aboutsummaryrefslogtreecommitdiffstats
path: root/libavfilter/vf_deshake_opencl.c
blob: 47b74a86069410e72dc2aadeec2f41c1db82de1a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
/*
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 *
 * Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
 * Copyright (C) 2009, Willow Garage Inc., all rights reserved.
 * Copyright (C) 2013, OpenCV Foundation, all rights reserved.
 * Third party copyrights are property of their respective owners.
 *
 * Redistribution and use in source and binary forms, with or without modification,
 * are permitted provided that the following conditions are met:
 *
 *   * Redistribution's of source code must retain the above copyright notice,
 *     this list of conditions and the following disclaimer.
 *
 *   * Redistribution's in binary form must reproduce the above copyright notice,
 *     this list of conditions and the following disclaimer in the documentation
 *     and/or other materials provided with the distribution.
 *
 *   * The name of the copyright holders may not be used to endorse or promote products
 *     derived from this software without specific prior written permission.
 *
 * This software is provided by the copyright holders and contributors "as is" and
 * any express or implied warranties, including, but not limited to, the implied
 * warranties of merchantability and fitness for a particular purpose are disclaimed.
 * In no event shall the Intel Corporation or contributors be liable for any direct,
 * indirect, incidental, special, exemplary, or consequential damages
 * (including, but not limited to, procurement of substitute goods or services;
 * loss of use, data, or profits; or business interruption) however caused
 * and on any theory of liability, whether in contract, strict liability,
 * or tort (including negligence or otherwise) arising in any way out of
 * the use of this software, even if advised of the possibility of such damage.
 */

#include <float.h>
#include <libavutil/lfg.h>
#include "libavutil/opt.h"
#include "libavutil/mem.h"
#include "libavutil/fifo.h"
#include "libavutil/common.h"
#include "libavutil/avassert.h"
#include "libavutil/pixdesc.h"
#include "libavutil/pixfmt.h"
#include "avfilter.h"
#include "framequeue.h"
#include "filters.h"
#include "transform.h"
#include "internal.h"
#include "opencl.h"
#include "opencl_source.h"
#include "video.h"

/*
This filter matches feature points between frames (dealing with outliers) and then
uses the matches to estimate an affine transform between frames. This transform is
decomposed into various values (translation, scale, rotation) and the values are
summed relative to the start of the video to obtain on absolute camera position
for each frame. This "camera path" is then smoothed via a gaussian filter, resulting
in a new path that is turned back into an affine transform and applied to each
frame to render it.

High-level overview:

All of the work to extract motion data from frames occurs in queue_frame. Motion data
is buffered in a smoothing window, so queue_frame simply computes the absolute camera
positions and places them in ringbuffers.

filter_frame is responsible for looking at the absolute camera positions currently
in the ringbuffers, applying the gaussian filter, and then transforming the frames.
*/

// Number of bits for BRIEF descriptors
#define BREIFN 512
// Size of the patch from which a BRIEF descriptor is extracted
// This is the size used in OpenCV
#define BRIEF_PATCH_SIZE 31
#define BRIEF_PATCH_SIZE_HALF (BRIEF_PATCH_SIZE / 2)

#define MATCHES_CONTIG_SIZE 2000

#define ROUNDED_UP_DIV(a, b) ((a + (b - 1)) / b)

typedef struct PointPair {
    // Previous frame
    cl_float2 p1;
    // Current frame
    cl_float2 p2;
} PointPair;

typedef struct MotionVector {
    PointPair p;
    // Used to mark vectors as potential outliers
    cl_int should_consider;
} MotionVector;

// Denotes the indices for the different types of motion in the ringbuffers array
enum RingbufferIndices {
    RingbufX,
    RingbufY,
    RingbufRot,
    RingbufScaleX,
    RingbufScaleY,

    // Should always be last
    RingbufCount
};

// Struct that holds data for drawing point match debug data
typedef struct DebugMatches {
    MotionVector *matches;
    // The points used to calculate the affine transform for a frame
    MotionVector model_matches[3];

    int num_matches;
    // For cases where we couldn't calculate a model
    int num_model_matches;
} DebugMatches;

// Groups together the ringbuffers that store absolute distortion / position values
// for each frame
typedef struct AbsoluteFrameMotion {
    // Array with the various ringbuffers, indexed via the RingbufferIndices enum
    AVFifo *ringbuffers[RingbufCount];

    // Offset to get to the current frame being processed
    // (not in bytes)
    int curr_frame_offset;
    // Keeps track of where the start and end of contiguous motion data is (to
    // deal with cases where no motion data is found between two frames)
    int data_start_offset;
    int data_end_offset;

    AVFifo *debug_matches;
} AbsoluteFrameMotion;

// Takes care of freeing the arrays within the DebugMatches inside of the
// debug_matches ringbuffer and then freeing the buffer itself.
static void free_debug_matches(AbsoluteFrameMotion *afm) {
    DebugMatches dm;

    if (!afm->debug_matches) {
        return;
    }

    while (av_fifo_read(afm->debug_matches, &dm, 1) >= 0)
        av_freep(&dm.matches);

    av_fifo_freep2(&afm->debug_matches);
}

// Stores the translation, scale, rotation, and skew deltas between two frames
typedef struct FrameDelta {
    cl_float2 translation;
    float rotation;
    cl_float2 scale;
    cl_float2 skew;
} FrameDelta;

typedef struct SimilarityMatrix {
    // The 2x3 similarity matrix
    double matrix[6];
} SimilarityMatrix;

typedef struct CropInfo {
    // The top left corner of the bounding box for the crop
    cl_float2 top_left;
    // The bottom right corner of the bounding box for the crop
    cl_float2 bottom_right;
} CropInfo;

// Returned from function that determines start and end values for iteration
// around the current frame in a ringbuffer
typedef struct IterIndices {
    int start;
    int end;
} IterIndices;

typedef struct DeshakeOpenCLContext {
    OpenCLFilterContext ocf;
    // Whether or not the above `OpenCLFilterContext` has been initialized
    int initialized;

    // These variables are used in the activate callback
    int64_t duration;
    int eof;

    // State for random number generation
    AVLFG alfg;

    // FIFO frame queue used to buffer future frames for processing
    FFFrameQueue fq;
    // Ringbuffers for frame positions
    AbsoluteFrameMotion abs_motion;

    // The number of frames' motion to consider before and after the frame we are
    // smoothing
    int smooth_window;
    // The number of the frame we are currently processing
    int curr_frame;

    // Stores a 1d array of normalised gaussian kernel values for convolution
    float *gauss_kernel;

    // Buffer for error values used in RANSAC code
    float *ransac_err;

    // Information regarding how to crop the smoothed luminance (or RGB) planes
    CropInfo crop_y;
    // Information regarding how to crop the smoothed chroma planes
    CropInfo crop_uv;

    // Whether or not we are processing YUV input (as oppposed to RGB)
    int is_yuv;
    // The underlying format of the hardware surfaces
    int sw_format;

    // Buffer to copy `matches` into for the CPU to work with
    MotionVector *matches_host;
    MotionVector *matches_contig_host;

    MotionVector *inliers;

    cl_command_queue command_queue;
    cl_kernel kernel_grayscale;
    cl_kernel kernel_harris_response;
    cl_kernel kernel_refine_features;
    cl_kernel kernel_brief_descriptors;
    cl_kernel kernel_match_descriptors;
    cl_kernel kernel_transform;
    cl_kernel kernel_crop_upscale;

    // Stores a frame converted to grayscale
    cl_mem grayscale;
    // Stores the harris response for a frame (measure of "cornerness" for each pixel)
    cl_mem harris_buf;

    // Detected features after non-maximum suppression and sub-pixel refinement
    cl_mem refined_features;
    // Saved from the previous frame
    cl_mem prev_refined_features;

    // BRIEF sampling pattern that is randomly initialized
    cl_mem brief_pattern;
    // Feature point descriptors for the current frame
    cl_mem descriptors;
    // Feature point descriptors for the previous frame
    cl_mem prev_descriptors;
    // Vectors between points in current and previous frame
    cl_mem matches;
    cl_mem matches_contig;
    // Holds the matrix to transform luminance (or RGB) with
    cl_mem transform_y;
    // Holds the matrix to transform chroma with
    cl_mem transform_uv;

    // Configurable options

    int tripod_mode;
    int debug_on;
    int should_crop;

    // Whether or not feature points should be refined at a sub-pixel level
    cl_int refine_features;
    // If the user sets a value other than the default, 0, this percentage is
    // translated into a sigma value ranging from 0.5 to 40.0
    float smooth_percent;
    // This number is multiplied by the video frame rate to determine the size
    // of the smooth window
    float smooth_window_multiplier;

    // Debug stuff

    cl_kernel kernel_draw_debug_info;
    cl_mem debug_matches;
    cl_mem debug_model_matches;

    // These store the total time spent executing the different kernels in nanoseconds
    unsigned long long grayscale_time;
    unsigned long long harris_response_time;
    unsigned long long refine_features_time;
    unsigned long long brief_descriptors_time;
    unsigned long long match_descriptors_time;
    unsigned long long transform_time;
    unsigned long long crop_upscale_time;

    // Time spent copying matched features from the device to the host
    unsigned long long read_buf_time;
} DeshakeOpenCLContext;

// Returns a random uniformly-distributed number in [low, high]
static int rand_in(int low, int high, AVLFG *alfg) {
    return (av_lfg_get(alfg) % (high - low)) + low;
}

// Returns the average execution time for an event given the total time and the
// number of frames processed.
static double averaged_event_time_ms(unsigned long long total_time, int num_frames) {
    return (double)total_time / (double)num_frames / 1000000.0;
}

// The following code is loosely ported from OpenCV

// Estimates affine transform from 3 point pairs
// model is a 2x3 matrix:
//      a b c
//      d e f
static void run_estimate_kernel(const MotionVector *point_pairs, double *model)
{
    // src points
    double x1 = point_pairs[0].p.p1.s[0];
    double y1 = point_pairs[0].p.p1.s[1];
    double x2 = point_pairs[1].p.p1.s[0];
    double y2 = point_pairs[1].p.p1.s[1];
    double x3 = point_pairs[2].p.p1.s[0];
    double y3 = point_pairs[2].p.p1.s[1];

    // dest points
    double X1 = point_pairs[0].p.p2.s[0];
    double Y1 = point_pairs[0].p.p2.s[1];
    double X2 = point_pairs[1].p.p2.s[0];
    double Y2 = point_pairs[1].p.p2.s[1];
    double X3 = point_pairs[2].p.p2.s[0];
    double Y3 = point_pairs[2].p.p2.s[1];

    double d = 1.0 / ( x1*(y2-y3) + x2*(y3-y1) + x3*(y1-y2) );

    model[0] = d * ( X1*(y2-y3) + X2*(y3-y1) + X3*(y1-y2) );
    model[1] = d * ( X1*(x3-x2) + X2*(x1-x3) + X3*(x2-x1) );
    model[2] = d * ( X1*(x2*y3 - x3*y2) + X2*(x3*y1 - x1*y3) + X3*(x1*y2 - x2*y1) );

    model[3] = d * ( Y1*(y2-y3) + Y2*(y3-y1) + Y3*(y1-y2) );
    model[4] = d * ( Y1*(x3-x2) + Y2*(x1-x3) + Y3*(x2-x1) );
    model[5] = d * ( Y1*(x2*y3 - x3*y2) + Y2*(x3*y1 - x1*y3) + Y3*(x1*y2 - x2*y1) );
}

// Checks that the 3 points in the given array are not collinear
static int points_not_collinear(const cl_float2 **points)
{
    int j, k, i = 2;

    for (j = 0; j < i; j++) {
        double dx1 = points[j]->s[0] - points[i]->s[0];
        double dy1 = points[j]->s[1] - points[i]->s[1];

        for (k = 0; k < j; k++) {
            double dx2 = points[k]->s[0] - points[i]->s[0];
            double dy2 = points[k]->s[1] - points[i]->s[1];

            // Assuming a 3840 x 2160 video with a point at (0, 0) and one at
            // (3839, 2159), this prevents a third point from being within roughly
            // 0.5 of a pixel of the line connecting the two on both axes
            if (fabs(dx2*dy1 - dy2*dx1) <= 1.0) {
                return 0;
            }
        }
    }

    return 1;
}

// Checks a subset of 3 point pairs to make sure that the points are not collinear
// and not too close to each other
static int check_subset(const MotionVector *pairs_subset)
{
    const cl_float2 *prev_points[] = {
        &pairs_subset[0].p.p1,
        &pairs_subset[1].p.p1,
        &pairs_subset[2].p.p1
    };

    const cl_float2 *curr_points[] = {
        &pairs_subset[0].p.p2,
        &pairs_subset[1].p.p2,
        &pairs_subset[2].p.p2
    };

    return points_not_collinear(prev_points) && points_not_collinear(curr_points);
}

// Selects a random subset of 3 points from point_pairs and places them in pairs_subset
static int get_subset(
    AVLFG *alfg,
    const MotionVector *point_pairs,
    const int num_point_pairs,
    MotionVector *pairs_subset,
    int max_attempts
) {
    int idx[3];
    int i = 0, j, iters = 0;

    for (; iters < max_attempts; iters++) {
        for (i = 0; i < 3 && iters < max_attempts;) {
            int idx_i = 0;

            for (;;) {
                idx_i = idx[i] = rand_in(0, num_point_pairs, alfg);

                for (j = 0; j < i; j++) {
                    if (idx_i == idx[j]) {
                        break;
                    }
                }

                if (j == i) {
                    break;
                }
            }

            pairs_subset[i] = point_pairs[idx[i]];
            i++;
        }

        if (i == 3 && !check_subset(pairs_subset)) {
            continue;
        }
        break;
    }

    return i == 3 && iters < max_attempts;
}

// Computes the error for each of the given points based on the given model.
static void compute_error(
    const MotionVector *point_pairs,
    const int num_point_pairs,
    const double *model,
    float *err
) {
    double F0 = model[0], F1 = model[1], F2 = model[2];
    double F3 = model[3], F4 = model[4], F5 = model[5];

    for (int i = 0; i < num_point_pairs; i++) {
        const cl_float2 *f = &point_pairs[i].p.p1;
        const cl_float2 *t = &point_pairs[i].p.p2;

        double a = F0*f->s[0] + F1*f->s[1] + F2 - t->s[0];
        double b = F3*f->s[0] + F4*f->s[1] + F5 - t->s[1];

        err[i] = a*a + b*b;
    }
}

// Determines which of the given point matches are inliers for the given model
// based on the specified threshold.
//
// err must be an array of num_point_pairs length
static int find_inliers(
    MotionVector *point_pairs,
    const int num_point_pairs,
    const double *model,
    float *err,
    double thresh
) {
    float t = (float)(thresh * thresh);
    int i, n = num_point_pairs, num_inliers = 0;

    compute_error(point_pairs, num_point_pairs, model, err);

    for (i = 0; i < n; i++) {
        if (err[i] <= t) {
            // This is an inlier
            point_pairs[i].should_consider = 1;
            num_inliers += 1;
        } else {
            point_pairs[i].should_consider = 0;
        }
    }

    return num_inliers;
}

// Determines the number of iterations required to achieve the desired confidence level.
//
// The equation used to determine the number of iterations to do is:
// 1 - confidence = (1 - inlier_probability^num_points)^num_iters
//
// Solving for num_iters:
//
// num_iters = log(1 - confidence) / log(1 - inlier_probability^num_points)
//
// A more in-depth explanation can be found at https://en.wikipedia.org/wiki/Random_sample_consensus
// under the 'Parameters' heading
static int ransac_update_num_iters(double confidence, double num_outliers, int max_iters)
{
    double num, denom;

    confidence   = av_clipd(confidence, 0.0, 1.0);
    num_outliers = av_clipd(num_outliers, 0.0, 1.0);

    // avoid inf's & nan's
    num = FFMAX(1.0 - confidence, DBL_MIN);
    denom = 1.0 - pow(1.0 - num_outliers, 3);
    if (denom < DBL_MIN) {
        return 0;
    }

    num = log(num);
    denom = log(denom);

    return denom >= 0 || -num >= max_iters * (-denom) ? max_iters : (int)round(num / denom);
}

// Estimates an affine transform between the given pairs of points using RANdom
// SAmple Consensus
static int estimate_affine_2d(
    DeshakeOpenCLContext *deshake_ctx,
    MotionVector *point_pairs,
    DebugMatches *debug_matches,
    const int num_point_pairs,
    double *model_out,
    const double threshold,
    const int max_iters,
    const double confidence
) {
    int result = 0;
    double best_model[6], model[6];
    MotionVector pairs_subset[3], best_pairs[3];

    int iter, niters = FFMAX(max_iters, 1);
    int good_count, max_good_count = 0;

    // We need at least 3 points to build a model from
    if (num_point_pairs < 3) {
        return 0;
    } else if (num_point_pairs == 3) {
        // There are only 3 points, so RANSAC doesn't apply here
        run_estimate_kernel(point_pairs, model_out);

        for (int i = 0; i < 3; ++i) {
            point_pairs[i].should_consider = 1;
        }

        return 1;
    }

    for (iter = 0; iter < niters; ++iter) {
        int found = get_subset(&deshake_ctx->alfg, point_pairs, num_point_pairs, pairs_subset, 10000);

        if (!found) {
            if (iter == 0) {
                return 0;
            }

            break;
        }

        run_estimate_kernel(pairs_subset, model);
        good_count = find_inliers(point_pairs, num_point_pairs, model, deshake_ctx->ransac_err, threshold);

        if (good_count > FFMAX(max_good_count, 2)) {
            for (int mi = 0; mi < 6; ++mi) {
                best_model[mi] = model[mi];
            }

            for (int pi = 0; pi < 3; pi++) {
                best_pairs[pi] = pairs_subset[pi];
            }

            max_good_count = good_count;
            niters = ransac_update_num_iters(
                confidence,
                (double)(num_point_pairs - good_count) / num_point_pairs,
                niters
            );
        }
    }

    if (max_good_count > 0) {
        for (int mi = 0; mi < 6; ++mi) {
            model_out[mi] = best_model[mi];
        }

        for (int pi = 0; pi < 3; ++pi) {
            debug_matches->model_matches[pi] = best_pairs[pi];
        }
        debug_matches->num_model_matches = 3;

        // Find the inliers again for the best model for debugging
        find_inliers(point_pairs, num_point_pairs, best_model, deshake_ctx->ransac_err, threshold);
        result = 1;
    }

    return result;
}

// "Wiggles" the first point in best_pairs around a tiny bit in order to decrease the
// total error
static void optimize_model(
    DeshakeOpenCLContext *deshake_ctx,
    MotionVector *best_pairs,
    MotionVector *inliers,
    const int num_inliers,
    float best_err,
    double *model_out
) {
    float move_x_val = 0.01;
    float move_y_val = 0.01;
    int move_x = 1;
    float old_move_x_val = 0;
    double model[6];
    int last_changed = 0;

    for (int iters = 0; iters < 200; iters++) {
        float total_err = 0;

        if (move_x) {
            best_pairs[0].p.p2.s[0] += move_x_val;
        } else {
            best_pairs[0].p.p2.s[0] += move_y_val;
        }

        run_estimate_kernel(best_pairs, model);
        compute_error(inliers, num_inliers, model, deshake_ctx->ransac_err);

        for (int j = 0; j < num_inliers; j++) {
            total_err += deshake_ctx->ransac_err[j];
        }

        if (total_err < best_err) {
            for (int mi = 0; mi < 6; ++mi) {
                model_out[mi] = model[mi];
            }

            best_err = total_err;
            last_changed = iters;
        } else {
            // Undo the change
            if (move_x) {
                best_pairs[0].p.p2.s[0] -= move_x_val;
            } else {
                best_pairs[0].p.p2.s[0] -= move_y_val;
            }

            if (iters - last_changed > 4) {
                // We've already improved the model as much as we can
                break;
            }

            old_move_x_val = move_x_val;

            if (move_x) {
                move_x_val *= -1;
            } else {
                move_y_val *= -1;
            }

            if (old_move_x_val < 0) {
                move_x = 0;
            } else {
                move_x = 1;
            }
        }
    }
}

// Uses a process similar to that of RANSAC to find a transform that minimizes
// the total error for a set of point matches determined to be inliers
//
// (Pick random subsets, compute model, find total error, iterate until error
// is minimized.)
static int minimize_error(
    DeshakeOpenCLContext *deshake_ctx,
    MotionVector *inliers,
    DebugMatches *debug_matches,
    const int num_inliers,
    double *model_out,
    const int max_iters
) {
    int result = 0;
    float best_err = FLT_MAX;
    double best_model[6], model[6];
    MotionVector pairs_subset[3], best_pairs[3];

    for (int i = 0; i < max_iters; i++) {
        float total_err = 0;
        int found = get_subset(&deshake_ctx->alfg, inliers, num_inliers, pairs_subset, 10000);

        if (!found) {
            if (i == 0) {
                return 0;
            }

            break;
        }

        run_estimate_kernel(pairs_subset, model);
        compute_error(inliers, num_inliers, model, deshake_ctx->ransac_err);

        for (int j = 0; j < num_inliers; j++) {
            total_err += deshake_ctx->ransac_err[j];
        }

        if (i == 0 || total_err < best_err) {
            for (int mi = 0; mi < 6; ++mi) {
                best_model[mi] = model[mi];
            }

            for (int pi = 0; pi < 3; pi++) {
                best_pairs[pi] = pairs_subset[pi];
            }

            best_err = total_err;
        }
    }

    for (int mi = 0; mi < 6; ++mi) {
        model_out[mi] = best_model[mi];
    }

    for (int pi = 0; pi < 3; ++pi) {
        debug_matches->model_matches[pi] = best_pairs[pi];
    }
    debug_matches->num_model_matches = 3;
    result = 1;

    optimize_model(deshake_ctx, best_pairs, inliers, num_inliers, best_err, model_out);
    return result;
}

// End code from OpenCV

// Decomposes a similarity matrix into translation, rotation, scale, and skew
//
// See http://frederic-wang.fr/decomposition-of-2d-transform-matrices.html
static FrameDelta decompose_transform(double *model)
{
    FrameDelta ret;

    double a = model[0];
    double c = model[1];
    double e = model[2];
    double b = model[3];
    double d = model[4];
    double f = model[5];
    double delta = a * d - b * c;

    memset(&ret, 0, sizeof(ret));

    ret.translation.s[0] = e;
    ret.translation.s[1] = f;

    // This is the QR method
    if (a != 0 || b != 0) {
        double r = hypot(a, b);

        ret.rotation = FFSIGN(b) * acos(a / r);
        ret.scale.s[0] = r;
        ret.scale.s[1] = delta / r;
        ret.skew.s[0] = atan((a * c + b * d) / (r * r));
        ret.skew.s[1] = 0;
    } else if (c != 0 || d != 0) {
        double s = sqrt(c * c + d * d);

        ret.rotation = M_PI / 2 - FFSIGN(d) * acos(-c / s);
        ret.scale.s[0] = delta / s;
        ret.scale.s[1] = s;
        ret.skew.s[0] = 0;
        ret.skew.s[1] = atan((a * c + b * d) / (s * s));
    } // otherwise there is only translation

    return ret;
}

// Move valid vectors from the 2d buffer into a 1d buffer where they are contiguous
static int make_vectors_contig(
    DeshakeOpenCLContext *deshake_ctx,
    int size_y,
    int size_x
) {
    int num_vectors = 0;

    for (int i = 0; i < size_y; ++i) {
        for (int j = 0; j < size_x; ++j) {
            MotionVector v = deshake_ctx->matches_host[j + i * size_x];

            if (v.should_consider) {
                deshake_ctx->matches_contig_host[num_vectors] = v;
                ++num_vectors;
            }

            // Make sure we do not exceed the amount of space we allocated for these vectors
            if (num_vectors == MATCHES_CONTIG_SIZE - 1) {
                return num_vectors;
            }
        }
    }
    return num_vectors;
}

// Returns the gaussian kernel value for the given x coordinate and sigma value
static float gaussian_for(int x, float sigma) {
    return 1.0f / expf(((float)x * (float)x) / (2.0f * sigma * sigma));
}

// Makes a normalized gaussian kernel of the given length for the given sigma
// and places it in gauss_kernel
static void make_gauss_kernel(float *gauss_kernel, float length, float sigma)
{
    float gauss_sum = 0;
    int window_half = length / 2;

    for (int i = 0; i < length; ++i) {
        float val = gaussian_for(i - window_half, sigma);

        gauss_sum += val;
        gauss_kernel[i] = val;
    }

    // Normalize the gaussian values
    for (int i = 0; i < length; ++i) {
        gauss_kernel[i] /= gauss_sum;
    }
}

// Returns indices to start and end iteration at in order to iterate over a window
// of length size centered at the current frame in a ringbuffer
//
// Always returns numbers that result in a window of length size, even if that
// means specifying negative indices or indices past the end of the values in the
// ringbuffers. Make sure you clip indices appropriately within your loop.
static IterIndices start_end_for(DeshakeOpenCLContext *deshake_ctx, int length) {
    IterIndices indices;

    indices.start = deshake_ctx->abs_motion.curr_frame_offset - (length / 2);
    indices.end = deshake_ctx->abs_motion.curr_frame_offset + (length / 2) + (length % 2);

    return indices;
}

// Sets val to the value in the given ringbuffer at the given offset, taking care of
// clipping the offset into the appropriate range
static void ringbuf_float_at(
    DeshakeOpenCLContext *deshake_ctx,
    AVFifo *values,
    float *val,
    int offset
) {
    int clip_start, clip_end, offset_clipped;
    if (deshake_ctx->abs_motion.data_end_offset != -1) {
        clip_end = deshake_ctx->abs_motion.data_end_offset;
    } else {
        // This expression represents the last valid index in the buffer,
        // which we use repeatedly at the end of the video.
        clip_end = deshake_ctx->smooth_window - av_fifo_can_write(values) - 1;
    }

    if (deshake_ctx->abs_motion.data_start_offset != -1) {
        clip_start = deshake_ctx->abs_motion.data_start_offset;
    } else {
        // Negative indices will occur at the start of the video, and we want
        // them to be clipped to 0 in order to repeatedly use the position of
        // the first frame.
        clip_start = 0;
    }

    offset_clipped = av_clip(
        offset,
        clip_start,
        clip_end
    );

    av_fifo_peek(values, val, 1, offset_clipped);
}

// Returns smoothed current frame value of the given buffer of floats based on the
// given Gaussian kernel and its length (also the window length, centered around the
// current frame) and the "maximum value" of the motion.
//
// This "maximum value" should be the width / height of the image in the case of
// translation and an empirically chosen constant for rotation / scale.
//
// The sigma chosen to generate the final gaussian kernel with used to smooth the
// camera path is either hardcoded (set by user, deshake_ctx->smooth_percent) or
// adaptively chosen.
static float smooth(
    DeshakeOpenCLContext *deshake_ctx,
    float *gauss_kernel,
    int length,
    float max_val,
    AVFifo *values
) {
    float new_large_s = 0, new_small_s = 0, new_best = 0, old, diff_between,
          percent_of_max, inverted_percent;
    IterIndices indices = start_end_for(deshake_ctx, length);
    float large_sigma = 40.0f;
    float small_sigma = 2.0f;
    float best_sigma;

    if (deshake_ctx->smooth_percent) {
        best_sigma = (large_sigma - 0.5f) * deshake_ctx->smooth_percent + 0.5f;
    } else {
        // Strategy to adaptively smooth trajectory:
        //
        // 1. Smooth path with large and small sigma values
        // 2. Take the absolute value of the difference between them
        // 3. Get a percentage by putting the difference over the "max value"
        // 4, Invert the percentage
        // 5. Calculate a new sigma value weighted towards the larger sigma value
        // 6. Determine final smoothed trajectory value using that sigma

        make_gauss_kernel(gauss_kernel, length, large_sigma);
        for (int i = indices.start, j = 0; i < indices.end; ++i, ++j) {
            ringbuf_float_at(deshake_ctx, values, &old, i);
            new_large_s += old * gauss_kernel[j];
        }

        make_gauss_kernel(gauss_kernel, length, small_sigma);
        for (int i = indices.start, j = 0; i < indices.end; ++i, ++j) {
            ringbuf_float_at(deshake_ctx, values, &old, i);
            new_small_s += old * gauss_kernel[j];
        }

        diff_between = fabsf(new_large_s - new_small_s);
        percent_of_max = diff_between / max_val;
        inverted_percent = 1 - percent_of_max;
        best_sigma = large_sigma * powf(inverted_percent, 40);
    }

    make_gauss_kernel(gauss_kernel, length, best_sigma);
    for (int i = indices.start, j = 0; i < indices.end; ++i, ++j) {
        ringbuf_float_at(deshake_ctx, values, &old, i);
        new_best += old * gauss_kernel[j];
    }

    return new_best;
}

// Returns the position of the given point after the transform is applied
static cl_float2 transformed_point(float x, float y, float *transform) {
    cl_float2 ret;

    ret.s[0] = x * transform[0] + y * transform[1] + transform[2];
    ret.s[1] = x * transform[3] + y * transform[4] + transform[5];

    return ret;
}

// Creates an affine transform that scales from the center of a frame
static void transform_center_scale(
    float x_shift,
    float y_shift,
    float angle,
    float scale_x,
    float scale_y,
    float center_w,
    float center_h,
    float *matrix
) {
    cl_float2 center_s;
    float center_s_w, center_s_h;

    ff_get_matrix(
        0,
        0,
        0,
        scale_x,
        scale_y,
        matrix
    );

    center_s = transformed_point(center_w, center_h, matrix);
    center_s_w = center_w - center_s.s[0];
    center_s_h = center_h - center_s.s[1];

    ff_get_matrix(
        x_shift + center_s_w,
        y_shift + center_s_h,
        angle,
        scale_x,
        scale_y,
        matrix
    );
}

// Determines the crop necessary to eliminate black borders from a smoothed frame
// and updates target crop accordingly
static void update_needed_crop(
    CropInfo* crop,
    float *transform,
    float frame_width,
    float frame_height
) {
    float new_width, new_height, adjusted_width, adjusted_height, adjusted_x, adjusted_y;

    cl_float2 top_left = transformed_point(0, 0, transform);
    cl_float2 top_right = transformed_point(frame_width, 0, transform);
    cl_float2 bottom_left = transformed_point(0, frame_height, transform);
    cl_float2 bottom_right = transformed_point(frame_width, frame_height, transform);
    float ar_h = frame_height / frame_width;
    float ar_w = frame_width / frame_height;

    if (crop->bottom_right.s[0] == 0) {
        // The crop hasn't been set to the original size of the plane
        crop->bottom_right.s[0] = frame_width;
        crop->bottom_right.s[1] = frame_height;
    }

    crop->top_left.s[0] = FFMAX3(
        crop->top_left.s[0],
        top_left.s[0],
        bottom_left.s[0]
    );

    crop->top_left.s[1] = FFMAX3(
        crop->top_left.s[1],
        top_left.s[1],
        top_right.s[1]
    );

    crop->bottom_right.s[0] = FFMIN3(
        crop->bottom_right.s[0],
        bottom_right.s[0],
        top_right.s[0]
    );

    crop->bottom_right.s[1] = FFMIN3(
        crop->bottom_right.s[1],
        bottom_right.s[1],
        bottom_left.s[1]
    );

    // Make sure our potentially new bounding box has the same aspect ratio
    new_height = crop->bottom_right.s[1] - crop->top_left.s[1];
    new_width = crop->bottom_right.s[0] - crop->top_left.s[0];

    adjusted_width = new_height * ar_w;
    adjusted_x = crop->bottom_right.s[0] - adjusted_width;

    if (adjusted_x >= crop->top_left.s[0]) {
        crop->top_left.s[0] = adjusted_x;
    } else {
        adjusted_height = new_width * ar_h;
        adjusted_y = crop->bottom_right.s[1] - adjusted_height;
        crop->top_left.s[1] = adjusted_y;
    }
}

static av_cold void deshake_opencl_uninit(AVFilterContext *avctx)
{
    DeshakeOpenCLContext *ctx = avctx->priv;
    cl_int cle;

    for (int i = 0; i < RingbufCount; i++)
        av_fifo_freep2(&ctx->abs_motion.ringbuffers[i]);

    if (ctx->debug_on)
        free_debug_matches(&ctx->abs_motion);

    if (ctx->gauss_kernel)
        av_freep(&ctx->gauss_kernel);

    if (ctx->ransac_err)
        av_freep(&ctx->ransac_err);

    if (ctx->matches_host)
        av_freep(&ctx->matches_host);

    if (ctx->matches_contig_host)
        av_freep(&ctx->matches_contig_host);

    if (ctx->inliers)
        av_freep(&ctx->inliers);

    ff_framequeue_free(&ctx->fq);

    CL_RELEASE_KERNEL(ctx->kernel_grayscale);
    CL_RELEASE_KERNEL(ctx->kernel_harris_response);
    CL_RELEASE_KERNEL(ctx->kernel_refine_features);
    CL_RELEASE_KERNEL(ctx->kernel_brief_descriptors);
    CL_RELEASE_KERNEL(ctx->kernel_match_descriptors);
    CL_RELEASE_KERNEL(ctx->kernel_crop_upscale);
    if (ctx->debug_on)
        CL_RELEASE_KERNEL(ctx->kernel_draw_debug_info);

    CL_RELEASE_QUEUE(ctx->command_queue);

    if (!ctx->is_yuv)
        CL_RELEASE_MEMORY(ctx->grayscale);
    CL_RELEASE_MEMORY(ctx->harris_buf);
    CL_RELEASE_MEMORY(ctx->refined_features);
    CL_RELEASE_MEMORY(ctx->prev_refined_features);
    CL_RELEASE_MEMORY(ctx->brief_pattern);
    CL_RELEASE_MEMORY(ctx->descriptors);
    CL_RELEASE_MEMORY(ctx->prev_descriptors);
    CL_RELEASE_MEMORY(ctx->matches);
    CL_RELEASE_MEMORY(ctx->matches_contig);
    CL_RELEASE_MEMORY(ctx->transform_y);
    CL_RELEASE_MEMORY(ctx->transform_uv);
    if (ctx->debug_on) {
        CL_RELEASE_MEMORY(ctx->debug_matches);
        CL_RELEASE_MEMORY(ctx->debug_model_matches);
    }

    ff_opencl_filter_uninit(avctx);
}

static int deshake_opencl_init(AVFilterContext *avctx)
{
    DeshakeOpenCLContext *ctx = avctx->priv;
    AVFilterLink *outlink = avctx->outputs[0];
    AVFilterLink *inlink = avctx->inputs[0];
    FilterLink      *inl = ff_filter_link(inlink);
    // Pointer to the host-side pattern buffer to be initialized and then copied
    // to the GPU
    PointPair *pattern_host = NULL;
    cl_int cle;
    int err;
    cl_ulong8 zeroed_ulong8;
    FFFrameQueueGlobal fqg;
    cl_image_format grayscale_format;
    cl_image_desc grayscale_desc;
    cl_command_queue_properties queue_props;

    const enum AVPixelFormat disallowed_formats[14] = {
        AV_PIX_FMT_GBRP,
        AV_PIX_FMT_GBRP9BE,
        AV_PIX_FMT_GBRP9LE,
        AV_PIX_FMT_GBRP10BE,
        AV_PIX_FMT_GBRP10LE,
        AV_PIX_FMT_GBRP16BE,
        AV_PIX_FMT_GBRP16LE,
        AV_PIX_FMT_GBRAP,
        AV_PIX_FMT_GBRAP16BE,
        AV_PIX_FMT_GBRAP16LE,
        AV_PIX_FMT_GBRAP12BE,
        AV_PIX_FMT_GBRAP12LE,
        AV_PIX_FMT_GBRAP10BE,
        AV_PIX_FMT_GBRAP10LE
    };

    // Number of elements for an array
    const int image_grid_32 = ROUNDED_UP_DIV(outlink->h, 32) * ROUNDED_UP_DIV(outlink->w, 32);

    const int descriptor_buf_size = image_grid_32 * (BREIFN / 8);
    const int features_buf_size = image_grid_32 * sizeof(cl_float2);

    const AVHWFramesContext *hw_frames_ctx = (AVHWFramesContext*)inl->hw_frames_ctx->data;
    const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(hw_frames_ctx->sw_format);

    av_assert0(hw_frames_ctx);
    av_assert0(desc);

    ff_framequeue_global_init(&fqg);
    ff_framequeue_init(&ctx->fq, &fqg);
    ctx->eof = 0;
    ctx->smooth_window = (int)(av_q2d(inl->frame_rate) * ctx->smooth_window_multiplier);
    ctx->curr_frame = 0;

    memset(&zeroed_ulong8, 0, sizeof(cl_ulong8));

    ctx->gauss_kernel = av_malloc_array(ctx->smooth_window, sizeof(float));
    if (!ctx->gauss_kernel) {
        err = AVERROR(ENOMEM);
        goto fail;
    }

    ctx->ransac_err = av_malloc_array(MATCHES_CONTIG_SIZE, sizeof(float));
    if (!ctx->ransac_err) {
        err = AVERROR(ENOMEM);
        goto fail;
    }

    for (int i = 0; i < RingbufCount; i++) {
        ctx->abs_motion.ringbuffers[i] = av_fifo_alloc2(ctx->smooth_window,
            sizeof(float), 0);

        if (!ctx->abs_motion.ringbuffers[i]) {
            err = AVERROR(ENOMEM);
            goto fail;
        }
    }

    if (ctx->debug_on) {
        ctx->abs_motion.debug_matches = av_fifo_alloc2(
            ctx->smooth_window / 2,
            sizeof(DebugMatches), 0
        );

        if (!ctx->abs_motion.debug_matches) {
            err = AVERROR(ENOMEM);
            goto fail;
        }
    }

    ctx->abs_motion.curr_frame_offset = 0;
    ctx->abs_motion.data_start_offset = -1;
    ctx->abs_motion.data_end_offset = -1;

    pattern_host = av_malloc_array(BREIFN, sizeof(PointPair));
    if (!pattern_host) {
        err = AVERROR(ENOMEM);
        goto fail;
    }

    ctx->matches_host = av_malloc_array(image_grid_32, sizeof(MotionVector));
    if (!ctx->matches_host) {
        err = AVERROR(ENOMEM);
        goto fail;
    }

    ctx->matches_contig_host = av_malloc_array(MATCHES_CONTIG_SIZE, sizeof(MotionVector));
    if (!ctx->matches_contig_host) {
        err = AVERROR(ENOMEM);
        goto fail;
    }

    ctx->inliers = av_malloc_array(MATCHES_CONTIG_SIZE, sizeof(MotionVector));
    if (!ctx->inliers) {
        err = AVERROR(ENOMEM);
        goto fail;
    }

    // Initializing the patch pattern for building BREIF descriptors with
    av_lfg_init(&ctx->alfg, 234342424);
    for (int i = 0; i < BREIFN; ++i) {
        PointPair pair;

        for (int j = 0; j < 2; ++j) {
            pair.p1.s[j] = rand_in(-BRIEF_PATCH_SIZE_HALF, BRIEF_PATCH_SIZE_HALF + 1, &ctx->alfg);
            pair.p2.s[j] = rand_in(-BRIEF_PATCH_SIZE_HALF, BRIEF_PATCH_SIZE_HALF + 1, &ctx->alfg);
        }

        pattern_host[i] = pair;
    }

    for (int i = 0; i < 14; i++) {
        if (ctx->sw_format == disallowed_formats[i]) {
            av_log(avctx, AV_LOG_ERROR, "unsupported format in deshake_opencl.\n");
            err = AVERROR(ENOSYS);
            goto fail;
        }
    }

    if (desc->flags & AV_PIX_FMT_FLAG_RGB) {
        ctx->is_yuv = 0;
    } else {
        ctx->is_yuv = 1;
    }
    ctx->sw_format = hw_frames_ctx->sw_format;

    err = ff_opencl_filter_load_program(avctx, &ff_source_deshake_cl, 1);
    if (err < 0)
        goto fail;

    if (ctx->debug_on) {
        queue_props = CL_QUEUE_PROFILING_ENABLE;
    } else {
        queue_props = 0;
    }
    ctx->command_queue = clCreateCommandQueue(
        ctx->ocf.hwctx->context,
        ctx->ocf.hwctx->device_id,
        queue_props,
        &cle
    );
    CL_FAIL_ON_ERROR(AVERROR(EIO), "Failed to create OpenCL command queue %d.\n", cle);

    CL_CREATE_KERNEL(ctx, grayscale);
    CL_CREATE_KERNEL(ctx, harris_response);
    CL_CREATE_KERNEL(ctx, refine_features);
    CL_CREATE_KERNEL(ctx, brief_descriptors);
    CL_CREATE_KERNEL(ctx, match_descriptors);
    CL_CREATE_KERNEL(ctx, transform);
    CL_CREATE_KERNEL(ctx, crop_upscale);
    if (ctx->debug_on)
        CL_CREATE_KERNEL(ctx, draw_debug_info);

    if (!ctx->is_yuv) {
        grayscale_format.image_channel_order = CL_R;
        grayscale_format.image_channel_data_type = CL_FLOAT;

        grayscale_desc = (cl_image_desc) {
            .image_type = CL_MEM_OBJECT_IMAGE2D,
            .image_width = outlink->w,
            .image_height = outlink->h,
            .image_depth = 0,
            .image_array_size = 0,
            .image_row_pitch = 0,
            .image_slice_pitch = 0,
            .num_mip_levels = 0,
            .num_samples = 0,
            .buffer = NULL,
        };

        ctx->grayscale = clCreateImage(
            ctx->ocf.hwctx->context,
            0,
            &grayscale_format,
            &grayscale_desc,
            NULL,
            &cle
        );
        CL_FAIL_ON_ERROR(AVERROR(EIO), "Failed to create grayscale image: %d.\n", cle);
    }

    CL_CREATE_BUFFER(ctx, harris_buf, outlink->h * outlink->w * sizeof(float));
    CL_CREATE_BUFFER(ctx, refined_features, features_buf_size);
    CL_CREATE_BUFFER(ctx, prev_refined_features, features_buf_size);
    CL_CREATE_BUFFER_FLAGS(
        ctx,
        brief_pattern,
        CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR,
        BREIFN * sizeof(PointPair),
        pattern_host
    );
    CL_CREATE_BUFFER(ctx, descriptors, descriptor_buf_size);
    CL_CREATE_BUFFER(ctx, prev_descriptors, descriptor_buf_size);
    CL_CREATE_BUFFER(ctx, matches, image_grid_32 * sizeof(MotionVector));
    CL_CREATE_BUFFER(ctx, matches_contig, MATCHES_CONTIG_SIZE * sizeof(MotionVector));
    CL_CREATE_BUFFER(ctx, transform_y, 9 * sizeof(float));
    CL_CREATE_BUFFER(ctx, transform_uv, 9 * sizeof(float));
    if (ctx->debug_on) {
        CL_CREATE_BUFFER(ctx, debug_matches, MATCHES_CONTIG_SIZE * sizeof(MotionVector));
        CL_CREATE_BUFFER(ctx, debug_model_matches, 3 * sizeof(MotionVector));
    }

    ctx->initialized = 1;
    av_freep(&pattern_host);

    return 0;

fail:
    av_freep(&pattern_host);
    return err;
}

// Logs debug information about the transform data
static void transform_debug(AVFilterContext *avctx, float *new_vals, float *old_vals, int curr_frame) {
    av_log(avctx, AV_LOG_VERBOSE,
        "Frame %d:\n"
        "\tframe moved from: %f x, %f y\n"
        "\t              to: %f x, %f y\n"
        "\t    rotated from: %f degrees\n"
        "\t              to: %f degrees\n"
        "\t     scaled from: %f x, %f y\n"
        "\t              to: %f x, %f y\n"
        "\n"
        "\tframe moved by: %f x, %f y\n"
        "\t    rotated by: %f degrees\n"
        "\t     scaled by: %f x, %f y\n",
        curr_frame,
        old_vals[RingbufX], old_vals[RingbufY],
        new_vals[RingbufX], new_vals[RingbufY],
        old_vals[RingbufRot] * (180.0 / M_PI),
        new_vals[RingbufRot] * (180.0 / M_PI),
        old_vals[RingbufScaleX], old_vals[RingbufScaleY],
        new_vals[RingbufScaleX], new_vals[RingbufScaleY],
        old_vals[RingbufX] - new_vals[RingbufX], old_vals[RingbufY] - new_vals[RingbufY],
        old_vals[RingbufRot] * (180.0 / M_PI) - new_vals[RingbufRot] * (180.0 / M_PI),
        new_vals[RingbufScaleX] / old_vals[RingbufScaleX], new_vals[RingbufScaleY] / old_vals[RingbufScaleY]
    );
}

// Uses the buffered motion information to determine a transform that smooths the
// given frame and applies it
static int filter_frame(AVFilterLink *link, AVFrame *input_frame)
{
    AVFilterContext *avctx = link->dst;
    AVFilterLink *outlink = avctx->outputs[0];
    FilterLink      *outl = ff_filter_link(outlink);
    DeshakeOpenCLContext *deshake_ctx = avctx->priv;
    AVFrame *cropped_frame = NULL, *transformed_frame = NULL;
    int err;
    cl_int cle;
    float new_vals[RingbufCount];
    float old_vals[RingbufCount];
    // Luma (in the case of YUV) transform, or just the transform in the case of RGB
    float transform_y[9];
    // Chroma transform
    float transform_uv[9];
    // Luma crop transform (or RGB)
    float transform_crop_y[9];
    // Chroma crop transform
    float transform_crop_uv[9];
    float transform_debug_rgb[9];
    size_t global_work[2];
    int64_t duration;
    cl_mem src, transformed, dst;
    cl_mem transforms[AV_VIDEO_MAX_PLANES];
    CropInfo crops[AV_VIDEO_MAX_PLANES];
    cl_event transform_event, crop_upscale_event;
    DebugMatches debug_matches;
    cl_int num_model_matches;

    const float center_w = (float)input_frame->width / 2;
    const float center_h = (float)input_frame->height / 2;

    const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(deshake_ctx->sw_format);
    const int chroma_width  = AV_CEIL_RSHIFT(input_frame->width, desc->log2_chroma_w);
    const int chroma_height = AV_CEIL_RSHIFT(input_frame->height, desc->log2_chroma_h);

    const float center_w_chroma = (float)chroma_width / 2;
    const float center_h_chroma = (float)chroma_height / 2;

    const float luma_w_over_chroma_w = ((float)input_frame->width / (float)chroma_width);
    const float luma_h_over_chroma_h = ((float)input_frame->height / (float)chroma_height);

    if (deshake_ctx->debug_on) {
        av_fifo_read(
            deshake_ctx->abs_motion.debug_matches,
            &debug_matches, 1);
    }

    if (input_frame->duration) {
        duration = input_frame->duration;
    } else {
        duration = av_rescale_q(1, av_inv_q(outl->frame_rate), outlink->time_base);
    }
    deshake_ctx->duration = input_frame->pts + duration;

    // Get the absolute transform data for this frame
    for (int i = 0; i < RingbufCount; i++) {
        av_fifo_peek(deshake_ctx->abs_motion.ringbuffers[i],
                     &old_vals[i], 1,
                     deshake_ctx->abs_motion.curr_frame_offset);
    }

    if (deshake_ctx->tripod_mode) {
        // If tripod mode is turned on we simply undo all motion relative to the
        // first frame

        new_vals[RingbufX] = 0.0f;
        new_vals[RingbufY] = 0.0f;
        new_vals[RingbufRot] = 0.0f;
        new_vals[RingbufScaleX] = 1.0f;
        new_vals[RingbufScaleY] = 1.0f;
    } else {
        // Tripod mode is off and we need to smooth a moving camera

        new_vals[RingbufX] = smooth(
            deshake_ctx,
            deshake_ctx->gauss_kernel,
            deshake_ctx->smooth_window,
            input_frame->width,
            deshake_ctx->abs_motion.ringbuffers[RingbufX]
        );
        new_vals[RingbufY] = smooth(
            deshake_ctx,
            deshake_ctx->gauss_kernel,
            deshake_ctx->smooth_window,
            input_frame->height,
            deshake_ctx->abs_motion.ringbuffers[RingbufY]
        );
        new_vals[RingbufRot] = smooth(
            deshake_ctx,
            deshake_ctx->gauss_kernel,
            deshake_ctx->smooth_window,
            M_PI / 4,
            deshake_ctx->abs_motion.ringbuffers[RingbufRot]
        );
        new_vals[RingbufScaleX] = smooth(
            deshake_ctx,
            deshake_ctx->gauss_kernel,
            deshake_ctx->smooth_window,
            2.0f,
            deshake_ctx->abs_motion.ringbuffers[RingbufScaleX]
        );
        new_vals[RingbufScaleY] = smooth(
            deshake_ctx,
            deshake_ctx->gauss_kernel,
            deshake_ctx->smooth_window,
            2.0f,
            deshake_ctx->abs_motion.ringbuffers[RingbufScaleY]
        );
    }

    transform_center_scale(
        old_vals[RingbufX] - new_vals[RingbufX],
        old_vals[RingbufY] - new_vals[RingbufY],
        old_vals[RingbufRot] - new_vals[RingbufRot],
        new_vals[RingbufScaleX] / old_vals[RingbufScaleX],
        new_vals[RingbufScaleY] / old_vals[RingbufScaleY],
        center_w,
        center_h,
        transform_y
    );

    transform_center_scale(
        (old_vals[RingbufX] - new_vals[RingbufX]) / luma_w_over_chroma_w,
        (old_vals[RingbufY] - new_vals[RingbufY]) / luma_h_over_chroma_h,
        old_vals[RingbufRot] - new_vals[RingbufRot],
        new_vals[RingbufScaleX] / old_vals[RingbufScaleX],
        new_vals[RingbufScaleY] / old_vals[RingbufScaleY],
        center_w_chroma,
        center_h_chroma,
        transform_uv
    );

    CL_BLOCKING_WRITE_BUFFER(deshake_ctx->command_queue, deshake_ctx->transform_y, 9 * sizeof(float), transform_y, NULL);
    CL_BLOCKING_WRITE_BUFFER(deshake_ctx->command_queue, deshake_ctx->transform_uv, 9 * sizeof(float), transform_uv, NULL);

    if (deshake_ctx->debug_on)
        transform_debug(avctx, new_vals, old_vals, deshake_ctx->curr_frame);

    cropped_frame = ff_get_video_buffer(outlink, outlink->w, outlink->h);
    if (!cropped_frame) {
        err = AVERROR(ENOMEM);
        goto fail;
    }

    transformed_frame = ff_get_video_buffer(outlink, outlink->w, outlink->h);
    if (!transformed_frame) {
        err = AVERROR(ENOMEM);
        goto fail;
    }

    transforms[0] = deshake_ctx->transform_y;
    transforms[1] = transforms[2] = deshake_ctx->transform_uv;

    for (int p = 0; p < AV_VIDEO_MAX_PLANES; p++) {
        // Transform all of the planes appropriately
        src = (cl_mem)input_frame->data[p];
        transformed = (cl_mem)transformed_frame->data[p];

        if (!transformed)
            break;

        err = ff_opencl_filter_work_size_from_image(avctx, global_work, input_frame, p, 0);
        if (err < 0)
            goto fail;

        CL_RUN_KERNEL_WITH_ARGS(
            deshake_ctx->command_queue,
            deshake_ctx->kernel_transform,
            global_work,
            NULL,
            &transform_event,
            { sizeof(cl_mem), &src },
            { sizeof(cl_mem), &transformed },
            { sizeof(cl_mem), &transforms[p] },
        );
    }

    if (deshake_ctx->debug_on && !deshake_ctx->is_yuv && debug_matches.num_matches > 0) {
        CL_BLOCKING_WRITE_BUFFER(
            deshake_ctx->command_queue,
            deshake_ctx->debug_matches,
            debug_matches.num_matches * sizeof(MotionVector),
            debug_matches.matches,
            NULL
        );

        CL_BLOCKING_WRITE_BUFFER(
            deshake_ctx->command_queue,
            deshake_ctx->debug_model_matches,
            debug_matches.num_model_matches * sizeof(MotionVector),
            debug_matches.model_matches,
            NULL
        );

        num_model_matches = debug_matches.num_model_matches;

        // Invert the transform
        transform_center_scale(
            new_vals[RingbufX] - old_vals[RingbufX],
            new_vals[RingbufY] - old_vals[RingbufY],
            new_vals[RingbufRot] - old_vals[RingbufRot],
            old_vals[RingbufScaleX] / new_vals[RingbufScaleX],
            old_vals[RingbufScaleY] / new_vals[RingbufScaleY],
            center_w,
            center_h,
            transform_debug_rgb
        );

        CL_BLOCKING_WRITE_BUFFER(deshake_ctx->command_queue, deshake_ctx->transform_y, 9 * sizeof(float), transform_debug_rgb, NULL);

        transformed = (cl_mem)transformed_frame->data[0];
        CL_RUN_KERNEL_WITH_ARGS(
            deshake_ctx->command_queue,
            deshake_ctx->kernel_draw_debug_info,
            (size_t[]){ debug_matches.num_matches },
            NULL,
            NULL,
            { sizeof(cl_mem), &transformed },
            { sizeof(cl_mem), &deshake_ctx->debug_matches },
            { sizeof(cl_mem), &deshake_ctx->debug_model_matches },
            { sizeof(cl_int), &num_model_matches },
            { sizeof(cl_mem), &deshake_ctx->transform_y }
        );
    }

    if (deshake_ctx->should_crop) {
        // Generate transforms for cropping
        transform_center_scale(
            (old_vals[RingbufX] - new_vals[RingbufX]) / 5,
            (old_vals[RingbufY] - new_vals[RingbufY]) / 5,
            (old_vals[RingbufRot] - new_vals[RingbufRot]) / 5,
            new_vals[RingbufScaleX] / old_vals[RingbufScaleX],
            new_vals[RingbufScaleY] / old_vals[RingbufScaleY],
            center_w,
            center_h,
            transform_crop_y
        );
        update_needed_crop(&deshake_ctx->crop_y, transform_crop_y, input_frame->width, input_frame->height);

        transform_center_scale(
            (old_vals[RingbufX] - new_vals[RingbufX]) / (5 * luma_w_over_chroma_w),
            (old_vals[RingbufY] - new_vals[RingbufY]) / (5 * luma_h_over_chroma_h),
            (old_vals[RingbufRot] - new_vals[RingbufRot]) / 5,
            new_vals[RingbufScaleX] / old_vals[RingbufScaleX],
            new_vals[RingbufScaleY] / old_vals[RingbufScaleY],
            center_w_chroma,
            center_h_chroma,
            transform_crop_uv
        );
        update_needed_crop(&deshake_ctx->crop_uv, transform_crop_uv, chroma_width, chroma_height);

        crops[0] = deshake_ctx->crop_y;
        crops[1] = crops[2] = deshake_ctx->crop_uv;

        for (int p = 0; p < AV_VIDEO_MAX_PLANES; p++) {
            // Crop all of the planes appropriately
            dst = (cl_mem)cropped_frame->data[p];
            transformed = (cl_mem)transformed_frame->data[p];

            if (!dst)
                break;

            err = ff_opencl_filter_work_size_from_image(avctx, global_work, input_frame, p, 0);
            if (err < 0)
                goto fail;

            CL_RUN_KERNEL_WITH_ARGS(
                deshake_ctx->command_queue,
                deshake_ctx->kernel_crop_upscale,
                global_work,
                NULL,
                &crop_upscale_event,
                { sizeof(cl_mem), &transformed },
                { sizeof(cl_mem), &dst },
                { sizeof(cl_float2), &crops[p].top_left },
                { sizeof(cl_float2), &crops[p].bottom_right },
            );
        }
    }

    if (deshake_ctx->curr_frame < deshake_ctx->smooth_window / 2) {
        // This means we are somewhere at the start of the video. We need to
        // increment the current frame offset until it reaches the center of
        // the ringbuffers (as the current frame will be located there for
        // the rest of the video).
        //
        // The end of the video is taken care of by draining motion data
        // one-by-one out of the buffer, causing the (at that point fixed)
        // offset to move towards later frames' data.
        ++deshake_ctx->abs_motion.curr_frame_offset;
    }

    if (deshake_ctx->abs_motion.data_end_offset != -1) {
        // Keep the end offset in sync with the frame it's supposed to be
        // positioned at
        --deshake_ctx->abs_motion.data_end_offset;

        if (deshake_ctx->abs_motion.data_end_offset == deshake_ctx->abs_motion.curr_frame_offset - 1) {
            // The end offset would be the start of the new video sequence; flip to
            // start offset
            deshake_ctx->abs_motion.data_end_offset = -1;
            deshake_ctx->abs_motion.data_start_offset = deshake_ctx->abs_motion.curr_frame_offset;
        }
    } else if (deshake_ctx->abs_motion.data_start_offset != -1) {
        // Keep the start offset in sync with the frame it's supposed to be
        // positioned at
        --deshake_ctx->abs_motion.data_start_offset;
    }

    if (deshake_ctx->debug_on) {
        deshake_ctx->transform_time += ff_opencl_get_event_time(transform_event);
        if (deshake_ctx->should_crop) {
            deshake_ctx->crop_upscale_time += ff_opencl_get_event_time(crop_upscale_event);
        }
    }

    ++deshake_ctx->curr_frame;

    if (deshake_ctx->debug_on)
        av_freep(&debug_matches.matches);

    if (deshake_ctx->should_crop) {
        err = av_frame_copy_props(cropped_frame, input_frame);
        if (err < 0)
            goto fail;

        av_frame_free(&transformed_frame);
        av_frame_free(&input_frame);
        return ff_filter_frame(outlink, cropped_frame);

    } else {
        err = av_frame_copy_props(transformed_frame, input_frame);
        if (err < 0)
            goto fail;

        av_frame_free(&cropped_frame);
        av_frame_free(&input_frame);
        return ff_filter_frame(outlink, transformed_frame);
    }

fail:
    clFinish(deshake_ctx->command_queue);

    if (deshake_ctx->debug_on)
        if (debug_matches.matches)
            av_freep(&debug_matches.matches);

    av_frame_free(&input_frame);
    av_frame_free(&transformed_frame);
    av_frame_free(&cropped_frame);
    return err;
}

// Add the given frame to the frame queue to eventually be processed.
//
// Also determines the motion from the previous frame and updates the stored
// motion information accordingly.
static int queue_frame(AVFilterLink *link, AVFrame *input_frame)
{
    AVFilterContext *avctx = link->dst;
    DeshakeOpenCLContext *deshake_ctx = avctx->priv;
    int err;
    int num_vectors;
    int num_inliers = 0;
    cl_int cle;
    FrameDelta relative;
    SimilarityMatrix model;
    size_t global_work[2];
    size_t harris_global_work[2];
    size_t grid_32_global_work[2];
    int grid_32_h, grid_32_w;
    size_t local_work[2];
    cl_mem src, temp;
    float prev_vals[5];
    float new_vals[5];
    cl_event grayscale_event, harris_response_event, refine_features_event,
             brief_event, match_descriptors_event, read_buf_event;
    DebugMatches debug_matches;

    num_vectors = 0;

    local_work[0] = 8;
    local_work[1] = 8;

    err = ff_opencl_filter_work_size_from_image(avctx, global_work, input_frame, 0, 0);
    if (err < 0)
        goto fail;

    err = ff_opencl_filter_work_size_from_image(avctx, harris_global_work, input_frame, 0, 8);
    if (err < 0)
        goto fail;

    err = ff_opencl_filter_work_size_from_image(avctx, grid_32_global_work, input_frame, 0, 32);
    if (err < 0)
        goto fail;

    // We want a single work-item for each 32x32 block of pixels in the input frame
    grid_32_global_work[0] /= 32;
    grid_32_global_work[1] /= 32;

    grid_32_h = ROUNDED_UP_DIV(input_frame->height, 32);
    grid_32_w = ROUNDED_UP_DIV(input_frame->width, 32);

    if (deshake_ctx->is_yuv) {
        deshake_ctx->grayscale = (cl_mem)input_frame->data[0];
    } else {
        src = (cl_mem)input_frame->data[0];

        CL_RUN_KERNEL_WITH_ARGS(
            deshake_ctx->command_queue,
            deshake_ctx->kernel_grayscale,
            global_work,
            NULL,
            &grayscale_event,
            { sizeof(cl_mem), &src },
            { sizeof(cl_mem), &deshake_ctx->grayscale }
        );
    }

    CL_RUN_KERNEL_WITH_ARGS(
        deshake_ctx->command_queue,
        deshake_ctx->kernel_harris_response,
        harris_global_work,
        local_work,
        &harris_response_event,
        { sizeof(cl_mem), &deshake_ctx->grayscale },
        { sizeof(cl_mem), &deshake_ctx->harris_buf }
    );

    CL_RUN_KERNEL_WITH_ARGS(
        deshake_ctx->command_queue,
        deshake_ctx->kernel_refine_features,
        grid_32_global_work,
        NULL,
        &refine_features_event,
        { sizeof(cl_mem), &deshake_ctx->grayscale },
        { sizeof(cl_mem), &deshake_ctx->harris_buf },
        { sizeof(cl_mem), &deshake_ctx->refined_features },
        { sizeof(cl_int), &deshake_ctx->refine_features }
    );

    CL_RUN_KERNEL_WITH_ARGS(
        deshake_ctx->command_queue,
        deshake_ctx->kernel_brief_descriptors,
        grid_32_global_work,
        NULL,
        &brief_event,
        { sizeof(cl_mem), &deshake_ctx->grayscale },
        { sizeof(cl_mem), &deshake_ctx->refined_features },
        { sizeof(cl_mem), &deshake_ctx->descriptors },
        { sizeof(cl_mem), &deshake_ctx->brief_pattern}
    );

    if (!av_fifo_can_read(deshake_ctx->abs_motion.ringbuffers[RingbufX])) {
        // This is the first frame we've been given to queue, meaning there is
        // no previous frame to match descriptors to

        goto no_motion_data;
    }

    CL_RUN_KERNEL_WITH_ARGS(
        deshake_ctx->command_queue,
        deshake_ctx->kernel_match_descriptors,
        grid_32_global_work,
        NULL,
        &match_descriptors_event,
        { sizeof(cl_mem), &deshake_ctx->prev_refined_features },
        { sizeof(cl_mem), &deshake_ctx->refined_features },
        { sizeof(cl_mem), &deshake_ctx->descriptors },
        { sizeof(cl_mem), &deshake_ctx->prev_descriptors },
        { sizeof(cl_mem), &deshake_ctx->matches }
    );

    cle = clEnqueueReadBuffer(
        deshake_ctx->command_queue,
        deshake_ctx->matches,
        CL_TRUE,
        0,
        grid_32_h * grid_32_w * sizeof(MotionVector),
        deshake_ctx->matches_host,
        0,
        NULL,
        &read_buf_event
    );
    CL_FAIL_ON_ERROR(AVERROR(EIO), "Failed to read matches to host: %d.\n", cle);

    num_vectors = make_vectors_contig(deshake_ctx, grid_32_h, grid_32_w);

    if (num_vectors < 10) {
        // Not enough matches to get reliable motion data for this frame
        //
        // From this point on all data is relative to this frame rather than the
        // original frame. We have to make sure that we don't mix values that were
        // relative to the original frame with the new values relative to this
        // frame when doing the gaussian smoothing. We keep track of where the old
        // values end using this data_end_offset field in order to accomplish
        // that goal.
        //
        // If no motion data is present for multiple frames in a short window of
        // time, we leave the end where it was to avoid mixing 0s in with the
        // old data (and just treat them all as part of the new values)
        if (deshake_ctx->abs_motion.data_end_offset == -1) {
            deshake_ctx->abs_motion.data_end_offset =
                av_fifo_can_read(deshake_ctx->abs_motion.ringbuffers[RingbufX]) - 1;
        }

        goto no_motion_data;
    }

    if (!estimate_affine_2d(
        deshake_ctx,
        deshake_ctx->matches_contig_host,
        &debug_matches,
        num_vectors,
        model.matrix,
        10.0,
        3000,
        0.999999999999
    )) {
        goto no_motion_data;
    }

    for (int i = 0; i < num_vectors; i++) {
        if (deshake_ctx->matches_contig_host[i].should_consider) {
            deshake_ctx->inliers[num_inliers] = deshake_ctx->matches_contig_host[i];
            num_inliers++;
        }
    }

    if (!minimize_error(
        deshake_ctx,
        deshake_ctx->inliers,
        &debug_matches,
        num_inliers,
        model.matrix,
        400
    )) {
        goto no_motion_data;
    }


    relative = decompose_transform(model.matrix);

    // Get the absolute transform data for the previous frame
    for (int i = 0; i < RingbufCount; i++) {
        av_fifo_peek(
            deshake_ctx->abs_motion.ringbuffers[i],
            &prev_vals[i], 1,
            av_fifo_can_read(deshake_ctx->abs_motion.ringbuffers[i]) - 1);
    }

    new_vals[RingbufX]      = prev_vals[RingbufX] + relative.translation.s[0];
    new_vals[RingbufY]      = prev_vals[RingbufY] + relative.translation.s[1];
    new_vals[RingbufRot]    = prev_vals[RingbufRot] + relative.rotation;
    new_vals[RingbufScaleX] = prev_vals[RingbufScaleX] / relative.scale.s[0];
    new_vals[RingbufScaleY] = prev_vals[RingbufScaleY] / relative.scale.s[1];

    if (deshake_ctx->debug_on) {
        if (!deshake_ctx->is_yuv) {
            deshake_ctx->grayscale_time     += ff_opencl_get_event_time(grayscale_event);
        }
        deshake_ctx->harris_response_time   += ff_opencl_get_event_time(harris_response_event);
        deshake_ctx->refine_features_time   += ff_opencl_get_event_time(refine_features_event);
        deshake_ctx->brief_descriptors_time += ff_opencl_get_event_time(brief_event);
        deshake_ctx->match_descriptors_time += ff_opencl_get_event_time(match_descriptors_event);
        deshake_ctx->read_buf_time          += ff_opencl_get_event_time(read_buf_event);
    }

    goto end;

no_motion_data:
    new_vals[RingbufX]      = 0.0f;
    new_vals[RingbufY]      = 0.0f;
    new_vals[RingbufRot]    = 0.0f;
    new_vals[RingbufScaleX] = 1.0f;
    new_vals[RingbufScaleY] = 1.0f;

    for (int i = 0; i < num_vectors; i++) {
        deshake_ctx->matches_contig_host[i].should_consider = 0;
    }
    debug_matches.num_model_matches = 0;

    if (deshake_ctx->debug_on) {
        av_log(avctx, AV_LOG_VERBOSE,
            "\n[ALERT] No motion data found in queue_frame, motion reset to 0\n\n"
        );
    }

    goto end;

end:
    // Swap the descriptor buffers (we don't need the previous frame's descriptors
    // again so we will use that space for the next frame's descriptors)
    temp = deshake_ctx->prev_descriptors;
    deshake_ctx->prev_descriptors = deshake_ctx->descriptors;
    deshake_ctx->descriptors = temp;

    // Same for the refined features
    temp = deshake_ctx->prev_refined_features;
    deshake_ctx->prev_refined_features = deshake_ctx->refined_features;
    deshake_ctx->refined_features = temp;

    if (deshake_ctx->debug_on) {
        if (num_vectors == 0) {
            debug_matches.matches = NULL;
        } else {
            debug_matches.matches = av_malloc_array(num_vectors, sizeof(MotionVector));

            if (!debug_matches.matches) {
                err = AVERROR(ENOMEM);
                goto fail;
            }
        }

        for (int i = 0; i < num_vectors; i++) {
            debug_matches.matches[i] = deshake_ctx->matches_contig_host[i];
        }
        debug_matches.num_matches = num_vectors;

        av_fifo_write(
            deshake_ctx->abs_motion.debug_matches,
            &debug_matches, 1);
    }

    for (int i = 0; i < RingbufCount; i++) {
        av_fifo_write(deshake_ctx->abs_motion.ringbuffers[i], &new_vals[i], 1);
    }

    return ff_framequeue_add(&deshake_ctx->fq, input_frame);

fail:
    clFinish(deshake_ctx->command_queue);
    av_frame_free(&input_frame);
    return err;
}

static int activate(AVFilterContext *ctx)
{
    AVFilterLink *inlink = ctx->inputs[0];
    AVFilterLink *outlink = ctx->outputs[0];
    DeshakeOpenCLContext *deshake_ctx = ctx->priv;
    AVFrame *frame = NULL;
    int ret, status;
    int64_t pts;

    FF_FILTER_FORWARD_STATUS_BACK(outlink, inlink);

    if (!deshake_ctx->eof) {
        ret = ff_inlink_consume_frame(inlink, &frame);
        if (ret < 0)
            return ret;
        if (ret > 0) {
            if (!frame->hw_frames_ctx)
                return AVERROR(EINVAL);

            if (!deshake_ctx->initialized) {
                ret = deshake_opencl_init(ctx);
                if (ret < 0)
                    return ret;
            }

            // If there is no more space in the ringbuffers, remove the oldest
            // values to make room for the new ones
            if (!av_fifo_can_write(deshake_ctx->abs_motion.ringbuffers[RingbufX])) {
                for (int i = 0; i < RingbufCount; i++) {
                    av_fifo_drain2(deshake_ctx->abs_motion.ringbuffers[i], 1);
                }
            }
            ret = queue_frame(inlink, frame);
            if (ret < 0)
                return ret;
            if (ret >= 0) {
                // See if we have enough buffered frames to process one
                //
                // "enough" is half the smooth window of queued frames into the future
                if (ff_framequeue_queued_frames(&deshake_ctx->fq) >= deshake_ctx->smooth_window / 2) {
                    return filter_frame(inlink, ff_framequeue_take(&deshake_ctx->fq));
                }
            }
        }
    }

    if (!deshake_ctx->eof && ff_inlink_acknowledge_status(inlink, &status, &pts)) {
        if (status == AVERROR_EOF) {
            deshake_ctx->eof = 1;
        }
    }

    if (deshake_ctx->eof) {
        // Finish processing the rest of the frames in the queue.
        while(ff_framequeue_queued_frames(&deshake_ctx->fq) != 0) {
            for (int i = 0; i < RingbufCount; i++) {
                av_fifo_drain2(deshake_ctx->abs_motion.ringbuffers[i], 1);
            }

            ret = filter_frame(inlink, ff_framequeue_take(&deshake_ctx->fq));
            if (ret < 0) {
                return ret;
            }
        }

        if (deshake_ctx->debug_on) {
            av_log(ctx, AV_LOG_VERBOSE,
                "Average kernel execution times:\n"
                "\t        grayscale: %0.3f ms\n"
                "\t  harris_response: %0.3f ms\n"
                "\t  refine_features: %0.3f ms\n"
                "\tbrief_descriptors: %0.3f ms\n"
                "\tmatch_descriptors: %0.3f ms\n"
                "\t        transform: %0.3f ms\n"
                "\t     crop_upscale: %0.3f ms\n"
                "Average buffer read times:\n"
                "\t     features buf: %0.3f ms\n",
                averaged_event_time_ms(deshake_ctx->grayscale_time, deshake_ctx->curr_frame),
                averaged_event_time_ms(deshake_ctx->harris_response_time, deshake_ctx->curr_frame),
                averaged_event_time_ms(deshake_ctx->refine_features_time, deshake_ctx->curr_frame),
                averaged_event_time_ms(deshake_ctx->brief_descriptors_time, deshake_ctx->curr_frame),
                averaged_event_time_ms(deshake_ctx->match_descriptors_time, deshake_ctx->curr_frame),
                averaged_event_time_ms(deshake_ctx->transform_time, deshake_ctx->curr_frame),
                averaged_event_time_ms(deshake_ctx->crop_upscale_time, deshake_ctx->curr_frame),
                averaged_event_time_ms(deshake_ctx->read_buf_time, deshake_ctx->curr_frame)
            );
        }

        ff_outlink_set_status(outlink, AVERROR_EOF, deshake_ctx->duration);
        return 0;
    }

    if (!deshake_ctx->eof) {
        FF_FILTER_FORWARD_WANTED(outlink, inlink);
    }

    return FFERROR_NOT_READY;
}

static const AVFilterPad deshake_opencl_inputs[] = {
    {
        .name = "default",
        .type = AVMEDIA_TYPE_VIDEO,
        .config_props = &ff_opencl_filter_config_input,
    },
};

static const AVFilterPad deshake_opencl_outputs[] = {
    {
        .name = "default",
        .type = AVMEDIA_TYPE_VIDEO,
        .config_props = &ff_opencl_filter_config_output,
    },
};

#define OFFSET(x) offsetof(DeshakeOpenCLContext, x)
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM

static const AVOption deshake_opencl_options[] = {
    {
        "tripod", "simulates a tripod by preventing any camera movement whatsoever "
        "from the original frame",
        OFFSET(tripod_mode), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, FLAGS
    },
    {
        "debug", "turn on additional debugging information",
        OFFSET(debug_on), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, FLAGS
    },
    {
        "adaptive_crop", "attempt to subtly crop borders to reduce mirrored content",
        OFFSET(should_crop), AV_OPT_TYPE_BOOL, {.i64 = 1}, 0, 1, FLAGS
    },
    {
        "refine_features", "refine feature point locations at a sub-pixel level",
        OFFSET(refine_features), AV_OPT_TYPE_BOOL, {.i64 = 1}, 0, 1, FLAGS
    },
    {
        "smooth_strength", "smoothing strength (0 attempts to adaptively determine optimal strength)",
        OFFSET(smooth_percent), AV_OPT_TYPE_FLOAT, {.dbl = 0.0f}, 0.0f, 1.0f, FLAGS
    },
    {
        "smooth_window_multiplier", "multiplier for number of frames to buffer for motion data",
        OFFSET(smooth_window_multiplier), AV_OPT_TYPE_FLOAT, {.dbl = 2.0}, 0.1, 10.0, FLAGS
    },
    { NULL }
};

AVFILTER_DEFINE_CLASS(deshake_opencl);

const AVFilter ff_vf_deshake_opencl = {
    .name           = "deshake_opencl",
    .description    = NULL_IF_CONFIG_SMALL("Feature-point based video stabilization filter"),
    .priv_size      = sizeof(DeshakeOpenCLContext),
    .priv_class     = &deshake_opencl_class,
    .init           = &ff_opencl_filter_init,
    .uninit         = &deshake_opencl_uninit,
    .activate       = activate,
    FILTER_INPUTS(deshake_opencl_inputs),
    FILTER_OUTPUTS(deshake_opencl_outputs),
    FILTER_SINGLE_PIXFMT(AV_PIX_FMT_OPENCL),
    .flags_internal = FF_FILTER_FLAG_HWFRAME_AWARE,
    .flags          = AVFILTER_FLAG_HWDEVICE,
};