1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
|
/*
* Copyright (C) 2012 Mark Himsley
*
* get_scene_score() Copyright (c) 2011 Stefano Sabatini
* taken from libavfilter/vf_select.c
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* filter for upsampling or downsampling a progressive source
*/
#define DEBUG
#include "libavutil/avassert.h"
#include "libavutil/imgutils.h"
#include "libavutil/internal.h"
#include "libavutil/opt.h"
#include "libavutil/pixdesc.h"
#include "libavutil/pixelutils.h"
#include "avfilter.h"
#include "internal.h"
#include "video.h"
#define N_SRCE 3
typedef struct FrameRateContext {
const AVClass *class;
// parameters
AVRational dest_frame_rate; ///< output frames per second
int flags; ///< flags affecting frame rate conversion algorithm
double scene_score; ///< score that denotes a scene change has happened
int interp_start; ///< start of range to apply linear interpolation
int interp_end; ///< end of range to apply linear interpolation
int line_size[4]; ///< bytes of pixel data per line for each plane
int vsub;
int frst, next, prev, crnt, last;
int pending_srce_frames; ///< how many input frames are still waiting to be processed
int flush; ///< are we flushing final frames
int pending_end_frame; ///< flag indicating we are waiting to call filter_frame()
AVRational srce_time_base; ///< timebase of source
AVRational dest_time_base; ///< timebase of destination
int32_t dest_frame_num;
int64_t last_dest_frame_pts; ///< pts of the last frame output
int64_t average_srce_pts_dest_delta;///< average input pts delta converted from input rate to output rate
int64_t average_dest_pts_delta; ///< calculated average output pts delta
av_pixelutils_sad_fn sad; ///< Sum of the absolute difference function (scene detect only)
double prev_mafd; ///< previous MAFD (scene detect only)
AVFrame *srce[N_SRCE]; ///< buffered source frames
int64_t srce_pts_dest[N_SRCE]; ///< pts for source frames scaled to output timebase
int64_t pts; ///< pts of frame we are working on
int (*blend_frames)(AVFilterContext *ctx, float interpolate,
AVFrame *copy_src1, AVFrame *copy_src2);
int max;
int bitdepth;
AVFrame *work;
} FrameRateContext;
#define OFFSET(x) offsetof(FrameRateContext, x)
#define V AV_OPT_FLAG_VIDEO_PARAM
#define F AV_OPT_FLAG_FILTERING_PARAM
#define FRAMERATE_FLAG_SCD 01
static const AVOption framerate_options[] = {
{"fps", "required output frames per second rate", OFFSET(dest_frame_rate), AV_OPT_TYPE_VIDEO_RATE, {.str="50"}, 0, INT_MAX, V|F },
{"interp_start", "point to start linear interpolation", OFFSET(interp_start), AV_OPT_TYPE_INT, {.i64=15}, 0, 255, V|F },
{"interp_end", "point to end linear interpolation", OFFSET(interp_end), AV_OPT_TYPE_INT, {.i64=240}, 0, 255, V|F },
{"scene", "scene change level", OFFSET(scene_score), AV_OPT_TYPE_DOUBLE, {.dbl=7.0}, 0, INT_MAX, V|F },
{"flags", "set flags", OFFSET(flags), AV_OPT_TYPE_FLAGS, {.i64=1}, 0, INT_MAX, V|F, "flags" },
{"scene_change_detect", "enable scene change detection", 0, AV_OPT_TYPE_CONST, {.i64=FRAMERATE_FLAG_SCD}, INT_MIN, INT_MAX, V|F, "flags" },
{"scd", "enable scene change detection", 0, AV_OPT_TYPE_CONST, {.i64=FRAMERATE_FLAG_SCD}, INT_MIN, INT_MAX, V|F, "flags" },
{NULL}
};
AVFILTER_DEFINE_CLASS(framerate);
static void next_source(AVFilterContext *ctx)
{
FrameRateContext *s = ctx->priv;
int i;
ff_dlog(ctx, "next_source()\n");
if (s->srce[s->last] && s->srce[s->last] != s->srce[s->last-1]) {
ff_dlog(ctx, "next_source() unlink %d\n", s->last);
av_frame_free(&s->srce[s->last]);
}
for (i = s->last; i > s->frst; i--) {
ff_dlog(ctx, "next_source() copy %d to %d\n", i - 1, i);
s->srce[i] = s->srce[i - 1];
}
ff_dlog(ctx, "next_source() make %d null\n", s->frst);
s->srce[s->frst] = NULL;
}
static av_always_inline int64_t sad_8x8_16(const uint16_t *src1, ptrdiff_t stride1,
const uint16_t *src2, ptrdiff_t stride2)
{
int sum = 0;
int x, y;
for (y = 0; y < 8; y++) {
for (x = 0; x < 8; x++)
sum += FFABS(src1[x] - src2[x]);
src1 += stride1;
src2 += stride2;
}
return sum;
}
static double get_scene_score16(AVFilterContext *ctx, AVFrame *crnt, AVFrame *next)
{
FrameRateContext *s = ctx->priv;
double ret = 0;
ff_dlog(ctx, "get_scene_score16()\n");
if (crnt &&
crnt->height == next->height &&
crnt->width == next->width) {
int x, y;
int64_t sad;
double mafd, diff;
const uint16_t *p1 = (const uint16_t *)crnt->data[0];
const uint16_t *p2 = (const uint16_t *)next->data[0];
const int p1_linesize = crnt->linesize[0] / 2;
const int p2_linesize = next->linesize[0] / 2;
ff_dlog(ctx, "get_scene_score16() process\n");
for (sad = y = 0; y < crnt->height; y += 8) {
for (x = 0; x < p1_linesize; x += 8) {
sad += sad_8x8_16(p1 + y * p1_linesize + x,
p1_linesize,
p2 + y * p2_linesize + x,
p2_linesize);
}
}
mafd = sad / (crnt->height * crnt->width * 3);
diff = fabs(mafd - s->prev_mafd);
ret = av_clipf(FFMIN(mafd, diff), 0, 100.0);
s->prev_mafd = mafd;
}
ff_dlog(ctx, "get_scene_score16() result is:%f\n", ret);
return ret;
}
static double get_scene_score(AVFilterContext *ctx, AVFrame *crnt, AVFrame *next)
{
FrameRateContext *s = ctx->priv;
double ret = 0;
ff_dlog(ctx, "get_scene_score()\n");
if (crnt &&
crnt->height == next->height &&
crnt->width == next->width) {
int x, y;
int64_t sad;
double mafd, diff;
uint8_t *p1 = crnt->data[0];
uint8_t *p2 = next->data[0];
const int p1_linesize = crnt->linesize[0];
const int p2_linesize = next->linesize[0];
ff_dlog(ctx, "get_scene_score() process\n");
for (sad = y = 0; y < crnt->height; y += 8) {
for (x = 0; x < p1_linesize; x += 8) {
sad += s->sad(p1 + y * p1_linesize + x,
p1_linesize,
p2 + y * p2_linesize + x,
p2_linesize);
}
}
emms_c();
mafd = sad / (crnt->height * crnt->width * 3);
diff = fabs(mafd - s->prev_mafd);
ret = av_clipf(FFMIN(mafd, diff), 0, 100.0);
s->prev_mafd = mafd;
}
ff_dlog(ctx, "get_scene_score() result is:%f\n", ret);
return ret;
}
static int blend_frames16(AVFilterContext *ctx, float interpolate,
AVFrame *copy_src1, AVFrame *copy_src2)
{
FrameRateContext *s = ctx->priv;
AVFilterLink *outlink = ctx->outputs[0];
double interpolate_scene_score = 0;
if ((s->flags & FRAMERATE_FLAG_SCD) && copy_src2) {
interpolate_scene_score = get_scene_score16(ctx, copy_src1, copy_src2);
ff_dlog(ctx, "blend_frames16() interpolate scene score:%f\n", interpolate_scene_score);
}
// decide if the shot-change detection allows us to blend two frames
if (interpolate_scene_score < s->scene_score && copy_src2) {
uint16_t src2_factor = FFABS(interpolate) * (1 << (s->bitdepth - 8));
uint16_t src1_factor = s->max - src2_factor;
const int half = s->max / 2;
const int uv = (s->max + 1) * half;
const int shift = s->bitdepth;
int plane, line, pixel;
// get work-space for output frame
s->work = ff_get_video_buffer(outlink, outlink->w, outlink->h);
if (!s->work)
return AVERROR(ENOMEM);
av_frame_copy_props(s->work, s->srce[s->crnt]);
ff_dlog(ctx, "blend_frames16() INTERPOLATE to create work frame\n");
for (plane = 0; plane < 4 && copy_src1->data[plane] && copy_src2->data[plane]; plane++) {
int cpy_line_width = s->line_size[plane];
const uint16_t *cpy_src1_data = (const uint16_t *)copy_src1->data[plane];
int cpy_src1_line_size = copy_src1->linesize[plane] / 2;
const uint16_t *cpy_src2_data = (const uint16_t *)copy_src2->data[plane];
int cpy_src2_line_size = copy_src2->linesize[plane] / 2;
int cpy_src_h = (plane > 0 && plane < 3) ? (copy_src1->height >> s->vsub) : (copy_src1->height);
uint16_t *cpy_dst_data = (uint16_t *)s->work->data[plane];
int cpy_dst_line_size = s->work->linesize[plane] / 2;
if (plane <1 || plane >2) {
// luma or alpha
for (line = 0; line < cpy_src_h; line++) {
for (pixel = 0; pixel < cpy_line_width; pixel++)
cpy_dst_data[pixel] = ((cpy_src1_data[pixel] * src1_factor) + (cpy_src2_data[pixel] * src2_factor) + half) >> shift;
cpy_src1_data += cpy_src1_line_size;
cpy_src2_data += cpy_src2_line_size;
cpy_dst_data += cpy_dst_line_size;
}
} else {
// chroma
for (line = 0; line < cpy_src_h; line++) {
for (pixel = 0; pixel < cpy_line_width; pixel++) {
cpy_dst_data[pixel] = (((cpy_src1_data[pixel] - half) * src1_factor) + ((cpy_src2_data[pixel] - half) * src2_factor) + uv) >> shift;
}
cpy_src1_data += cpy_src1_line_size;
cpy_src2_data += cpy_src2_line_size;
cpy_dst_data += cpy_dst_line_size;
}
}
}
return 1;
}
return 0;
}
static int blend_frames8(AVFilterContext *ctx, float interpolate,
AVFrame *copy_src1, AVFrame *copy_src2)
{
FrameRateContext *s = ctx->priv;
AVFilterLink *outlink = ctx->outputs[0];
double interpolate_scene_score = 0;
if ((s->flags & FRAMERATE_FLAG_SCD) && copy_src2) {
interpolate_scene_score = get_scene_score(ctx, copy_src1, copy_src2);
ff_dlog(ctx, "blend_frames8() interpolate scene score:%f\n", interpolate_scene_score);
}
// decide if the shot-change detection allows us to blend two frames
if (interpolate_scene_score < s->scene_score && copy_src2) {
uint16_t src2_factor = FFABS(interpolate);
uint16_t src1_factor = 256 - src2_factor;
int plane, line, pixel;
// get work-space for output frame
s->work = ff_get_video_buffer(outlink, outlink->w, outlink->h);
if (!s->work)
return AVERROR(ENOMEM);
av_frame_copy_props(s->work, s->srce[s->crnt]);
ff_dlog(ctx, "blend_frames8() INTERPOLATE to create work frame\n");
for (plane = 0; plane < 4 && copy_src1->data[plane] && copy_src2->data[plane]; plane++) {
int cpy_line_width = s->line_size[plane];
uint8_t *cpy_src1_data = copy_src1->data[plane];
int cpy_src1_line_size = copy_src1->linesize[plane];
uint8_t *cpy_src2_data = copy_src2->data[plane];
int cpy_src2_line_size = copy_src2->linesize[plane];
int cpy_src_h = (plane > 0 && plane < 3) ? (copy_src1->height >> s->vsub) : (copy_src1->height);
uint8_t *cpy_dst_data = s->work->data[plane];
int cpy_dst_line_size = s->work->linesize[plane];
if (plane <1 || plane >2) {
// luma or alpha
for (line = 0; line < cpy_src_h; line++) {
for (pixel = 0; pixel < cpy_line_width; pixel++) {
// integer version of (src1 * src1_factor) + (src2 + src2_factor) + 0.5
// 0.5 is for rounding
// 128 is the integer representation of 0.5 << 8
cpy_dst_data[pixel] = ((cpy_src1_data[pixel] * src1_factor) + (cpy_src2_data[pixel] * src2_factor) + 128) >> 8;
}
cpy_src1_data += cpy_src1_line_size;
cpy_src2_data += cpy_src2_line_size;
cpy_dst_data += cpy_dst_line_size;
}
} else {
// chroma
for (line = 0; line < cpy_src_h; line++) {
for (pixel = 0; pixel < cpy_line_width; pixel++) {
// as above
// because U and V are based around 128 we have to subtract 128 from the components.
// 32896 is the integer representation of 128.5 << 8
cpy_dst_data[pixel] = (((cpy_src1_data[pixel] - 128) * src1_factor) + ((cpy_src2_data[pixel] - 128) * src2_factor) + 32896) >> 8;
}
cpy_src1_data += cpy_src1_line_size;
cpy_src2_data += cpy_src2_line_size;
cpy_dst_data += cpy_dst_line_size;
}
}
}
return 1;
}
return 0;
}
static int process_work_frame(AVFilterContext *ctx, int stop)
{
FrameRateContext *s = ctx->priv;
int64_t work_next_pts;
AVFrame *copy_src1;
float interpolate;
ff_dlog(ctx, "process_work_frame()\n");
ff_dlog(ctx, "process_work_frame() pending_input_frames %d\n", s->pending_srce_frames);
if (s->srce[s->prev]) ff_dlog(ctx, "process_work_frame() srce prev pts:%"PRId64"\n", s->srce[s->prev]->pts);
if (s->srce[s->crnt]) ff_dlog(ctx, "process_work_frame() srce crnt pts:%"PRId64"\n", s->srce[s->crnt]->pts);
if (s->srce[s->next]) ff_dlog(ctx, "process_work_frame() srce next pts:%"PRId64"\n", s->srce[s->next]->pts);
if (!s->srce[s->crnt]) {
// the filter cannot do anything
ff_dlog(ctx, "process_work_frame() no current frame cached: move on to next frame, do not output a frame\n");
next_source(ctx);
return 0;
}
work_next_pts = s->pts + s->average_dest_pts_delta;
ff_dlog(ctx, "process_work_frame() work crnt pts:%"PRId64"\n", s->pts);
ff_dlog(ctx, "process_work_frame() work next pts:%"PRId64"\n", work_next_pts);
if (s->srce[s->prev])
ff_dlog(ctx, "process_work_frame() srce prev pts:%"PRId64" at dest time base:%u/%u\n",
s->srce_pts_dest[s->prev], s->dest_time_base.num, s->dest_time_base.den);
if (s->srce[s->crnt])
ff_dlog(ctx, "process_work_frame() srce crnt pts:%"PRId64" at dest time base:%u/%u\n",
s->srce_pts_dest[s->crnt], s->dest_time_base.num, s->dest_time_base.den);
if (s->srce[s->next])
ff_dlog(ctx, "process_work_frame() srce next pts:%"PRId64" at dest time base:%u/%u\n",
s->srce_pts_dest[s->next], s->dest_time_base.num, s->dest_time_base.den);
av_assert0(s->srce[s->next]);
// should filter be skipping input frame (output frame rate is lower than input frame rate)
if (!s->flush && s->pts >= s->srce_pts_dest[s->next]) {
ff_dlog(ctx, "process_work_frame() work crnt pts >= srce next pts: SKIP FRAME, move on to next frame, do not output a frame\n");
next_source(ctx);
s->pending_srce_frames--;
return 0;
}
// calculate interpolation
interpolate = ((s->pts - s->srce_pts_dest[s->crnt]) * 256.0 / s->average_srce_pts_dest_delta);
ff_dlog(ctx, "process_work_frame() interpolate:%f/256\n", interpolate);
copy_src1 = s->srce[s->crnt];
if (interpolate > s->interp_end) {
ff_dlog(ctx, "process_work_frame() source is:NEXT\n");
copy_src1 = s->srce[s->next];
}
if (s->srce[s->prev] && interpolate < -s->interp_end) {
ff_dlog(ctx, "process_work_frame() source is:PREV\n");
copy_src1 = s->srce[s->prev];
}
// decide whether to blend two frames
if ((interpolate >= s->interp_start && interpolate <= s->interp_end) || (interpolate <= -s->interp_start && interpolate >= -s->interp_end)) {
AVFrame *copy_src2;
if (interpolate > 0) {
ff_dlog(ctx, "process_work_frame() interpolate source is:NEXT\n");
copy_src2 = s->srce[s->next];
} else {
ff_dlog(ctx, "process_work_frame() interpolate source is:PREV\n");
copy_src2 = s->srce[s->prev];
}
if (s->blend_frames(ctx, interpolate, copy_src1, copy_src2))
goto copy_done;
else
ff_dlog(ctx, "process_work_frame() CUT - DON'T INTERPOLATE\n");
}
ff_dlog(ctx, "process_work_frame() COPY to the work frame\n");
// copy the frame we decided is our base source
s->work = av_frame_clone(copy_src1);
if (!s->work)
return AVERROR(ENOMEM);
copy_done:
s->work->pts = s->pts;
// should filter be re-using input frame (output frame rate is higher than input frame rate)
if (!s->flush && (work_next_pts + s->average_dest_pts_delta) < (s->srce_pts_dest[s->crnt] + s->average_srce_pts_dest_delta)) {
ff_dlog(ctx, "process_work_frame() REPEAT FRAME\n");
} else {
ff_dlog(ctx, "process_work_frame() CONSUME FRAME, move to next frame\n");
s->pending_srce_frames--;
next_source(ctx);
}
ff_dlog(ctx, "process_work_frame() output a frame\n");
s->dest_frame_num++;
if (stop)
s->pending_end_frame = 0;
s->last_dest_frame_pts = s->work->pts;
return ff_filter_frame(ctx->outputs[0], s->work);
}
static void set_srce_frame_dest_pts(AVFilterContext *ctx)
{
FrameRateContext *s = ctx->priv;
ff_dlog(ctx, "set_srce_frame_output_pts()\n");
// scale the input pts from the timebase difference between input and output
if (s->srce[s->prev])
s->srce_pts_dest[s->prev] = av_rescale_q(s->srce[s->prev]->pts, s->srce_time_base, s->dest_time_base);
if (s->srce[s->crnt])
s->srce_pts_dest[s->crnt] = av_rescale_q(s->srce[s->crnt]->pts, s->srce_time_base, s->dest_time_base);
if (s->srce[s->next])
s->srce_pts_dest[s->next] = av_rescale_q(s->srce[s->next]->pts, s->srce_time_base, s->dest_time_base);
}
static void set_work_frame_pts(AVFilterContext *ctx)
{
FrameRateContext *s = ctx->priv;
int64_t pts, average_srce_pts_delta = 0;
ff_dlog(ctx, "set_work_frame_pts()\n");
av_assert0(s->srce[s->next]);
av_assert0(s->srce[s->crnt]);
ff_dlog(ctx, "set_work_frame_pts() srce crnt pts:%"PRId64"\n", s->srce[s->crnt]->pts);
ff_dlog(ctx, "set_work_frame_pts() srce next pts:%"PRId64"\n", s->srce[s->next]->pts);
if (s->srce[s->prev])
ff_dlog(ctx, "set_work_frame_pts() srce prev pts:%"PRId64"\n", s->srce[s->prev]->pts);
average_srce_pts_delta = s->average_srce_pts_dest_delta;
ff_dlog(ctx, "set_work_frame_pts() initial average srce pts:%"PRId64"\n", average_srce_pts_delta);
set_srce_frame_dest_pts(ctx);
// calculate the PTS delta
if ((pts = (s->srce_pts_dest[s->next] - s->srce_pts_dest[s->crnt]))) {
average_srce_pts_delta = average_srce_pts_delta?((average_srce_pts_delta+pts)>>1):pts;
} else if (s->srce[s->prev] && (pts = (s->srce_pts_dest[s->crnt] - s->srce_pts_dest[s->prev]))) {
average_srce_pts_delta = average_srce_pts_delta?((average_srce_pts_delta+pts)>>1):pts;
}
s->average_srce_pts_dest_delta = average_srce_pts_delta;
ff_dlog(ctx, "set_work_frame_pts() average srce pts:%"PRId64"\n", average_srce_pts_delta);
ff_dlog(ctx, "set_work_frame_pts() average srce pts:%"PRId64" at dest time base:%u/%u\n",
s->average_srce_pts_dest_delta, s->dest_time_base.num, s->dest_time_base.den);
if (ctx->inputs[0] && !s->average_dest_pts_delta) {
int64_t d = av_q2d(av_inv_q(av_mul_q(s->dest_time_base, s->dest_frame_rate)));
s->average_dest_pts_delta = d;
ff_dlog(ctx, "set_work_frame_pts() average dest pts delta:%"PRId64"\n", s->average_dest_pts_delta);
}
if (!s->dest_frame_num) {
s->pts = s->last_dest_frame_pts = s->srce_pts_dest[s->crnt];
} else {
s->pts = s->last_dest_frame_pts + s->average_dest_pts_delta;
}
ff_dlog(ctx, "set_work_frame_pts() calculated pts:%"PRId64" at dest time base:%u/%u\n",
s->pts, s->dest_time_base.num, s->dest_time_base.den);
}
static av_cold int init(AVFilterContext *ctx)
{
FrameRateContext *s = ctx->priv;
s->dest_frame_num = 0;
s->crnt = (N_SRCE)>>1;
s->last = N_SRCE - 1;
s->next = s->crnt - 1;
s->prev = s->crnt + 1;
return 0;
}
static av_cold void uninit(AVFilterContext *ctx)
{
FrameRateContext *s = ctx->priv;
int i;
for (i = s->frst + 1; i < s->last; i++) {
if (s->srce[i] && (s->srce[i] != s->srce[i + 1]))
av_frame_free(&s->srce[i]);
}
av_frame_free(&s->srce[s->last]);
}
static int query_formats(AVFilterContext *ctx)
{
static const enum AVPixelFormat pix_fmts[] = {
AV_PIX_FMT_YUV410P,
AV_PIX_FMT_YUV411P, AV_PIX_FMT_YUVJ411P,
AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUVJ420P,
AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUVJ422P,
AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUVJ440P,
AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUVJ444P,
AV_PIX_FMT_YUV420P9, AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV420P12,
AV_PIX_FMT_YUV422P9, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV422P12,
AV_PIX_FMT_YUV444P9, AV_PIX_FMT_YUV444P10, AV_PIX_FMT_YUV444P12,
AV_PIX_FMT_NONE
};
AVFilterFormats *fmts_list = ff_make_format_list(pix_fmts);
if (!fmts_list)
return AVERROR(ENOMEM);
return ff_set_common_formats(ctx, fmts_list);
}
static int config_input(AVFilterLink *inlink)
{
AVFilterContext *ctx = inlink->dst;
FrameRateContext *s = ctx->priv;
const AVPixFmtDescriptor *pix_desc = av_pix_fmt_desc_get(inlink->format);
int plane;
for (plane = 0; plane < 4; plane++) {
s->line_size[plane] = av_image_get_linesize(inlink->format, inlink->w,
plane);
}
s->bitdepth = pix_desc->comp[0].depth;
s->vsub = pix_desc->log2_chroma_h;
s->sad = av_pixelutils_get_sad_fn(3, 3, 2, s); // 8x8 both sources aligned
if (!s->sad)
return AVERROR(EINVAL);
s->srce_time_base = inlink->time_base;
if (s->bitdepth == 8)
s->blend_frames = blend_frames8;
else
s->blend_frames = blend_frames16;
s->max = 1 << (s->bitdepth);
return 0;
}
static int filter_frame(AVFilterLink *inlink, AVFrame *inpicref)
{
AVFilterContext *ctx = inlink->dst;
FrameRateContext *s = ctx->priv;
// we have one new frame
s->pending_srce_frames++;
if (inpicref->interlaced_frame)
av_log(ctx, AV_LOG_WARNING, "Interlaced frame found - the output will not be correct.\n");
// store the pointer to the new frame
av_frame_free(&s->srce[s->frst]);
s->srce[s->frst] = inpicref;
if (!s->pending_end_frame && s->srce[s->crnt]) {
set_work_frame_pts(ctx);
s->pending_end_frame = 1;
} else {
set_srce_frame_dest_pts(ctx);
}
return process_work_frame(ctx, 1);
}
static int config_output(AVFilterLink *outlink)
{
AVFilterContext *ctx = outlink->src;
FrameRateContext *s = ctx->priv;
int exact;
ff_dlog(ctx, "config_output()\n");
ff_dlog(ctx,
"config_output() input time base:%u/%u (%f)\n",
ctx->inputs[0]->time_base.num,ctx->inputs[0]->time_base.den,
av_q2d(ctx->inputs[0]->time_base));
// make sure timebase is small enough to hold the framerate
exact = av_reduce(&s->dest_time_base.num, &s->dest_time_base.den,
av_gcd((int64_t)s->srce_time_base.num * s->dest_frame_rate.num,
(int64_t)s->srce_time_base.den * s->dest_frame_rate.den ),
(int64_t)s->srce_time_base.den * s->dest_frame_rate.num, INT_MAX);
av_log(ctx, AV_LOG_INFO,
"time base:%u/%u -> %u/%u exact:%d\n",
s->srce_time_base.num, s->srce_time_base.den,
s->dest_time_base.num, s->dest_time_base.den, exact);
if (!exact) {
av_log(ctx, AV_LOG_WARNING, "Timebase conversion is not exact\n");
}
outlink->frame_rate = s->dest_frame_rate;
outlink->time_base = s->dest_time_base;
ff_dlog(ctx,
"config_output() output time base:%u/%u (%f) w:%d h:%d\n",
outlink->time_base.num, outlink->time_base.den,
av_q2d(outlink->time_base),
outlink->w, outlink->h);
av_log(ctx, AV_LOG_INFO, "fps -> fps:%u/%u scene score:%f interpolate start:%d end:%d\n",
s->dest_frame_rate.num, s->dest_frame_rate.den,
s->scene_score, s->interp_start, s->interp_end);
return 0;
}
static int request_frame(AVFilterLink *outlink)
{
AVFilterContext *ctx = outlink->src;
FrameRateContext *s = ctx->priv;
int val, i;
ff_dlog(ctx, "request_frame()\n");
// if there is no "next" frame AND we are not in flush then get one from our input filter
if (!s->srce[s->frst] && !s->flush) {
ff_dlog(ctx, "request_frame() call source's request_frame()\n");
val = ff_request_frame(outlink->src->inputs[0]);
if (val < 0 && (val != AVERROR_EOF)) {
ff_dlog(ctx, "request_frame() source's request_frame() returned error:%d\n", val);
return val;
} else if (val == AVERROR_EOF) {
s->flush = 1;
}
ff_dlog(ctx, "request_frame() source's request_frame() returned:%d\n", val);
return 0;
}
ff_dlog(ctx, "request_frame() REPEAT or FLUSH\n");
if (s->pending_srce_frames <= 0) {
ff_dlog(ctx, "request_frame() nothing else to do, return:EOF\n");
return AVERROR_EOF;
}
// otherwise, make brand-new frame and pass to our output filter
ff_dlog(ctx, "request_frame() FLUSH\n");
// back fill at end of file when source has no more frames
for (i = s->last; i > s->frst; i--) {
if (!s->srce[i - 1] && s->srce[i]) {
ff_dlog(ctx, "request_frame() copy:%d to:%d\n", i, i - 1);
s->srce[i - 1] = s->srce[i];
}
}
set_work_frame_pts(ctx);
return process_work_frame(ctx, 0);
}
static const AVFilterPad framerate_inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.config_props = config_input,
.filter_frame = filter_frame,
},
{ NULL }
};
static const AVFilterPad framerate_outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.request_frame = request_frame,
.config_props = config_output,
},
{ NULL }
};
AVFilter ff_vf_framerate = {
.name = "framerate",
.description = NULL_IF_CONFIG_SMALL("Upsamples or downsamples progressive source between specified frame rates."),
.priv_size = sizeof(FrameRateContext),
.priv_class = &framerate_class,
.init = init,
.uninit = uninit,
.query_formats = query_formats,
.inputs = framerate_inputs,
.outputs = framerate_outputs,
};
|