_frames;
convert_frame(ctx, in, &ef, s->skip);
this_badness = get_badness(&ef, &s->last_frame_e);
new_badness = current_badness + this_badness;
av_log(s, AV_LOG_VERBOSE, "badness: %6d -> %6d / %6d (%3d%% - %s)\n",
current_badness, new_badness, s->badness_threshold,
100 * new_badness / s->badness_threshold, new_badness < s->badness_threshold ? "OK" : "EXCEEDED");
fixed_badness = new_badness;
if (new_badness < s->badness_threshold || !s->last_frame_av || s->bypass) {
factor = 1; /* for metadata */
av_frame_free(&s->last_frame_av);
s->last_frame_av = src = in;
s->last_frame_e = ef;
s->history[s->history_pos] = this_badness;
} else {
factor = (float)(s->badness_threshold - current_badness) / (new_badness - current_badness);
if (factor <= 0) {
/* just duplicate the frame */
s->history[s->history_pos] = 0; /* frame was duplicated, thus, delta is zero */
} else {
res = av_frame_make_writable(s->last_frame_av);
if (res) {
av_frame_free(&in);
return res;
}
blend_frame(ctx, s->last_frame_av, in, factor);
convert_frame(ctx, s->last_frame_av, &ef, s->skip);
this_badness = get_badness(&ef, &s->last_frame_e);
fixed_badness = current_badness + this_badness;
av_log(s, AV_LOG_VERBOSE, " fixed: %6d -> %6d / %6d (%3d%%) factor=%5.3f\n",
current_badness, fixed_badness, s->badness_threshold,
100 * new_badness / s->badness_threshold, factor);
s->last_frame_e = ef;
s->history[s->history_pos] = this_badness;
}
src = s->last_frame_av;
free_in = 1;
}
s->history_pos = (s->history_pos + 1) % s->nb_frames;
out = ff_get_video_buffer(outlink, in->width, in->height);
if (!out) {
if (free_in == 1)
av_frame_free(&in);
return AVERROR(ENOMEM);
}
av_frame_copy_props(out, in);
metadata = &out->metadata;
if (metadata) {
char value[128];
snprintf(value, sizeof(value), "%f", (float)new_badness / s->badness_threshold);
av_dict_set(metadata, "lavfi.photosensitivity.badness", value, 0);
snprintf(value, sizeof(value), "%f", (float)fixed_badness / s->badness_threshold);
av_dict_set(metadata, "lavfi.photosensitivity.fixed-badness", value, 0);
snprintf(value, sizeof(value), "%f", (float)this_badness / s->badness_threshold);
av_dict_set(metadata, "lavfi.photosensitivity.frame-badness", value, 0);
snprintf(value, sizeof(value), "%f", factor);
av_dict_set(metadata, "lavfi.photosensitivity.factor", value, 0);
}
av_frame_copy(out, src);
if (free_in == 1)
av_frame_free(&in);
return ff_filter_frame(outlink, out);
}
static av_cold void uninit(AVFilterContext *ctx)
{
PhotosensitivityContext *s = ctx->priv;
av_frame_free(&s->last_frame_av);
}
static const AVFilterPad inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.filter_frame = filter_frame,
.config_props = config_input,
},
{ NULL }
};
static const AVFilterPad outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
},
{ NULL }
};
const AVFilter ff_vf_photosensitivity = {
.name = "photosensitivity",
.description = NULL_IF_CONFIG_SMALL("Filter out photosensitive epilepsy seizure-inducing flashes."),
.priv_size = sizeof(PhotosensitivityContext),
.priv_class = &photosensitivity_class,
.uninit = uninit,
.query_formats = query_formats,
.inputs = inputs,
.outputs = outputs,
};
|