1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
|
/*
* Copyright (c) 2022 Mohamed Khaled <Mohamed_Khaled_Kamal@outlook.com>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "cuda/vector_helpers.cuh"
extern "C"
{
/**
* @brief calculated squared norm difference between two 3-dimension vecors ||first_vector-second_vector||^2
* used float4 for better performance
*
* @param first_yuv first color vector
* @param second_yuv second color vecotr
* @return answer of squared norm difference
*/
__device__ static inline float norm_squared(float4 first_yuv, float4 second_yuv)
{
float x = first_yuv.x - second_yuv.x;
float y = first_yuv.y - second_yuv.y;
float z = first_yuv.z - second_yuv.z;
return (x*x) + (y*y) + (z*z);
}
/**
* @brief calculate w as stated in bilateral filter research paper
*
* @param first_yuv first color vector
* @param second_yuv second color vecotr
* @return the calculated w
*/
__device__ static inline float calculate_w(int x, int y, int r, int c,
float4 pixel_value, float4 neighbor_value,
float sigma_space, float sigma_color)
{
float first_term, second_term;
first_term = (((x - r) * (x - r)) + ((y - c) * (y - c))) / (2 * sigma_space * sigma_space);
second_term = norm_squared(pixel_value, neighbor_value) / (2 * sigma_color * sigma_color);
return __expf(-first_term - second_term);
}
/**
* @brief apply the bilateral filter on the pixel sent
*
* @param src_tex_Y Y channel of source image
* @param src_tex U channel of source image if yuv, or UV channels if format is nv12
* @param src_tex_V V channel of source image
* @param dst_Y Y channel of destination image
* @param dst_U U channel of destination image if format is in yuv
* @param dst_V V channel of destination image if format is in yuv
* @param dst_UV UV channels of destination image if format is in nv12
* @param width width of Y channel
* @param height height of Y channel
* @param width_uv width of UV channels
* @param height_uv height of UV channels
* @param pitch pitch of Y channel
* @param pitch_uv pitch of UV channels
* @param x x coordinate of pixel to be filtered
* @param y y coordinate of pixel to be filtered
* @param sigma_space sigma space parameter
* @param sigma_color sigma color parameter
* @param window_size window size parameter
* @return void
*/
__device__ static inline void apply_biltaeral(
cudaTextureObject_t src_tex_Y, cudaTextureObject_t src_tex, cudaTextureObject_t src_tex_V,
uchar *dst_Y, uchar *dst_U, uchar *dst_V, uchar2 *dst_UV,
int width, int height, int width_uv, int height_uv, int pitch, int pitch_uv,
int x, int y,
float sigma_space, float sigma_color, int window_size)
{
int start_r = x - window_size / 2;
int start_c = y - window_size / 2;
float4 neighbor_pixel = make_float4(0.f, 0.f, 0.f, 0.f);
float Wp = 0.f;
float4 new_pixel_value = make_float4(0.f, 0.f, 0.f, 0.f);
float w = 0.f;
int channel_ratio = width / width_uv; // ratio between Y channel and UV channels
float4 currrent_pixel;
if (!src_tex_V) { // format is in nv12
float2 temp_uv = tex2D<float2>(src_tex, x/channel_ratio, y/channel_ratio) * 255.f;
currrent_pixel.x = tex2D<float>(src_tex_Y, x, y) * 255.f;
currrent_pixel.y = temp_uv.x;
currrent_pixel.z = temp_uv.y;
currrent_pixel.w = 0.f;
} else { // format is fully planar
currrent_pixel = make_float4(tex2D<float>(src_tex_Y, x, y) * 255.f,
tex2D<float>(src_tex, x/channel_ratio, y/channel_ratio) * 255.f,
tex2D<float>(src_tex_V, x/channel_ratio, y/channel_ratio) * 255.f,
0.f);
}
for (int i=0; i < window_size; i++)
{
for (int j=0; j < window_size; j++)
{
int r=start_r+i;
int c=start_c+j;
bool in_bounds=r>=0 && r<width && c>=0 && c<height;
if (in_bounds)
{
if (!src_tex_V){
float2 temp_uv = tex2D<float2>(src_tex, r/channel_ratio, c/channel_ratio);
neighbor_pixel=make_float4(tex2D<float>(src_tex_Y, r, c) * 255.f,
temp_uv.x * 255.f,
temp_uv.y * 255.f, 0.f);
} else {
neighbor_pixel=make_float4(tex2D<float>(src_tex_Y, r, c) * 255.f,
tex2D<float>(src_tex, r/channel_ratio, c/channel_ratio) * 255.f,
tex2D<float>(src_tex_V, r/channel_ratio, c/channel_ratio) * 255.f, 0.f);
}
w=calculate_w(x,y,r,c,currrent_pixel,neighbor_pixel,sigma_space,sigma_color);
Wp+=w;
new_pixel_value+= neighbor_pixel*w;
}
}
}
new_pixel_value = new_pixel_value / Wp;
dst_Y[y*pitch + x] = new_pixel_value.x;
if (!src_tex_V) {
dst_UV[(y/channel_ratio) * pitch_uv + (x/channel_ratio)] = make_uchar2(new_pixel_value.y, new_pixel_value.z);
} else {
dst_U[(y/channel_ratio) * pitch_uv + (x/channel_ratio)] = new_pixel_value.y;
dst_V[(y/channel_ratio) * pitch_uv + (x/channel_ratio)] = new_pixel_value.z;
}
return;
}
__global__ void Process_uchar(cudaTextureObject_t src_tex_Y, cudaTextureObject_t src_tex_U, cudaTextureObject_t src_tex_V,
uchar *dst_Y, uchar *dst_U, uchar *dst_V,
int width, int height, int pitch,
int width_uv, int height_uv, int pitch_uv,
int window_size, float sigmaS, float sigmaR)
{
int x = blockIdx.x * blockDim.x + threadIdx.x;
int y = blockIdx.y * blockDim.y + threadIdx.y;
if (y >= height || x >= width)
return;
apply_biltaeral(src_tex_Y, src_tex_U, src_tex_V,
dst_Y, dst_U, dst_V, (uchar2*)nullptr,
width, height, width_uv, height_uv, pitch, pitch_uv,
x, y,
sigmaS, sigmaR, window_size);
}
__global__ void Process_uchar2(cudaTextureObject_t src_tex_Y, cudaTextureObject_t src_tex_UV, cudaTextureObject_t unused1,
uchar *dst_Y, uchar2 *dst_UV, uchar *unused2,
int width, int height, int pitch,
int width_uv, int height_uv, int pitch_uv,
int window_size, float sigmaS, float sigmaR)
{
int x = blockIdx.x * blockDim.x + threadIdx.x;
int y = blockIdx.y * blockDim.y + threadIdx.y;
if (y >= height || x >= width)
return;
apply_biltaeral(src_tex_Y, src_tex_UV, (cudaTextureObject_t)nullptr,
dst_Y, (uchar*)nullptr, (uchar*)nullptr, dst_UV,
width, height, width_uv, height_uv, pitch, pitch_uv,
x, y,
sigmaS, sigmaR, window_size);
}
}
|