aboutsummaryrefslogtreecommitdiffstats
path: root/libavfilter/vf_nnedi.c
blob: 330d3d65012eeb29ca274f2c1e65f37399f75ad9 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
/*
 * Copyright (C) 2010-2011 Kevin Stone
 * Copyright (C) 2016 Paul B Mahol
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License along
 * with FFmpeg; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 */

#include <float.h>

#include "libavutil/common.h"
#include "libavutil/float_dsp.h"
#include "libavutil/imgutils.h"
#include "libavutil/opt.h"
#include "libavutil/pixdesc.h"
#include "avfilter.h"
#include "formats.h"
#include "internal.h"
#include "video.h"

typedef struct FrameData {
    uint8_t *paddedp[3];
    int padded_stride[3];
    int padded_width[3];
    int padded_height[3];

    uint8_t *dstp[3];
    int dst_stride[3];

    int field[3];

    int32_t *lcount[3];
    float *input;
    float *temp;
} FrameData;

typedef struct NNEDIContext {
    const AVClass *class;

    char *weights_file;

    AVFrame *src;
    AVFrame *second;
    AVFrame *dst;
    int eof;
    int64_t cur_pts;

    AVFloatDSPContext *fdsp;
    int nb_planes;
    int linesize[4];
    int planeheight[4];

    float *weights0;
    float *weights1[2];
    int asize;
    int nns;
    int xdia;
    int ydia;

    // Parameters
    int deint;
    int field;
    int process_plane;
    int nsize;
    int nnsparam;
    int qual;
    int etype;
    int pscrn;
    int fapprox;

    int max_value;

    void (*copy_pad)(const AVFrame *, FrameData *, struct NNEDIContext *, int);
    void (*evalfunc_0)(struct NNEDIContext *, FrameData *);
    void (*evalfunc_1)(struct NNEDIContext *, FrameData *);

    // Functions used in evalfunc_0
    void (*readpixels)(const uint8_t *, const int, float *);
    void (*compute_network0)(struct NNEDIContext *s, const float *, const float *, uint8_t *);
    int32_t (*process_line0)(const uint8_t *, int, uint8_t *, const uint8_t *, const int, const int, const int);

    // Functions used in evalfunc_1
    void (*extract)(const uint8_t *, const int, const int, const int, float *, float *);
    void (*dot_prod)(struct NNEDIContext *, const float *, const float *, float *, const int, const int, const float *);
    void (*expfunc)(float *, const int);
    void (*wae5)(const float *, const int, float *);

    FrameData frame_data;
} NNEDIContext;

#define OFFSET(x) offsetof(NNEDIContext, x)
#define FLAGS AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM

static const AVOption nnedi_options[] = {
    {"weights",  "set weights file", OFFSET(weights_file),  AV_OPT_TYPE_STRING, {.str="nnedi3_weights.bin"}, 0, 0, FLAGS },
    {"deint",         "set which frames to deinterlace", OFFSET(deint),         AV_OPT_TYPE_INT, {.i64=0}, 0, 1, FLAGS, "deint" },
        {"all",        "deinterlace all frames",                       0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, FLAGS, "deint" },
        {"interlaced", "only deinterlace frames marked as interlaced", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, FLAGS, "deint" },
    {"field",  "set mode of operation", OFFSET(field),         AV_OPT_TYPE_INT, {.i64=-1}, -2, 3, FLAGS, "field" },
        {"af", "use frame flags, both fields",  0, AV_OPT_TYPE_CONST, {.i64=-2}, 0, 0, FLAGS, "field" },
        {"a",  "use frame flags, single field", 0, AV_OPT_TYPE_CONST, {.i64=-1}, 0, 0, FLAGS, "field" },
        {"t",  "use top field only",            0, AV_OPT_TYPE_CONST, {.i64=0},  0, 0, FLAGS, "field" },
        {"b",  "use bottom field only",         0, AV_OPT_TYPE_CONST, {.i64=1},  0, 0, FLAGS, "field" },
        {"tf", "use both fields, top first",    0, AV_OPT_TYPE_CONST, {.i64=2}, 0, 0, FLAGS, "field" },
        {"bf", "use both fields, bottom first", 0, AV_OPT_TYPE_CONST, {.i64=3}, 0, 0, FLAGS, "field" },
    {"planes", "set which planes to process", OFFSET(process_plane), AV_OPT_TYPE_INT, {.i64=7}, 0, 7, FLAGS },
    {"nsize",  "set size of local neighborhood around each pixel, used by the predictor neural network", OFFSET(nsize), AV_OPT_TYPE_INT, {.i64=6}, 0, 6, FLAGS, "nsize" },
        {"s8x6",     NULL, 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, FLAGS, "nsize" },
        {"s16x6",    NULL, 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, FLAGS, "nsize" },
        {"s32x6",    NULL, 0, AV_OPT_TYPE_CONST, {.i64=2}, 0, 0, FLAGS, "nsize" },
        {"s48x6",    NULL, 0, AV_OPT_TYPE_CONST, {.i64=3}, 0, 0, FLAGS, "nsize" },
        {"s8x4",     NULL, 0, AV_OPT_TYPE_CONST, {.i64=4}, 0, 0, FLAGS, "nsize" },
        {"s16x4",    NULL, 0, AV_OPT_TYPE_CONST, {.i64=5}, 0, 0, FLAGS, "nsize" },
        {"s32x4",    NULL, 0, AV_OPT_TYPE_CONST, {.i64=6}, 0, 0, FLAGS, "nsize" },
    {"nns",    "set number of neurons in predictor neural network", OFFSET(nnsparam), AV_OPT_TYPE_INT, {.i64=1}, 0, 4, FLAGS, "nns" },
        {"n16",       NULL, 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, FLAGS, "nns" },
        {"n32",       NULL, 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, FLAGS, "nns" },
        {"n64",       NULL, 0, AV_OPT_TYPE_CONST, {.i64=2}, 0, 0, FLAGS, "nns" },
        {"n128",      NULL, 0, AV_OPT_TYPE_CONST, {.i64=3}, 0, 0, FLAGS, "nns" },
        {"n256",      NULL, 0, AV_OPT_TYPE_CONST, {.i64=4}, 0, 0, FLAGS, "nns" },
    {"qual",  "set quality", OFFSET(qual), AV_OPT_TYPE_INT, {.i64=1}, 1, 2, FLAGS, "qual" },
        {"fast", NULL, 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, FLAGS, "qual" },
        {"slow", NULL, 0, AV_OPT_TYPE_CONST, {.i64=2}, 0, 0, FLAGS, "qual" },
    {"etype", "set which set of weights to use in the predictor", OFFSET(etype), AV_OPT_TYPE_INT, {.i64=0}, 0, 1, FLAGS, "etype" },
        {"a",  "weights trained to minimize absolute error", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, FLAGS, "etype" },
        {"s",  "weights trained to minimize squared error",  0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, FLAGS, "etype" },
    {"pscrn", "set prescreening", OFFSET(pscrn), AV_OPT_TYPE_INT, {.i64=2}, 0, 2, FLAGS, "pscrn" },
        {"none",      NULL, 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, FLAGS, "pscrn" },
        {"original",  NULL, 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, FLAGS, "pscrn" },
        {"new",       NULL, 0, AV_OPT_TYPE_CONST, {.i64=2}, 0, 0, FLAGS, "pscrn" },
    {"fapprox",       NULL, OFFSET(fapprox),       AV_OPT_TYPE_INT, {.i64=0}, 0, 3, FLAGS },
    { NULL }
};

AVFILTER_DEFINE_CLASS(nnedi);

static int config_input(AVFilterLink *inlink)
{
    AVFilterContext *ctx = inlink->dst;
    NNEDIContext *s = ctx->priv;
    const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
    int ret;

    s->nb_planes = av_pix_fmt_count_planes(inlink->format);
    if ((ret = av_image_fill_linesizes(s->linesize, inlink->format, inlink->w)) < 0)
        return ret;

    s->planeheight[1] = s->planeheight[2] = AV_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h);
    s->planeheight[0] = s->planeheight[3] = inlink->h;

    return 0;
}

static int config_output(AVFilterLink *outlink)
{
    AVFilterContext *ctx = outlink->src;
    NNEDIContext *s = ctx->priv;

    outlink->time_base.num = ctx->inputs[0]->time_base.num;
    outlink->time_base.den = ctx->inputs[0]->time_base.den * 2;
    outlink->w             = ctx->inputs[0]->w;
    outlink->h             = ctx->inputs[0]->h;

    if (s->field > 1 || s->field == -2)
        outlink->frame_rate = av_mul_q(ctx->inputs[0]->frame_rate,
                                       (AVRational){2, 1});

    return 0;
}

static int query_formats(AVFilterContext *ctx)
{
    static const enum AVPixelFormat pix_fmts[] = {
        AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV411P,
        AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P,
        AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV444P,
        AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVJ440P,
        AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ420P,
        AV_PIX_FMT_YUVJ411P,
        AV_PIX_FMT_GBRP,
        AV_PIX_FMT_GRAY8,
        AV_PIX_FMT_NONE
    };

    AVFilterFormats *fmts_list = ff_make_format_list(pix_fmts);
    if (!fmts_list)
        return AVERROR(ENOMEM);
    return ff_set_common_formats(ctx, fmts_list);
}

static void copy_pad(const AVFrame *src, FrameData *frame_data, NNEDIContext *s, int fn)
{
    const int off = 1 - fn;
    int plane, y, x;

    for (plane = 0; plane < s->nb_planes; plane++) {
        const uint8_t *srcp = (const uint8_t *)src->data[plane];
        uint8_t *dstp = (uint8_t *)frame_data->paddedp[plane];

        const int src_stride = src->linesize[plane];
        const int dst_stride = frame_data->padded_stride[plane];

        const int src_height = s->planeheight[plane];
        const int dst_height = frame_data->padded_height[plane];

        const int src_width = s->linesize[plane];
        const int dst_width = frame_data->padded_width[plane];

        int c = 4;

        if (!(s->process_plane & (1 << plane)))
            continue;

        // Copy.
        for (y = off; y < src_height; y += 2)
            memcpy(dstp + 32 + (6 + y) * dst_stride,
                   srcp + y * src_stride,
                   src_width * sizeof(uint8_t));

        // And pad.
        dstp += (6 + off) * dst_stride;
        for (y = 6 + off; y < dst_height - 6; y += 2) {
            int c = 2;

            for (x = 0; x < 32; x++)
                dstp[x] = dstp[64 - x];

            for (x = dst_width - 32; x < dst_width; x++, c += 2)
                dstp[x] = dstp[x - c];

            dstp += dst_stride * 2;
        }

        dstp = (uint8_t *)frame_data->paddedp[plane];
        for (y = off; y < 6; y += 2)
            memcpy(dstp + y * dst_stride,
                   dstp + (12 + 2 * off - y) * dst_stride,
                   dst_width * sizeof(uint8_t));

        for (y = dst_height - 6 + off; y < dst_height; y += 2, c += 4)
            memcpy(dstp + y * dst_stride,
                   dstp + (y - c) * dst_stride,
                   dst_width * sizeof(uint8_t));
    }
}

static void elliott(float *data, const int n)
{
    int i;

    for (i = 0; i < n; i++)
        data[i] = data[i] / (1.0f + FFABS(data[i]));
}

static void dot_prod(NNEDIContext *s, const float *data, const float *weights, float *vals, const int n, const int len, const float *scale)
{
    int i;

    for (i = 0; i < n; i++) {
        float sum;

        sum = s->fdsp->scalarproduct_float(data, &weights[i * len], len);

        vals[i] = sum * scale[0] + weights[n * len + i];
    }
}

static void dot_prods(NNEDIContext *s, const float *dataf, const float *weightsf, float *vals, const int n, const int len, const float *scale)
{
    const int16_t *data = (int16_t *)dataf;
    const int16_t *weights = (int16_t *)weightsf;
    const float *wf = (float *)&weights[n * len];
    int i, j;

    for (i = 0; i < n; i++) {
        int sum = 0, off = ((i >> 2) << 3) + (i & 3);
        for (j = 0; j < len; j++)
            sum += data[j] * weights[i * len + j];

        vals[i] = sum * wf[off] * scale[0] + wf[off + 4];
    }
}

static void compute_network0(NNEDIContext *s, const float *input, const float *weights, uint8_t *d)
{
    float t, temp[12], scale = 1.0f;

    dot_prod(s, input, weights, temp, 4, 48, &scale);
    t = temp[0];
    elliott(temp, 4);
    temp[0] = t;
    dot_prod(s, temp, weights + 4 * 49, temp + 4, 4, 4, &scale);
    elliott(temp + 4, 4);
    dot_prod(s, temp, weights + 4 * 49 + 4 * 5, temp + 8, 4, 8, &scale);
    if (FFMAX(temp[10], temp[11]) <= FFMAX(temp[8], temp[9]))
        d[0] = 1;
    else
        d[0] = 0;
}

static void compute_network0_i16(NNEDIContext *s, const float *inputf, const float *weightsf, uint8_t *d)
{
    const float *wf = weightsf + 2 * 48;
    float t, temp[12], scale = 1.0f;

    dot_prods(s, inputf, weightsf, temp, 4, 48, &scale);
    t = temp[0];
    elliott(temp, 4);
    temp[0] = t;
    dot_prod(s, temp, wf + 8, temp + 4, 4, 4, &scale);
    elliott(temp + 4, 4);
    dot_prod(s, temp, wf + 8 + 4 * 5, temp + 8, 4, 8, &scale);
    if (FFMAX(temp[10], temp[11]) <= FFMAX(temp[8], temp[9]))
        d[0] = 1;
    else
        d[0] = 0;
}

static void pixel2float48(const uint8_t *t8, const int pitch, float *p)
{
    const uint8_t *t = (const uint8_t *)t8;
    int y, x;

    for (y = 0; y < 4; y++)
        for (x = 0; x < 12; x++)
            p[y * 12 + x] = t[y * pitch * 2 + x];
}

static void byte2word48(const uint8_t *t, const int pitch, float *pf)
{
    int16_t *p = (int16_t *)pf;
    int y, x;

    for (y = 0; y < 4; y++)
        for (x = 0; x < 12; x++)
            p[y * 12 + x] = t[y * pitch * 2 + x];
}

static int32_t process_line0(const uint8_t *tempu, int width, uint8_t *dstp8, const uint8_t *src3p8, const int src_pitch, const int max_value, const int chroma)
{
    uint8_t *dstp = (uint8_t *)dstp8;
    const uint8_t *src3p = (const uint8_t *)src3p8;
    int minimum = 0;
    int maximum = max_value - 1; // Technically the -1 is only needed for 8 and 16 bit input.
    int count = 0, x;
    for (x = 0; x < width; x++) {
        if (tempu[x]) {
            int tmp = 19 * (src3p[x + src_pitch * 2] + src3p[x + src_pitch * 4]) - 3 * (src3p[x] + src3p[x + src_pitch * 6]);
            tmp /= 32;
            dstp[x] = FFMAX(FFMIN(tmp, maximum), minimum);
        } else {
            dstp[x] = 255;
            count++;
        }
    }
    return count;
}

// new prescreener functions
static void byte2word64(const uint8_t *t, const int pitch, float *p)
{
    int16_t *ps = (int16_t *)p;
    int y, x;

    for (y = 0; y < 4; y++)
        for (x = 0; x < 16; x++)
            ps[y * 16 + x] = t[y * pitch * 2 + x];
}

static void compute_network0new(NNEDIContext *s, const float *datai, const float *weights, uint8_t *d)
{
    int16_t *data = (int16_t *)datai;
    int16_t *ws = (int16_t *)weights;
    float *wf = (float *)&ws[4 * 64];
    float vals[8];
    int mask, i, j;

    for (i = 0; i < 4; i++) {
        int sum = 0;
        float t;

        for (j = 0; j < 64; j++)
            sum += data[j] * ws[(i << 3) + ((j >> 3) << 5) + (j & 7)];
        t = sum * wf[i] + wf[4 + i];
        vals[i] = t / (1.0f + FFABS(t));
    }

    for (i = 0; i < 4; i++) {
        float sum = 0.0f;

        for (j = 0; j < 4; j++)
            sum += vals[j] * wf[8 + i + (j << 2)];
        vals[4 + i] = sum + wf[8 + 16 + i];
    }

    mask = 0;
    for (i = 0; i < 4; i++) {
        if (vals[4 + i] > 0.0f)
            mask |= (0x1 << (i << 3));
    }

    ((int *)d)[0] = mask;
}

static void evalfunc_0(NNEDIContext *s, FrameData *frame_data)
{
    float *input = frame_data->input;
    const float *weights0 = s->weights0;
    float *temp = frame_data->temp;
    uint8_t *tempu = (uint8_t *)temp;
    int plane, x, y;

    // And now the actual work.
    for (plane = 0; plane < s->nb_planes; plane++) {
        const uint8_t *srcp = (const uint8_t *)frame_data->paddedp[plane];
        const int src_stride = frame_data->padded_stride[plane] / sizeof(uint8_t);

        const int width = frame_data->padded_width[plane];
        const int height = frame_data->padded_height[plane];

        uint8_t *dstp = (uint8_t *)frame_data->dstp[plane];
        const int dst_stride = frame_data->dst_stride[plane] / sizeof(uint8_t);
        const uint8_t *src3p;
        int ystart, ystop;
        int32_t *lcount;

        if (!(s->process_plane & (1 << plane)))
            continue;

        for (y = 1 - frame_data->field[plane]; y < height - 12; y += 2) {
            memcpy(dstp + y * dst_stride,
                   srcp + 32 + (6 + y) * src_stride,
                   (width - 64) * sizeof(uint8_t));

        }

        ystart = 6 + frame_data->field[plane];
        ystop = height - 6;
        srcp += ystart * src_stride;
        dstp += (ystart - 6) * dst_stride - 32;
        src3p = srcp - src_stride * 3;
        lcount = frame_data->lcount[plane] - 6;

        if (s->pscrn == 1) { // original
            for (y = ystart; y < ystop; y += 2) {
                for (x = 32; x < width - 32; x++) {
                    s->readpixels((const uint8_t *)(src3p + x - 5), src_stride, input);
                    s->compute_network0(s, input, weights0, tempu+x);
                }
                lcount[y] += s->process_line0(tempu + 32, width - 64, (uint8_t *)(dstp + 32), (const uint8_t *)(src3p + 32), src_stride, s->max_value, plane);
                src3p += src_stride * 2;
                dstp += dst_stride * 2;
            }
        } else if (s->pscrn > 1) { // new
            for (y = ystart; y < ystop; y += 2) {
                for (x = 32; x < width - 32; x += 4) {
                    s->readpixels((const uint8_t *)(src3p + x - 6), src_stride, input);
                    s->compute_network0(s, input, weights0, tempu + x);
                }
                lcount[y] += s->process_line0(tempu + 32, width - 64, (uint8_t *)(dstp + 32), (const uint8_t *)(src3p + 32), src_stride, s->max_value, plane);
                src3p += src_stride * 2;
                dstp += dst_stride * 2;
            }
        } else { // no prescreening
            for (y = ystart; y < ystop; y += 2) {
                memset(dstp + 32, 255, (width - 64) * sizeof(uint8_t));
                lcount[y] += width - 64;
                dstp += dst_stride * 2;
            }
        }
    }
}

static void extract_m8(const uint8_t *srcp8, const int stride, const int xdia, const int ydia, float *mstd, float *input)
{
    // uint8_t or uint16_t or float
    const uint8_t *srcp = (const uint8_t *)srcp8;
    float scale;
    double tmp;

    // int32_t or int64_t or double
    int64_t sum = 0, sumsq = 0;
    int y, x;

    for (y = 0; y < ydia; y++) {
        const uint8_t *srcpT = srcp + y * stride * 2;

        for (x = 0; x < xdia; x++) {
            sum += srcpT[x];
            sumsq += (uint32_t)srcpT[x] * (uint32_t)srcpT[x];
            input[x] = srcpT[x];
        }
        input += xdia;
    }
    scale = 1.0f / (xdia * ydia);
    mstd[0] = sum * scale;
    tmp = (double)sumsq * scale - (double)mstd[0] * mstd[0];
    mstd[3] = 0.0f;
    if (tmp <= FLT_EPSILON)
        mstd[1] = mstd[2] = 0.0f;
    else {
        mstd[1] = sqrt(tmp);
        mstd[2] = 1.0f / mstd[1];
    }
}

static void extract_m8_i16(const uint8_t *srcp, const int stride, const int xdia, const int ydia, float *mstd, float *inputf)
{
    int16_t *input = (int16_t *)inputf;
    float scale;
    int sum = 0, sumsq = 0;
    int y, x;

    for (y = 0; y < ydia; y++) {
        const uint8_t *srcpT = srcp + y * stride * 2;
        for (x = 0; x < xdia; x++) {
            sum += srcpT[x];
            sumsq += srcpT[x] * srcpT[x];
            input[x] = srcpT[x];
        }
        input += xdia;
    }
    scale = 1.0f / (float)(xdia * ydia);
    mstd[0] = sum * scale;
    mstd[1] = sumsq * scale - mstd[0] * mstd[0];
    mstd[3] = 0.0f;
    if (mstd[1] <= FLT_EPSILON)
        mstd[1] = mstd[2] = 0.0f;
    else {
        mstd[1] = sqrt(mstd[1]);
        mstd[2] = 1.0f / mstd[1];
    }
}


static const float exp_lo = -80.0f;
static const float exp_hi = +80.0f;

static void e2_m16(float *s, const int n)
{
    int i;

    for (i = 0; i < n; i++)
        s[i] = exp(av_clipf(s[i], exp_lo, exp_hi));
}

const float min_weight_sum = 1e-10f;

static void weighted_avg_elliott_mul5_m16(const float *w, const int n, float *mstd)
{
    float vsum = 0.0f, wsum = 0.0f;
    int i;

    for (i = 0; i < n; i++) {
        vsum += w[i] * (w[n + i] / (1.0f + FFABS(w[n + i])));
        wsum += w[i];
    }
    if (wsum > min_weight_sum)
        mstd[3] += ((5.0f * vsum) / wsum) * mstd[1] + mstd[0];
    else
        mstd[3] += mstd[0];
}


static void evalfunc_1(NNEDIContext *s, FrameData *frame_data)
{
    float *input = frame_data->input;
    float *temp = frame_data->temp;
    float **weights1 = s->weights1;
    const int qual = s->qual;
    const int asize = s->asize;
    const int nns = s->nns;
    const int xdia = s->xdia;
    const int xdiad2m1 = (xdia / 2) - 1;
    const int ydia = s->ydia;
    const float scale = 1.0f / (float)qual;
    int plane, y, x, i;

    for (plane = 0; plane < s->nb_planes; plane++) {
        const uint8_t *srcp = (const uint8_t *)frame_data->paddedp[plane];
        const int src_stride = frame_data->padded_stride[plane] / sizeof(uint8_t);

        const int width = frame_data->padded_width[plane];
        const int height = frame_data->padded_height[plane];

        uint8_t *dstp = (uint8_t *)frame_data->dstp[plane];
        const int dst_stride = frame_data->dst_stride[plane] / sizeof(uint8_t);

        const int ystart = frame_data->field[plane];
        const int ystop = height - 12;
        uint8_t *srcpp;

        if (!(s->process_plane & (1 << plane)))
            continue;

        srcp += (ystart + 6) * src_stride;
        dstp += ystart * dst_stride - 32;
        srcpp = srcp - (ydia - 1) * src_stride - xdiad2m1;

        for (y = ystart; y < ystop; y += 2) {
            for (x = 32; x < width - 32; x++) {
                float mstd[4];

                if (dstp[x] != 255)
                    continue;

                s->extract((const uint8_t *)(srcpp + x), src_stride, xdia, ydia, mstd, input);
                for (i = 0; i < qual; i++) {
                    s->dot_prod(s, input, weights1[i], temp, nns * 2, asize, mstd + 2);
                    s->expfunc(temp, nns);
                    s->wae5(temp, nns, mstd);
                }

                dstp[x] = FFMIN(FFMAX((int)(mstd[3] * scale + 0.5f), 0), s->max_value);
            }
            srcpp += src_stride * 2;
            dstp += dst_stride * 2;
        }
    }
}

#define NUM_NSIZE 7
#define NUM_NNS 5

static int roundds(const double f)
{
    if (f - floor(f) >= 0.5)
        return FFMIN((int)ceil(f), 32767);
    return FFMAX((int)floor(f), -32768);
}

static void select_functions(NNEDIContext *s)
{
    s->copy_pad = copy_pad;
    s->evalfunc_0 = evalfunc_0;
    s->evalfunc_1 = evalfunc_1;

    // evalfunc_0
    s->process_line0 = process_line0;

    if (s->pscrn < 2) { // original prescreener
        if (s->fapprox & 1) { // int16 dot products
            s->readpixels = byte2word48;
            s->compute_network0 = compute_network0_i16;
        } else {
            s->readpixels = pixel2float48;
            s->compute_network0 = compute_network0;
        }
    } else { // new prescreener
        // only int16 dot products
        s->readpixels = byte2word64;
        s->compute_network0 = compute_network0new;
    }

    // evalfunc_1
    s->wae5 = weighted_avg_elliott_mul5_m16;

    if (s->fapprox & 2) { // use int16 dot products
        s->extract = extract_m8_i16;
        s->dot_prod = dot_prods;
    } else { // use float dot products
        s->extract = extract_m8;
        s->dot_prod = dot_prod;
    }

    s->expfunc = e2_m16;
}

static int modnpf(const int m, const int n)
{
    if ((m % n) == 0)
        return m;
    return m + n - (m % n);
}

static int get_frame(AVFilterContext *ctx, int is_second)
{
    NNEDIContext *s = ctx->priv;
    AVFilterLink *outlink = ctx->outputs[0];
    AVFrame *src = s->src;
    FrameData *frame_data;
    int effective_field = s->field;
    size_t temp_size;
    int field_n;
    int plane;

    if (effective_field > 1)
        effective_field -= 2;
    else if (effective_field < 0)
        effective_field += 2;

    if (s->field < 0 && src->interlaced_frame && src->top_field_first == 0)
        effective_field = 0;
    else if (s->field < 0 && src->interlaced_frame && src->top_field_first == 1)
        effective_field = 1;
    else
        effective_field = !effective_field;

    if (s->field > 1 || s->field == -2) {
        if (is_second) {
            field_n = (effective_field == 0);
        } else {
            field_n = (effective_field == 1);
        }
    } else {
        field_n = effective_field;
    }

    s->dst = ff_get_video_buffer(outlink, outlink->w, outlink->h);
    if (!s->dst)
        return AVERROR(ENOMEM);
    av_frame_copy_props(s->dst, src);
    s->dst->interlaced_frame = 0;

    frame_data = &s->frame_data;

    for (plane = 0; plane < s->nb_planes; plane++) {
        int dst_height = s->planeheight[plane];
        int dst_width = s->linesize[plane];

        const int min_alignment = 16;
        const int min_pad = 10;

        if (!(s->process_plane & (1 << plane))) {
            av_image_copy_plane(s->dst->data[plane], s->dst->linesize[plane],
                                src->data[plane], src->linesize[plane],
                                s->linesize[plane],
                                s->planeheight[plane]);
            continue;
        }

        frame_data->padded_width[plane]  = dst_width + 64;
        frame_data->padded_height[plane] = dst_height + 12;
        frame_data->padded_stride[plane] = modnpf(frame_data->padded_width[plane] + min_pad, min_alignment); // TODO: maybe min_pad is in pixels too?
        if (!frame_data->paddedp[plane]) {
            frame_data->paddedp[plane] = av_malloc_array(frame_data->padded_stride[plane], frame_data->padded_height[plane]);
            if (!frame_data->paddedp[plane])
                return AVERROR(ENOMEM);
        }

        frame_data->dstp[plane] = s->dst->data[plane];
        frame_data->dst_stride[plane] = s->dst->linesize[plane];

        if (!frame_data->lcount[plane]) {
            frame_data->lcount[plane] = av_calloc(dst_height, sizeof(int32_t) * 16);
            if (!frame_data->lcount[plane])
                return AVERROR(ENOMEM);
        } else {
            memset(frame_data->lcount[plane], 0, dst_height * sizeof(int32_t) * 16);
        }

        frame_data->field[plane] = field_n;
    }

    if (!frame_data->input) {
        frame_data->input = av_malloc(512 * sizeof(float));
        if (!frame_data->input)
            return AVERROR(ENOMEM);
    }
    // evalfunc_0 requires at least padded_width[0] bytes.
    // evalfunc_1 requires at least 512 floats.
    if (!frame_data->temp) {
        temp_size = FFMAX(frame_data->padded_width[0], 512 * sizeof(float));
        frame_data->temp = av_malloc(temp_size);
        if (!frame_data->temp)
            return AVERROR(ENOMEM);
    }

    // Copy src to a padded "frame" in frame_data and mirror the edges.
    s->copy_pad(src, frame_data, s, field_n);

    // Handles prescreening and the cubic interpolation.
    s->evalfunc_0(s, frame_data);

    // The rest.
    s->evalfunc_1(s, frame_data);

    return 0;
}

static int filter_frame(AVFilterLink *inlink, AVFrame *src)
{
    AVFilterContext *ctx = inlink->dst;
    AVFilterLink *outlink = ctx->outputs[0];
    NNEDIContext *s = ctx->priv;
    int ret;

    if ((s->field > 1 ||
         s->field == -2) && !s->second) {
        goto second;
    } else if (s->field > 1 ||
               s->field == -2) {
        AVFrame *dst;

        s->src = s->second;
        ret = get_frame(ctx, 1);
        if (ret < 0) {
            av_frame_free(&s->dst);
            av_frame_free(&s->src);
            av_frame_free(&s->second);
            return ret;
        }
        dst = s->dst;

        if (src->pts != AV_NOPTS_VALUE &&
            dst->pts != AV_NOPTS_VALUE)
            dst->pts += src->pts;
        else
            dst->pts = AV_NOPTS_VALUE;

        ret = ff_filter_frame(outlink, dst);
        if (ret < 0)
            return ret;
        if (s->eof)
            return 0;
        s->cur_pts = s->second->pts;
        av_frame_free(&s->second);
second:
        if ((s->deint && src->interlaced_frame &&
             !ctx->is_disabled) ||
            (!s->deint && !ctx->is_disabled)) {
            s->second = src;
        }
    }

    if ((s->deint && !src->interlaced_frame) || ctx->is_disabled) {
        AVFrame *dst = av_frame_clone(src);
        if (!dst) {
            av_frame_free(&src);
            av_frame_free(&s->second);
            return AVERROR(ENOMEM);
        }

        if (s->field > 1 || s->field == -2) {
            av_frame_free(&s->second);
            if ((s->deint && src->interlaced_frame) ||
                (!s->deint))
                s->second = src;
        } else {
            av_frame_free(&src);
        }
        if (dst->pts != AV_NOPTS_VALUE)
            dst->pts *= 2;
        return ff_filter_frame(outlink, dst);
    }

    s->src = src;
    ret = get_frame(ctx, 0);
    if (ret < 0) {
        av_frame_free(&s->dst);
        av_frame_free(&s->src);
        av_frame_free(&s->second);
        return ret;
    }

    if (src->pts != AV_NOPTS_VALUE)
        s->dst->pts = src->pts * 2;
    if (s->field <= 1 && s->field > -2) {
        av_frame_free(&src);
        s->src = NULL;
    }

    return ff_filter_frame(outlink, s->dst);
}

static int request_frame(AVFilterLink *link)
{
    AVFilterContext *ctx = link->src;
    NNEDIContext *s = ctx->priv;
    int ret;

    if (s->eof)
        return AVERROR_EOF;

    ret  = ff_request_frame(ctx->inputs[0]);

    if (ret == AVERROR_EOF && s->second) {
        AVFrame *next = av_frame_clone(s->second);

        if (!next)
            return AVERROR(ENOMEM);

        next->pts = s->second->pts * 2 - s->cur_pts;
        s->eof = 1;

        filter_frame(ctx->inputs[0], next);
    } else if (ret < 0) {
        return ret;
    }

    return 0;
}

static av_cold int init(AVFilterContext *ctx)
{
    NNEDIContext *s = ctx->priv;
    FILE *weights_file = NULL;
    int64_t expected_size = 13574928;
    int64_t weights_size;
    float *bdata;
    size_t bytes_read;
    const int xdia_table[NUM_NSIZE] = { 8, 16, 32, 48, 8, 16, 32 };
    const int ydia_table[NUM_NSIZE] = { 6, 6, 6, 6, 4, 4, 4 };
    const int nns_table[NUM_NNS] = { 16, 32, 64, 128, 256 };
    const int dims0 = 49 * 4 + 5 * 4 + 9 * 4;
    const int dims0new = 4 * 65 + 4 * 5;
    const int dims1 = nns_table[s->nnsparam] * 2 * (xdia_table[s->nsize] * ydia_table[s->nsize] + 1);
    int dims1tsize = 0;
    int dims1offset = 0;
    int ret = 0, i, j, k;

    weights_file = fopen(s->weights_file, "rb");
    if (!weights_file) {
        av_log(ctx, AV_LOG_ERROR, "No weights file provided, aborting!\n");
        return AVERROR(EINVAL);
    }

    if (fseek(weights_file, 0, SEEK_END)) {
        av_log(ctx, AV_LOG_ERROR, "Couldn't seek to the end of weights file.\n");
        fclose(weights_file);
        return AVERROR(EINVAL);
    }

    weights_size = ftell(weights_file);

    if (weights_size == -1) {
        fclose(weights_file);
        av_log(ctx, AV_LOG_ERROR, "Couldn't get size of weights file.\n");
        return AVERROR(EINVAL);
    } else if (weights_size != expected_size) {
        fclose(weights_file);
        av_log(ctx, AV_LOG_ERROR, "Unexpected weights file size.\n");
        return AVERROR(EINVAL);
    }

    if (fseek(weights_file, 0, SEEK_SET)) {
        fclose(weights_file);
        av_log(ctx, AV_LOG_ERROR, "Couldn't seek to the start of weights file.\n");
        return AVERROR(EINVAL);
    }

    bdata = (float *)av_malloc(expected_size);
    if (!bdata) {
        fclose(weights_file);
        return AVERROR(ENOMEM);
    }

    bytes_read = fread(bdata, 1, expected_size, weights_file);

    if (bytes_read != (size_t)expected_size) {
        fclose(weights_file);
        ret = AVERROR_INVALIDDATA;
        av_log(ctx, AV_LOG_ERROR, "Couldn't read weights file.\n");
        goto fail;
    }

    fclose(weights_file);

    for (j = 0; j < NUM_NNS; j++) {
        for (i = 0; i < NUM_NSIZE; i++) {
            if (i == s->nsize && j == s->nnsparam)
                dims1offset = dims1tsize;
            dims1tsize += nns_table[j] * 2 * (xdia_table[i] * ydia_table[i] + 1) * 2;
        }
    }

    s->weights0 = av_malloc_array(FFMAX(dims0, dims0new), sizeof(float));
    if (!s->weights0) {
        ret = AVERROR(ENOMEM);
        goto fail;
    }

    for (i = 0; i < 2; i++) {
        s->weights1[i] = av_malloc_array(dims1, sizeof(float));
        if (!s->weights1[i]) {
            ret = AVERROR(ENOMEM);
            goto fail;
        }
    }

    // Adjust prescreener weights
    if (s->pscrn >= 2) {// using new prescreener
        const float *bdw;
        int16_t *ws;
        float *wf;
        double mean[4] = { 0.0, 0.0, 0.0, 0.0 };
        int *offt = av_calloc(4 * 64, sizeof(int));

        if (!offt) {
            ret = AVERROR(ENOMEM);
            goto fail;
        }

        for (j = 0; j < 4; j++)
            for (k = 0; k < 64; k++)
                offt[j * 64 + k] = ((k >> 3) << 5) + ((j & 3) << 3) + (k & 7);

        bdw = bdata + dims0 + dims0new * (s->pscrn - 2);
        ws = (int16_t *)s->weights0;
        wf = (float *)&ws[4 * 64];
        // Calculate mean weight of each first layer neuron
        for (j = 0; j < 4; j++) {
            double cmean = 0.0;
            for (k = 0; k < 64; k++)
                cmean += bdw[offt[j * 64 + k]];
            mean[j] = cmean / 64.0;
        }
        // Factor mean removal and 1.0/127.5 scaling
        // into first layer weights. scale to int16 range
        for (j = 0; j < 4; j++) {
            double scale, mval = 0.0;

            for (k = 0; k < 64; k++)
                mval = FFMAX(mval, FFABS((bdw[offt[j * 64 + k]] - mean[j]) / 127.5));
            scale = 32767.0 / mval;
            for (k = 0; k < 64; k++)
                ws[offt[j * 64 + k]] = roundds(((bdw[offt[j * 64 + k]] - mean[j]) / 127.5) * scale);
            wf[j] = (float)(mval / 32767.0);
        }
        memcpy(wf + 4, bdw + 4 * 64, (dims0new - 4 * 64) * sizeof(float));
        av_free(offt);
    } else { // using old prescreener
        double mean[4] = { 0.0, 0.0, 0.0, 0.0 };
        // Calculate mean weight of each first layer neuron
        for (j = 0; j < 4; j++) {
            double cmean = 0.0;
            for (k = 0; k < 48; k++)
                cmean += bdata[j * 48 + k];
            mean[j] = cmean / 48.0;
        }
        if (s->fapprox & 1) {// use int16 dot products in first layer
            int16_t *ws = (int16_t *)s->weights0;
            float *wf = (float *)&ws[4 * 48];
            // Factor mean removal and 1.0/127.5 scaling
            // into first layer weights. scale to int16 range
            for (j = 0; j < 4; j++) {
                double scale, mval = 0.0;
                for (k = 0; k < 48; k++)
                    mval = FFMAX(mval, FFABS((bdata[j * 48 + k] - mean[j]) / 127.5));
                scale = 32767.0 / mval;
                for (k = 0; k < 48; k++)
                    ws[j * 48 + k] = roundds(((bdata[j * 48 + k] - mean[j]) / 127.5) * scale);
                wf[j] = (float)(mval / 32767.0);
            }
            memcpy(wf + 4, bdata + 4 * 48, (dims0 - 4 * 48) * sizeof(float));
        } else {// use float dot products in first layer
            double half = (1 << 8) - 1;

            half /= 2;

            // Factor mean removal and 1.0/half scaling
            // into first layer weights.
            for (j = 0; j < 4; j++)
                for (k = 0; k < 48; k++)
                    s->weights0[j * 48 + k] = (float)((bdata[j * 48 + k] - mean[j]) / half);
            memcpy(s->weights0 + 4 * 48, bdata + 4 * 48, (dims0 - 4 * 48) * sizeof(float));
        }
    }

    // Adjust prediction weights
    for (i = 0; i < 2; i++) {
        const float *bdataT = bdata + dims0 + dims0new * 3 + dims1tsize * s->etype + dims1offset + i * dims1;
        const int nnst = nns_table[s->nnsparam];
        const int asize = xdia_table[s->nsize] * ydia_table[s->nsize];
        const int boff = nnst * 2 * asize;
        double *mean = (double *)av_calloc(asize + 1 + nnst * 2, sizeof(double));

        if (!mean) {
            ret = AVERROR(ENOMEM);
            goto fail;
        }

        // Calculate mean weight of each neuron (ignore bias)
        for (j = 0; j < nnst * 2; j++) {
            double cmean = 0.0;
            for (k = 0; k < asize; k++)
                cmean += bdataT[j * asize + k];
            mean[asize + 1 + j] = cmean / (double)asize;
        }
        // Calculate mean softmax neuron
        for (j = 0; j < nnst; j++) {
            for (k = 0; k < asize; k++)
                mean[k] += bdataT[j * asize + k] - mean[asize + 1 + j];
            mean[asize] += bdataT[boff + j];
        }
        for (j = 0; j < asize + 1; j++)
            mean[j] /= (double)(nnst);

        if (s->fapprox & 2) { // use int16 dot products
            int16_t *ws = (int16_t *)s->weights1[i];
            float *wf = (float *)&ws[nnst * 2 * asize];
            // Factor mean removal into weights, remove global offset from
            // softmax neurons, and scale weights to int16 range.
            for (j = 0; j < nnst; j++) { // softmax neurons
                double scale, mval = 0.0;
                for (k = 0; k < asize; k++)
                    mval = FFMAX(mval, FFABS(bdataT[j * asize + k] - mean[asize + 1 + j] - mean[k]));
                scale = 32767.0 / mval;
                for (k = 0; k < asize; k++)
                    ws[j * asize + k] = roundds((bdataT[j * asize + k] - mean[asize + 1 + j] - mean[k]) * scale);
                wf[(j >> 2) * 8 + (j & 3)] = (float)(mval / 32767.0);
                wf[(j >> 2) * 8 + (j & 3) + 4] = (float)(bdataT[boff + j] - mean[asize]);
            }
            for (j = nnst; j < nnst * 2; j++) { // elliott neurons
                double scale, mval = 0.0;
                for (k = 0; k < asize; k++)
                    mval = FFMAX(mval, FFABS(bdataT[j * asize + k] - mean[asize + 1 + j]));
                scale = 32767.0 / mval;
                for (k = 0; k < asize; k++)
                    ws[j * asize + k] = roundds((bdataT[j * asize + k] - mean[asize + 1 + j]) * scale);
                wf[(j >> 2) * 8 + (j & 3)] = (float)(mval / 32767.0);
                wf[(j >> 2) * 8 + (j & 3) + 4] = bdataT[boff + j];
            }
        } else { // use float dot products
            // Factor mean removal into weights, and remove global
            // offset from softmax neurons.
            for (j = 0; j < nnst * 2; j++) {
                for (k = 0; k < asize; k++) {
                    const double q = j < nnst ? mean[k] : 0.0;
                    s->weights1[i][j * asize + k] = (float)(bdataT[j * asize + k] - mean[asize + 1 + j] - q);
                }
                s->weights1[i][boff + j] = (float)(bdataT[boff + j] - (j < nnst ? mean[asize] : 0.0));
            }
        }
        av_free(mean);
    }

    s->nns = nns_table[s->nnsparam];
    s->xdia = xdia_table[s->nsize];
    s->ydia = ydia_table[s->nsize];
    s->asize = xdia_table[s->nsize] * ydia_table[s->nsize];

    s->max_value = 65535 >> 8;

    select_functions(s);

    s->fdsp = avpriv_float_dsp_alloc(0);
    if (!s->fdsp)
        ret = AVERROR(ENOMEM);

fail:
    av_free(bdata);
    return ret;
}

static av_cold void uninit(AVFilterContext *ctx)
{
    NNEDIContext *s = ctx->priv;
    int i;

    av_freep(&s->weights0);

    for (i = 0; i < 2; i++)
        av_freep(&s->weights1[i]);

    for (i = 0; i < s->nb_planes; i++) {
        av_freep(&s->frame_data.paddedp[i]);
        av_freep(&s->frame_data.lcount[i]);
    }

    av_freep(&s->frame_data.input);
    av_freep(&s->frame_data.temp);
    av_frame_free(&s->second);
}

static const AVFilterPad inputs[] = {
    {
        .name          = "default",
        .type          = AVMEDIA_TYPE_VIDEO,
        .filter_frame  = filter_frame,
        .config_props  = config_input,
    },
    { NULL }
};

static const AVFilterPad outputs[] = {
    {
        .name          = "default",
        .type          = AVMEDIA_TYPE_VIDEO,
        .config_props  = config_output,
        .request_frame = request_frame,
    },
    { NULL }
};

AVFilter ff_vf_nnedi = {
    .name          = "nnedi",
    .description   = NULL_IF_CONFIG_SMALL("Apply neural network edge directed interpolation intra-only deinterlacer."),
    .priv_size     = sizeof(NNEDIContext),
    .priv_class    = &nnedi_class,
    .init          = init,
    .uninit        = uninit,
    .query_formats = query_formats,
    .inputs        = inputs,
    .outputs       = outputs,
    .flags         = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL,
};