aboutsummaryrefslogtreecommitdiffstats
path: root/libavfilter/vf_curves.c
blob: dc399cf846b0daa47a63976905a3d9fceef8acf4 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
/*
 * Copyright (c) 2013 Clément Bœsch
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

#include "libavutil/mem.h"
#include "libavutil/opt.h"
#include "libavutil/bprint.h"
#include "libavutil/eval.h"
#include "libavutil/file.h"
#include "libavutil/file_open.h"
#include "libavutil/intreadwrite.h"
#include "libavutil/avassert.h"
#include "libavutil/pixdesc.h"
#include "avfilter.h"
#include "drawutils.h"
#include "filters.h"
#include "video.h"

#define R 0
#define G 1
#define B 2
#define A 3

struct keypoint {
    double x, y;
    struct keypoint *next;
};

#define NB_COMP 3

enum preset {
    PRESET_NONE,
    PRESET_COLOR_NEGATIVE,
    PRESET_CROSS_PROCESS,
    PRESET_DARKER,
    PRESET_INCREASE_CONTRAST,
    PRESET_LIGHTER,
    PRESET_LINEAR_CONTRAST,
    PRESET_MEDIUM_CONTRAST,
    PRESET_NEGATIVE,
    PRESET_STRONG_CONTRAST,
    PRESET_VINTAGE,
    NB_PRESETS,
};

enum interp {
    INTERP_NATURAL,
    INTERP_PCHIP,
    NB_INTERPS,
};

typedef struct CurvesContext {
    const AVClass *class;
    int preset;
    char *comp_points_str[NB_COMP + 1];
    char *comp_points_str_all;
    uint16_t *graph[NB_COMP + 1];
    int lut_size;
    char *psfile;
    uint8_t rgba_map[4];
    int step;
    char *plot_filename;
    int saved_plot;
    int is_16bit;
    int depth;
    int parsed_psfile;
    int interp;

    int (*filter_slice)(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs);
} CurvesContext;

typedef struct ThreadData {
    AVFrame *in, *out;
} ThreadData;

#define OFFSET(x) offsetof(CurvesContext, x)
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
static const AVOption curves_options[] = {
    { "preset", "select a color curves preset", OFFSET(preset), AV_OPT_TYPE_INT, {.i64=PRESET_NONE}, PRESET_NONE, NB_PRESETS-1, FLAGS, .unit = "preset_name" },
        { "none",               NULL, 0, AV_OPT_TYPE_CONST, {.i64=PRESET_NONE},                 0, 0, FLAGS, .unit = "preset_name" },
        { "color_negative",     NULL, 0, AV_OPT_TYPE_CONST, {.i64=PRESET_COLOR_NEGATIVE},       0, 0, FLAGS, .unit = "preset_name" },
        { "cross_process",      NULL, 0, AV_OPT_TYPE_CONST, {.i64=PRESET_CROSS_PROCESS},        0, 0, FLAGS, .unit = "preset_name" },
        { "darker",             NULL, 0, AV_OPT_TYPE_CONST, {.i64=PRESET_DARKER},               0, 0, FLAGS, .unit = "preset_name" },
        { "increase_contrast",  NULL, 0, AV_OPT_TYPE_CONST, {.i64=PRESET_INCREASE_CONTRAST},    0, 0, FLAGS, .unit = "preset_name" },
        { "lighter",            NULL, 0, AV_OPT_TYPE_CONST, {.i64=PRESET_LIGHTER},              0, 0, FLAGS, .unit = "preset_name" },
        { "linear_contrast",    NULL, 0, AV_OPT_TYPE_CONST, {.i64=PRESET_LINEAR_CONTRAST},      0, 0, FLAGS, .unit = "preset_name" },
        { "medium_contrast",    NULL, 0, AV_OPT_TYPE_CONST, {.i64=PRESET_MEDIUM_CONTRAST},      0, 0, FLAGS, .unit = "preset_name" },
        { "negative",           NULL, 0, AV_OPT_TYPE_CONST, {.i64=PRESET_NEGATIVE},             0, 0, FLAGS, .unit = "preset_name" },
        { "strong_contrast",    NULL, 0, AV_OPT_TYPE_CONST, {.i64=PRESET_STRONG_CONTRAST},      0, 0, FLAGS, .unit = "preset_name" },
        { "vintage",            NULL, 0, AV_OPT_TYPE_CONST, {.i64=PRESET_VINTAGE},              0, 0, FLAGS, .unit = "preset_name" },
    { "master","set master points coordinates",OFFSET(comp_points_str[NB_COMP]), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS },
    { "m",     "set master points coordinates",OFFSET(comp_points_str[NB_COMP]), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS },
    { "red",   "set red points coordinates",   OFFSET(comp_points_str[0]), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS },
    { "r",     "set red points coordinates",   OFFSET(comp_points_str[0]), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS },
    { "green", "set green points coordinates", OFFSET(comp_points_str[1]), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS },
    { "g",     "set green points coordinates", OFFSET(comp_points_str[1]), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS },
    { "blue",  "set blue points coordinates",  OFFSET(comp_points_str[2]), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS },
    { "b",     "set blue points coordinates",  OFFSET(comp_points_str[2]), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS },
    { "all",   "set points coordinates for all components", OFFSET(comp_points_str_all), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS },
    { "psfile", "set Photoshop curves file name", OFFSET(psfile), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS },
    { "plot", "save Gnuplot script of the curves in specified file", OFFSET(plot_filename), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS },
    { "interp", "specify the kind of interpolation", OFFSET(interp), AV_OPT_TYPE_INT, {.i64=INTERP_NATURAL}, INTERP_NATURAL, NB_INTERPS-1, FLAGS, .unit = "interp_name" },
    { "natural", "natural cubic spline", 0, AV_OPT_TYPE_CONST, {.i64=INTERP_NATURAL}, 0, 0, FLAGS, .unit = "interp_name" },
    { "pchip",   "monotonically cubic interpolation", 0, AV_OPT_TYPE_CONST, {.i64=INTERP_PCHIP},   0, 0, FLAGS, .unit = "interp_name" },
    { NULL }
};

AVFILTER_DEFINE_CLASS(curves);

static const struct {
    const char *r;
    const char *g;
    const char *b;
    const char *master;
} curves_presets[] = {
    [PRESET_COLOR_NEGATIVE] = {
        "0.129/1 0.466/0.498 0.725/0",
        "0.109/1 0.301/0.498 0.517/0",
        "0.098/1 0.235/0.498 0.423/0",
    },
    [PRESET_CROSS_PROCESS] = {
        "0/0 0.25/0.156 0.501/0.501 0.686/0.745 1/1",
        "0/0 0.25/0.188 0.38/0.501 0.745/0.815 1/0.815",
        "0/0 0.231/0.094 0.709/0.874 1/1",
    },
    [PRESET_DARKER]             = { .master = "0/0 0.5/0.4 1/1" },
    [PRESET_INCREASE_CONTRAST]  = { .master = "0/0 0.149/0.066 0.831/0.905 0.905/0.98 1/1" },
    [PRESET_LIGHTER]            = { .master = "0/0 0.4/0.5 1/1" },
    [PRESET_LINEAR_CONTRAST]    = { .master = "0/0 0.305/0.286 0.694/0.713 1/1" },
    [PRESET_MEDIUM_CONTRAST]    = { .master = "0/0 0.286/0.219 0.639/0.643 1/1" },
    [PRESET_NEGATIVE]           = { .master = "0/1 1/0" },
    [PRESET_STRONG_CONTRAST]    = { .master = "0/0 0.301/0.196 0.592/0.6 0.686/0.737 1/1" },
    [PRESET_VINTAGE] = {
        "0/0.11 0.42/0.51 1/0.95",
        "0/0 0.50/0.48 1/1",
        "0/0.22 0.49/0.44 1/0.8",
    }
};

static struct keypoint *make_point(double x, double y, struct keypoint *next)
{
    struct keypoint *point = av_mallocz(sizeof(*point));

    if (!point)
        return NULL;
    point->x = x;
    point->y = y;
    point->next = next;
    return point;
}

static int parse_points_str(AVFilterContext *ctx, struct keypoint **points, const char *s,
                            int lut_size)
{
    char *p = (char *)s; // strtod won't alter the string
    struct keypoint *last = NULL;
    const int scale = lut_size - 1;

    /* construct a linked list based on the key points string */
    while (p && *p) {
        struct keypoint *point = make_point(0, 0, NULL);
        if (!point)
            return AVERROR(ENOMEM);
        point->x = av_strtod(p, &p); if (p && *p) p++;
        point->y = av_strtod(p, &p); if (p && *p) p++;
        if (point->x < 0 || point->x > 1 || point->y < 0 || point->y > 1) {
            av_log(ctx, AV_LOG_ERROR, "Invalid key point coordinates (%f;%f), "
                   "x and y must be in the [0;1] range.\n", point->x, point->y);
            av_free(point);
            return AVERROR(EINVAL);
        }
        if (last) {
            if ((int)(last->x * scale) >= (int)(point->x * scale)) {
                av_log(ctx, AV_LOG_ERROR, "Key point coordinates (%f;%f) "
                       "and (%f;%f) are too close from each other or not "
                       "strictly increasing on the x-axis\n",
                       last->x, last->y, point->x, point->y);
                av_free(point);
                return AVERROR(EINVAL);
            }
            last->next = point;
        }
        if (!*points)
            *points = point;
        last = point;
    }

    if (*points && !(*points)->next) {
        av_log(ctx, AV_LOG_WARNING, "Only one point (at (%f;%f)) is defined, "
               "this is unlikely to behave as you expect. You probably want"
               "at least 2 points.",
               (*points)->x, (*points)->y);
    }

    return 0;
}

static int get_nb_points(const struct keypoint *d)
{
    int n = 0;
    while (d) {
        n++;
        d = d->next;
    }
    return n;
}

/**
 * Natural cubic spline interpolation
 * Finding curves using Cubic Splines notes by Steven Rauch and John Stockie.
 * @see http://people.math.sfu.ca/~stockie/teaching/macm316/notes/splines.pdf
 */

#define CLIP(v) (nbits == 8 ? av_clip_uint8(v) : av_clip_uintp2_c(v, nbits))

static inline int interpolate(void *log_ctx, uint16_t *y,
                              const struct keypoint *points, int nbits)
{
    int i, ret = 0;
    const struct keypoint *point = points;
    double xprev = 0;
    const int lut_size = 1<<nbits;
    const int scale = lut_size - 1;

    double (*matrix)[3];
    double *h, *r;
    const int n = get_nb_points(points); // number of splines

    if (n == 0) {
        for (i = 0; i < lut_size; i++)
            y[i] = i;
        return 0;
    }

    if (n == 1) {
        for (i = 0; i < lut_size; i++)
            y[i] = CLIP(point->y * scale);
        return 0;
    }

    matrix = av_calloc(n, sizeof(*matrix));
    h = av_malloc((n - 1) * sizeof(*h));
    r = av_calloc(n, sizeof(*r));

    if (!matrix || !h || !r) {
        ret = AVERROR(ENOMEM);
        goto end;
    }

    /* h(i) = x(i+1) - x(i) */
    i = -1;
    for (point = points; point; point = point->next) {
        if (i != -1)
            h[i] = point->x - xprev;
        xprev = point->x;
        i++;
    }

    /* right-side of the polynomials, will be modified to contains the solution */
    point = points;
    for (i = 1; i < n - 1; i++) {
        const double yp = point->y;
        const double yc = point->next->y;
        const double yn = point->next->next->y;
        r[i] = 6 * ((yn-yc)/h[i] - (yc-yp)/h[i-1]);
        point = point->next;
    }

#define BD 0 /* sub  diagonal (below main) */
#define MD 1 /* main diagonal (center) */
#define AD 2 /* sup  diagonal (above main) */

    /* left side of the polynomials into a tridiagonal matrix. */
    matrix[0][MD] = matrix[n - 1][MD] = 1;
    for (i = 1; i < n - 1; i++) {
        matrix[i][BD] = h[i-1];
        matrix[i][MD] = 2 * (h[i-1] + h[i]);
        matrix[i][AD] = h[i];
    }

    /* tridiagonal solving of the linear system */
    for (i = 1; i < n; i++) {
        const double den = matrix[i][MD] - matrix[i][BD] * matrix[i-1][AD];
        const double k = den ? 1./den : 1.;
        matrix[i][AD] *= k;
        r[i] = (r[i] - matrix[i][BD] * r[i - 1]) * k;
    }
    for (i = n - 2; i >= 0; i--)
        r[i] = r[i] - matrix[i][AD] * r[i + 1];

    point = points;

    /* left padding */
    for (i = 0; i < (int)(point->x * scale); i++)
        y[i] = CLIP(point->y * scale);

    /* compute the graph with x=[x0..xN] */
    i = 0;
    av_assert0(point->next); // always at least 2 key points
    while (point->next) {
        const double yc = point->y;
        const double yn = point->next->y;

        const double a = yc;
        const double b = (yn-yc)/h[i] - h[i]*r[i]/2. - h[i]*(r[i+1]-r[i])/6.;
        const double c = r[i] / 2.;
        const double d = (r[i+1] - r[i]) / (6.*h[i]);

        int x;
        const int x_start = point->x       * scale;
        const int x_end   = point->next->x * scale;

        av_assert0(x_start >= 0 && x_start < lut_size &&
                   x_end   >= 0 && x_end   < lut_size);

        for (x = x_start; x <= x_end; x++) {
            const double xx = (x - x_start) * 1./scale;
            const double yy = a + b*xx + c*xx*xx + d*xx*xx*xx;
            y[x] = CLIP(yy * scale);
            av_log(log_ctx, AV_LOG_DEBUG, "f(%f)=%f -> y[%d]=%d\n", xx, yy, x, y[x]);
        }

        point = point->next;
        i++;
    }

    /* right padding */
    for (i = (int)(point->x * scale); i < lut_size; i++)
        y[i] = CLIP(point->y * scale);

end:
    av_free(matrix);
    av_free(h);
    av_free(r);
    return ret;

}

#define SIGN(x) (x > 0.0 ? 1 : x < 0.0 ? -1 : 0)

/**
 * Evalaute the derivative of an edge endpoint
 *
 * @param h0 input interval of the interval closest to the edge
 * @param h1 input interval of the interval next to the closest
 * @param m0 linear slope of the interval closest to the edge
 * @param m1 linear slope of the intervalnext to the closest
 * @return edge endpoint derivative
 *
 * Based on scipy.interpolate._edge_case()
 *    https://github.com/scipy/scipy/blob/2e5883ef7af4f5ed4a5b80a1759a45e43163bf3f/scipy/interpolate/_cubic.py#L239
 *    which is a python implementation of the special case endpoints, as suggested in
 *    Cleve Moler, Numerical Computing with MATLAB, Chap 3.6 (pchiptx.m)
*/
static double pchip_edge_case(double h0, double h1, double m0, double m1)
{
    int mask, mask2;
    double d;

    d = ((2 * h0 + h1) * m0 - h0 * m1) / (h0 + h1);

    mask = SIGN(d) != SIGN(m0);
    mask2 = (SIGN(m0) != SIGN(m1)) && (fabs(d) > 3. * fabs(m0));

    if (mask) d = 0.0;
    else if (mask2) d = 3.0 * m0;

    return d;
}

/**
 * Evalaute the piecewise polynomial derivatives at endpoints
 *
 * @param n input interval of the interval closest to the edge
 * @param hk input intervals
 * @param mk linear slopes over intervals
 * @param dk endpoint derivatives (output)
 * @return 0 success
 *
 * Based on scipy.interpolate._find_derivatives()
 *    https://github.com/scipy/scipy/blob/2e5883ef7af4f5ed4a5b80a1759a45e43163bf3f/scipy/interpolate/_cubic.py#L254
*/

static int pchip_find_derivatives(const int n, const double *hk, const double *mk, double *dk)
{
    int ret = 0;
    const int m = n - 1;
    int8_t *smk;

    smk = av_malloc(n);
    if (!smk) {
        ret = AVERROR(ENOMEM);
        goto end;
    }

    /* smk = sgn(mk) */
    for (int i = 0; i < n; i++) smk[i] = SIGN(mk[i]);

    /* check the strict monotonicity */
    for (int i = 0; i < m; i++) {
        int8_t condition = (smk[i + 1] != smk[i]) || (mk[i + 1] == 0) || (mk[i] == 0);
        if (condition) {
            dk[i + 1] = 0.0;
        } else {
            double w1 = 2 * hk[i + 1] + hk[i];
            double w2 = hk[i + 1] + 2 * hk[i];
            dk[i + 1] = (w1 + w2) / (w1 / mk[i] + w2 / mk[i + 1]);
        }
    }

    dk[0] = pchip_edge_case(hk[0], hk[1], mk[0], mk[1]);
    dk[n] = pchip_edge_case(hk[n - 1], hk[n - 2], mk[n - 1], mk[n - 2]);

end:
    av_free(smk);

    return ret;
}

/**
 * Evalaute half of the cubic hermite interpolation expression, wrt one interval endpoint
 *
 * @param x normalized input value at the endpoint
 * @param f output value at the endpoint
 * @param d derivative at the endpoint: normalized to the interval, and properly sign adjusted
 * @return half of the interpolated value
*/
static inline double interp_cubic_hermite_half(const double x, const double f,
                                               const double d)
{
    double x2 = x * x, x3 = x2 * x;
    return f * (3.0 * x2 - 2.0 * x3) + d * (x3 - x2);
}

/**
 * Prepare the lookup table by piecewise monotonic cubic interpolation (PCHIP)
 *
 * @param log_ctx for logging
 * @param y output lookup table (output)
 * @param points user-defined control points/endpoints
 * @param nbits bitdepth
 * @return 0 success
 *
 * References:
 *    [1] F. N. Fritsch and J. Butland, A method for constructing local monotone piecewise
 *        cubic interpolants, SIAM J. Sci. Comput., 5(2), 300-304 (1984). DOI:10.1137/0905021.
 *    [2] scipy.interpolate: https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.PchipInterpolator.html
*/
static inline int interpolate_pchip(void *log_ctx, uint16_t *y,
                                    const struct keypoint *points, int nbits)
{
    const struct keypoint *point = points;
    const int lut_size = 1<<nbits;
    const int n = get_nb_points(points); // number of endpoints
    double *xi, *fi, *di, *hi, *mi;
    const int scale = lut_size - 1; // white value
    uint16_t x; /* input index/value */
    int ret = 0;

    /* no change for n = 0 or 1 */
    if (n == 0) {
        /* no points, no change */
        for (int i = 0; i < lut_size; i++) y[i] = i;
        return 0;
    }

    if (n == 1) {
        /* 1 point - 1 color everywhere */
        const uint16_t yval = CLIP(point->y * scale);
        for (int i = 0; i < lut_size; i++) y[i] = yval;
        return 0;
    }

    xi = av_calloc(3*n + 2*(n-1), sizeof(double)); /* output values at interval endpoints */
    if (!xi) {
        ret = AVERROR(ENOMEM);
        goto end;
    }

    fi = xi + n;     /* output values at inteval endpoints */
    di = fi + n;     /* output slope wrt normalized input at interval endpoints */
    hi = di + n;     /* interval widths */
    mi = hi + n - 1; /* linear slope over intervals */

    /* scale endpoints and store them in a contiguous memory block */
    for (int i = 0; i < n; i++) {
        xi[i] = point->x * scale;
        fi[i] = point->y * scale;
        point = point->next;
    }

    /* h(i) = x(i+1) - x(i); mi(i) = (f(i+1)-f(i))/h(i) */
    for (int i = 0; i < n - 1; i++) {
        const double val = (xi[i+1]-xi[i]);
        hi[i] = val;
        mi[i] = (fi[i+1]-fi[i]) / val;
    }

    if (n == 2) {
        /* edge case, use linear interpolation */
        const double m = mi[0], b = fi[0] - xi[0]*m;
        for (int i = 0; i < lut_size; i++) y[i] = CLIP(i*m + b);
        goto end;
    }

    /* compute the derivatives at the endpoints*/
    ret = pchip_find_derivatives(n-1, hi, mi, di);
    if (ret)
        goto end;

    /* interpolate/extrapolate */
    x = 0;
    if (xi[0] > 0) {
        /* below first endpoint, use the first endpoint value*/
        const double xi0 = xi[0];
        const double yi0 = fi[0];
        const uint16_t yval = CLIP(yi0);
        for (; x < xi0; x++) {
            y[x] = yval;
            av_log(log_ctx, AV_LOG_TRACE, "f(%f)=%f -> y[%d]=%d\n", xi0, yi0, x, y[x]);
        }
        av_log(log_ctx, AV_LOG_DEBUG, "Interval -1: [0, %d] -> %d\n", x - 1, yval);
    }

    /* for each interval */
    for (int i = 0, x0 = x; i < n-1; i++, x0 = x) {
        const double xi0 = xi[i];     /* start-of-interval input value */
        const double xi1 = xi[i + 1]; /* end-of-interval input value */
        const double h = hi[i];       /* interval width */
        const double f0 = fi[i];      /* start-of-interval output value */
        const double f1 = fi[i + 1];  /* end-of-interval output value */
        const double d0 = di[i];      /* start-of-interval derivative */
        const double d1 = di[i + 1];  /* end-of-interval derivative */

        /* fill the lut over the interval */
        for (; x < xi1; x++) { /* safe not to check j < lut_size */
            const double xx = (x - xi0) / h; /* normalize input */
            const double yy = interp_cubic_hermite_half(1 - xx, f0, -h * d0)
                            + interp_cubic_hermite_half(xx, f1, h * d1);
            y[x] = CLIP(yy);
            av_log(log_ctx, AV_LOG_TRACE, "f(%f)=%f -> y[%d]=%d\n", xx, yy, x, y[x]);
        }

        if (x > x0)
            av_log(log_ctx, AV_LOG_DEBUG, "Interval %d: [%d, %d] -> [%d, %d]\n",
                                                    i, x0, x-1, y[x0], y[x-1]);
        else
            av_log(log_ctx, AV_LOG_DEBUG, "Interval %d: empty\n", i);
    }

    if (x && x < lut_size) {
        /* above the last endpoint, use the last endpoint value*/
        const double xi1 = xi[n - 1];
        const double yi1 = fi[n - 1];
        const uint16_t yval = CLIP(yi1);
        av_log(log_ctx, AV_LOG_DEBUG, "Interval %d: [%d, %d] -> %d\n",
                                                n-1, x, lut_size - 1, yval);
        for (; x && x < lut_size; x++) { /* loop until int overflow */
            y[x] = yval;
            av_log(log_ctx, AV_LOG_TRACE, "f(%f)=%f -> y[%d]=%d\n", xi1, yi1, x, yval);
        }
    }

end:
    av_free(xi);
    return ret;
}


static int parse_psfile(AVFilterContext *ctx, const char *fname)
{
    CurvesContext *curves = ctx->priv;
    uint8_t *buf;
    size_t size;
    int i, ret, av_unused(version), nb_curves;
    AVBPrint ptstr;
    static const int comp_ids[] = {3, 0, 1, 2};

    av_bprint_init(&ptstr, 0, AV_BPRINT_SIZE_AUTOMATIC);

    ret = av_file_map(fname, &buf, &size, 0, NULL);
    if (ret < 0)
        return ret;

#define READ16(dst) do {                \
    if (size < 2) {                     \
        ret = AVERROR_INVALIDDATA;      \
        goto end;                       \
    }                                   \
    dst = AV_RB16(buf);                 \
    buf  += 2;                          \
    size -= 2;                          \
} while (0)

    READ16(version);
    READ16(nb_curves);
    for (i = 0; i < FFMIN(nb_curves, FF_ARRAY_ELEMS(comp_ids)); i++) {
        int nb_points, n;
        av_bprint_clear(&ptstr);
        READ16(nb_points);
        for (n = 0; n < nb_points; n++) {
            int y, x;
            READ16(y);
            READ16(x);
            av_bprintf(&ptstr, "%f/%f ", x / 255., y / 255.);
        }
        if (*ptstr.str) {
            char **pts = &curves->comp_points_str[comp_ids[i]];
            if (!*pts) {
                *pts = av_strdup(ptstr.str);
                av_log(ctx, AV_LOG_DEBUG, "curves %d (intid=%d) [%d points]: [%s]\n",
                       i, comp_ids[i], nb_points, *pts);
                if (!*pts) {
                    ret = AVERROR(ENOMEM);
                    goto end;
                }
            }
        }
    }
end:
    av_bprint_finalize(&ptstr, NULL);
    av_file_unmap(buf, size);
    return ret;
}

static int dump_curves(const char *fname, uint16_t *graph[NB_COMP + 1],
                       struct keypoint *comp_points[NB_COMP + 1],
                       int lut_size)
{
    int i;
    AVBPrint buf;
    const double scale = 1. / (lut_size - 1);
    static const char * const colors[] = { "red", "green", "blue", "#404040", };
    FILE *f = avpriv_fopen_utf8(fname, "w");

    av_assert0(FF_ARRAY_ELEMS(colors) == NB_COMP + 1);

    if (!f) {
        int ret = AVERROR(errno);
        av_log(NULL, AV_LOG_ERROR, "Cannot open file '%s' for writing: %s\n",
               fname, av_err2str(ret));
        return ret;
    }

    av_bprint_init(&buf, 0, AV_BPRINT_SIZE_UNLIMITED);

    av_bprintf(&buf, "set xtics 0.1\n");
    av_bprintf(&buf, "set ytics 0.1\n");
    av_bprintf(&buf, "set size square\n");
    av_bprintf(&buf, "set grid\n");

    for (i = 0; i < FF_ARRAY_ELEMS(colors); i++) {
        av_bprintf(&buf, "%s'-' using 1:2 with lines lc '%s' title ''",
                   i ? ", " : "plot ", colors[i]);
        if (comp_points[i])
            av_bprintf(&buf, ", '-' using 1:2 with points pointtype 3 lc '%s' title ''",
                    colors[i]);
    }
    av_bprintf(&buf, "\n");

    for (i = 0; i < FF_ARRAY_ELEMS(colors); i++) {
        int x;

        /* plot generated values */
        for (x = 0; x < lut_size; x++)
            av_bprintf(&buf, "%f %f\n", x * scale, graph[i][x] * scale);
        av_bprintf(&buf, "e\n");

        /* plot user knots */
        if (comp_points[i]) {
            const struct keypoint *point = comp_points[i];

            while (point) {
                av_bprintf(&buf, "%f %f\n", point->x, point->y);
                point = point->next;
            }
            av_bprintf(&buf, "e\n");
        }
    }

    fwrite(buf.str, 1, buf.len, f);
    fclose(f);
    av_bprint_finalize(&buf, NULL);
    return 0;
}

static av_cold int curves_init(AVFilterContext *ctx)
{
    int i, ret;
    CurvesContext *curves = ctx->priv;
    char **pts = curves->comp_points_str;
    const char *allp = curves->comp_points_str_all;

    //if (!allp && curves->preset != PRESET_NONE && curves_presets[curves->preset].all)
    //    allp = curves_presets[curves->preset].all;

    if (allp) {
        for (i = 0; i < NB_COMP; i++) {
            if (!pts[i])
                pts[i] = av_strdup(allp);
            if (!pts[i])
                return AVERROR(ENOMEM);
        }
    }

    if (curves->psfile && !curves->parsed_psfile) {
        ret = parse_psfile(ctx, curves->psfile);
        if (ret < 0)
            return ret;
        curves->parsed_psfile = 1;
    }

    if (curves->preset != PRESET_NONE) {
#define SET_COMP_IF_NOT_SET(n, name) do {                           \
    if (!pts[n] && curves_presets[curves->preset].name) {           \
        pts[n] = av_strdup(curves_presets[curves->preset].name);    \
        if (!pts[n])                                                \
            return AVERROR(ENOMEM);                                 \
    }                                                               \
} while (0)
        SET_COMP_IF_NOT_SET(0, r);
        SET_COMP_IF_NOT_SET(1, g);
        SET_COMP_IF_NOT_SET(2, b);
        SET_COMP_IF_NOT_SET(3, master);
        curves->preset = PRESET_NONE;
    }

    return 0;
}

static int filter_slice_packed(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
    int x, y;
    const CurvesContext *curves = ctx->priv;
    const ThreadData *td = arg;
    const AVFrame *in  = td->in;
    const AVFrame *out = td->out;
    const int direct = out == in;
    const int step = curves->step;
    const uint8_t r = curves->rgba_map[R];
    const uint8_t g = curves->rgba_map[G];
    const uint8_t b = curves->rgba_map[B];
    const uint8_t a = curves->rgba_map[A];
    const int slice_start = (in->height *  jobnr   ) / nb_jobs;
    const int slice_end   = (in->height * (jobnr+1)) / nb_jobs;

    if (curves->is_16bit) {
        for (y = slice_start; y < slice_end; y++) {
            uint16_t       *dstp = (      uint16_t *)(out->data[0] + y * out->linesize[0]);
            const uint16_t *srcp = (const uint16_t *)(in ->data[0] + y *  in->linesize[0]);

            for (x = 0; x < in->width * step; x += step) {
                dstp[x + r] = curves->graph[R][srcp[x + r]];
                dstp[x + g] = curves->graph[G][srcp[x + g]];
                dstp[x + b] = curves->graph[B][srcp[x + b]];
                if (!direct && step == 4)
                    dstp[x + a] = srcp[x + a];
            }
        }
    } else {
        uint8_t       *dst = out->data[0] + slice_start * out->linesize[0];
        const uint8_t *src =  in->data[0] + slice_start *  in->linesize[0];

        for (y = slice_start; y < slice_end; y++) {
            for (x = 0; x < in->width * step; x += step) {
                dst[x + r] = curves->graph[R][src[x + r]];
                dst[x + g] = curves->graph[G][src[x + g]];
                dst[x + b] = curves->graph[B][src[x + b]];
                if (!direct && step == 4)
                    dst[x + a] = src[x + a];
            }
            dst += out->linesize[0];
            src += in ->linesize[0];
        }
    }
    return 0;
}

static int filter_slice_planar(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
    int x, y;
    const CurvesContext *curves = ctx->priv;
    const ThreadData *td = arg;
    const AVFrame *in  = td->in;
    const AVFrame *out = td->out;
    const int direct = out == in;
    const int step = curves->step;
    const uint8_t r = curves->rgba_map[R];
    const uint8_t g = curves->rgba_map[G];
    const uint8_t b = curves->rgba_map[B];
    const uint8_t a = curves->rgba_map[A];
    const int slice_start = (in->height *  jobnr   ) / nb_jobs;
    const int slice_end   = (in->height * (jobnr+1)) / nb_jobs;

    if (curves->is_16bit) {
        for (y = slice_start; y < slice_end; y++) {
            uint16_t       *dstrp = (      uint16_t *)(out->data[r] + y * out->linesize[r]);
            uint16_t       *dstgp = (      uint16_t *)(out->data[g] + y * out->linesize[g]);
            uint16_t       *dstbp = (      uint16_t *)(out->data[b] + y * out->linesize[b]);
            uint16_t       *dstap = (      uint16_t *)(out->data[a] + y * out->linesize[a]);
            const uint16_t *srcrp = (const uint16_t *)(in ->data[r] + y *  in->linesize[r]);
            const uint16_t *srcgp = (const uint16_t *)(in ->data[g] + y *  in->linesize[g]);
            const uint16_t *srcbp = (const uint16_t *)(in ->data[b] + y *  in->linesize[b]);
            const uint16_t *srcap = (const uint16_t *)(in ->data[a] + y *  in->linesize[a]);

            for (x = 0; x < in->width; x++) {
                dstrp[x] = curves->graph[R][srcrp[x]];
                dstgp[x] = curves->graph[G][srcgp[x]];
                dstbp[x] = curves->graph[B][srcbp[x]];
                if (!direct && step == 4)
                    dstap[x] = srcap[x];
            }
        }
    } else {
        uint8_t       *dstr = out->data[r] + slice_start * out->linesize[r];
        uint8_t       *dstg = out->data[g] + slice_start * out->linesize[g];
        uint8_t       *dstb = out->data[b] + slice_start * out->linesize[b];
        uint8_t       *dsta = out->data[a] + slice_start * out->linesize[a];
        const uint8_t *srcr =  in->data[r] + slice_start *  in->linesize[r];
        const uint8_t *srcg =  in->data[g] + slice_start *  in->linesize[g];
        const uint8_t *srcb =  in->data[b] + slice_start *  in->linesize[b];
        const uint8_t *srca =  in->data[a] + slice_start *  in->linesize[a];

        for (y = slice_start; y < slice_end; y++) {
            for (x = 0; x < in->width; x++) {
                dstr[x] = curves->graph[R][srcr[x]];
                dstg[x] = curves->graph[G][srcg[x]];
                dstb[x] = curves->graph[B][srcb[x]];
                if (!direct && step == 4)
                    dsta[x] = srca[x];
            }
            dstr += out->linesize[r];
            dstg += out->linesize[g];
            dstb += out->linesize[b];
            dsta += out->linesize[a];
            srcr += in ->linesize[r];
            srcg += in ->linesize[g];
            srcb += in ->linesize[b];
            srca += in ->linesize[a];
        }
    }
    return 0;
}

static int config_input(AVFilterLink *inlink)
{
    int i, j, ret;
    AVFilterContext *ctx = inlink->dst;
    CurvesContext *curves = ctx->priv;
    const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
    char **pts = curves->comp_points_str;
    struct keypoint *comp_points[NB_COMP + 1] = {0};

    ff_fill_rgba_map(curves->rgba_map, inlink->format);
    curves->is_16bit = desc->comp[0].depth > 8;
    curves->depth = desc->comp[0].depth;
    curves->lut_size = 1 << curves->depth;
    curves->step = av_get_padded_bits_per_pixel(desc) >> (3 + curves->is_16bit);
    curves->filter_slice = desc->flags & AV_PIX_FMT_FLAG_PLANAR ? filter_slice_planar : filter_slice_packed;

    for (i = 0; i < NB_COMP + 1; i++) {
        if (!curves->graph[i])
            curves->graph[i] = av_calloc(curves->lut_size, sizeof(*curves->graph[0]));
        if (!curves->graph[i])
            return AVERROR(ENOMEM);
        ret = parse_points_str(ctx, comp_points + i, curves->comp_points_str[i], curves->lut_size);
        if (ret < 0)
            return ret;
        if (curves->interp == INTERP_PCHIP)
            ret = interpolate_pchip(ctx, curves->graph[i], comp_points[i], curves->depth);
        else
            ret = interpolate(ctx, curves->graph[i], comp_points[i], curves->depth);
        if (ret < 0)
            return ret;
    }

    if (pts[NB_COMP]) {
        for (i = 0; i < NB_COMP; i++)
            for (j = 0; j < curves->lut_size; j++)
                curves->graph[i][j] = curves->graph[NB_COMP][curves->graph[i][j]];
    }

    if (av_log_get_level() >= AV_LOG_VERBOSE) {
        for (i = 0; i < NB_COMP; i++) {
            const struct keypoint *point = comp_points[i];
            av_log(ctx, AV_LOG_VERBOSE, "#%d points:", i);
            while (point) {
                av_log(ctx, AV_LOG_VERBOSE, " (%f;%f)", point->x, point->y);
                point = point->next;
            }
        }
    }

    if (curves->plot_filename && !curves->saved_plot) {
        dump_curves(curves->plot_filename, curves->graph, comp_points, curves->lut_size);
        curves->saved_plot = 1;
    }

    for (i = 0; i < NB_COMP + 1; i++) {
        struct keypoint *point = comp_points[i];
        while (point) {
            struct keypoint *next = point->next;
            av_free(point);
            point = next;
        }
    }

    return 0;
}

static int filter_frame(AVFilterLink *inlink, AVFrame *in)
{
    AVFilterContext *ctx = inlink->dst;
    CurvesContext *curves = ctx->priv;
    AVFilterLink *outlink = ctx->outputs[0];
    AVFrame *out;
    ThreadData td;

    if (av_frame_is_writable(in)) {
        out = in;
    } else {
        out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
        if (!out) {
            av_frame_free(&in);
            return AVERROR(ENOMEM);
        }
        av_frame_copy_props(out, in);
    }

    td.in  = in;
    td.out = out;
    ff_filter_execute(ctx, curves->filter_slice, &td, NULL,
                      FFMIN(outlink->h, ff_filter_get_nb_threads(ctx)));

    if (out != in)
        av_frame_free(&in);

    return ff_filter_frame(outlink, out);
}

static int process_command(AVFilterContext *ctx, const char *cmd, const char *args,
                           char *res, int res_len, int flags)
{
    CurvesContext *curves = ctx->priv;
    int ret;

    if (!strcmp(cmd, "plot")) {
        curves->saved_plot = 0;
    } else if (!strcmp(cmd, "all") || !strcmp(cmd, "preset") || !strcmp(cmd, "psfile")  || !strcmp(cmd, "interp")) {
        if (!strcmp(cmd, "psfile"))
            curves->parsed_psfile = 0;
        av_freep(&curves->comp_points_str_all);
        av_freep(&curves->comp_points_str[0]);
        av_freep(&curves->comp_points_str[1]);
        av_freep(&curves->comp_points_str[2]);
        av_freep(&curves->comp_points_str[NB_COMP]);
    } else if (!strcmp(cmd, "red") || !strcmp(cmd, "r")) {
        av_freep(&curves->comp_points_str[0]);
    } else if (!strcmp(cmd, "green") || !strcmp(cmd, "g")) {
        av_freep(&curves->comp_points_str[1]);
    } else if (!strcmp(cmd, "blue") || !strcmp(cmd, "b")) {
        av_freep(&curves->comp_points_str[2]);
    } else if (!strcmp(cmd, "master") || !strcmp(cmd, "m")) {
        av_freep(&curves->comp_points_str[NB_COMP]);
    }

    ret = ff_filter_process_command(ctx, cmd, args, res, res_len, flags);
    if (ret < 0)
        return ret;

    ret = curves_init(ctx);
    if (ret < 0)
        return ret;
    return config_input(ctx->inputs[0]);
}

static av_cold void curves_uninit(AVFilterContext *ctx)
{
    int i;
    CurvesContext *curves = ctx->priv;

    for (i = 0; i < NB_COMP + 1; i++)
        av_freep(&curves->graph[i]);
}

static const AVFilterPad curves_inputs[] = {
    {
        .name         = "default",
        .type         = AVMEDIA_TYPE_VIDEO,
        .filter_frame = filter_frame,
        .config_props = config_input,
    },
};

const AVFilter ff_vf_curves = {
    .name          = "curves",
    .description   = NULL_IF_CONFIG_SMALL("Adjust components curves."),
    .priv_size     = sizeof(CurvesContext),
    .init          = curves_init,
    .uninit        = curves_uninit,
    FILTER_INPUTS(curves_inputs),
    FILTER_OUTPUTS(ff_video_default_filterpad),
    FILTER_PIXFMTS(AV_PIX_FMT_RGB24,  AV_PIX_FMT_BGR24,
                   AV_PIX_FMT_RGBA,   AV_PIX_FMT_BGRA,
                   AV_PIX_FMT_ARGB,   AV_PIX_FMT_ABGR,
                   AV_PIX_FMT_0RGB,   AV_PIX_FMT_0BGR,
                   AV_PIX_FMT_RGB0,   AV_PIX_FMT_BGR0,
                   AV_PIX_FMT_RGB48,  AV_PIX_FMT_BGR48,
                   AV_PIX_FMT_RGBA64, AV_PIX_FMT_BGRA64,
                   AV_PIX_FMT_GBRP,   AV_PIX_FMT_GBRAP,
                   AV_PIX_FMT_GBRP9,
                   AV_PIX_FMT_GBRP10, AV_PIX_FMT_GBRAP10,
                   AV_PIX_FMT_GBRP12, AV_PIX_FMT_GBRAP12,
                   AV_PIX_FMT_GBRP14,
                   AV_PIX_FMT_GBRP16, AV_PIX_FMT_GBRAP16),
    .priv_class    = &curves_class,
    .flags         = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS,
    .process_command = process_command,
};