1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
|
/*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with FFmpeg; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
/**
* @file
* Perlin Noise generator, based on code from:
* https://adrianb.io/2014/08/09/perlinnoise.html
*
* Original article from Ken Perlin:
* http://mrl.nyu.edu/~perlin/paper445.pdf
*/
#include <math.h>
#include "libavutil/lfg.h"
#include "libavutil/random_seed.h"
#include "perlin.h"
static inline int inc(int num, int period)
{
num++;
if (period > 0)
num %= period;
return num;
}
static inline double grad(int hash, double x, double y, double z)
{
// Take the hashed value and take the first 4 bits of it (15 == 0b1111)
int h = hash & 15;
// If the most significant bit (MSB) of the hash is 0 then set u = x. Otherwise y.
double u = h < 8 /* 0b1000 */ ? x : y;
double v;
// In Ken Perlin's original implementation this was another
// conditional operator (?:), then expanded for readability.
if (h < 4 /* 0b0100 */)
// If the first and second significant bits are 0 set v = y
v = y;
// If the first and second significant bits are 1 set v = x
else if (h == 12 /* 0b1100 */ || h == 14 /* 0b1110 */)
v = x;
else
// If the first and second significant bits are not equal (0/1, 1/0) set v = z
v = z;
// Use the last 2 bits to decide if u and v are positive or negative. Then return their addition.
return ((h&1) == 0 ? u : -u)+((h&2) == 0 ? v : -v);
}
static inline double fade(double t)
{
// Fade function as defined by Ken Perlin. This eases coordinate values
// so that they will "ease" towards integral values. This ends up smoothing
// the final output.
// use Horner method to compute: 6t^5 - 15t^4 + 10t^3
return t * t * t * (t * (t * 6 - 15) + 10);
}
static double lerp(double a, double b, double x)
{
return a + x * (b - a);
}
// Hash lookup table as defined by Ken Perlin. This is a randomly
// arranged array of all numbers from 0-255 inclusive.
static uint8_t ken_permutations[] = {
151, 160, 137, 91, 90, 15, 131, 13, 201, 95, 96, 53, 194, 233, 7, 225,
140, 36, 103, 30, 69, 142, 8, 99, 37, 240, 21, 10, 23, 190, 6, 148,
247, 120, 234, 75, 0, 26, 197, 62, 94, 252, 219, 203, 117, 35, 11, 32,
57, 177, 33, 88, 237, 149, 56, 87, 174, 20, 125, 136, 171, 168, 68, 175,
74, 165, 71, 134, 139, 48, 27, 166, 77, 146, 158, 231, 83, 111, 229, 122,
60, 211, 133, 230, 220, 105, 92, 41, 55, 46, 245, 40, 244, 102, 143, 54,
65, 25, 63, 161, 1, 216, 80, 73, 209, 76, 132, 187, 208, 89, 18, 169,
200, 196, 135, 130, 116, 188, 159, 86, 164, 100, 109, 198, 173, 186, 3, 64,
52, 217, 226, 250, 124, 123, 5, 202, 38, 147, 118, 126, 255, 82, 85, 212,
207, 206, 59, 227, 47, 16, 58, 17, 182, 189, 28, 42, 223, 183, 170, 213,
119, 248, 152, 2, 44, 154, 163, 70, 221, 153, 101, 155, 167, 43, 172, 9,
129, 22, 39, 253, 19, 98, 108, 110, 79, 113, 224, 232, 178, 185, 112, 104,
218, 246, 97, 228, 251, 34, 242, 193, 238, 210, 144, 12, 191, 179, 162, 241,
81, 51, 145, 235, 249, 14, 239, 107, 49, 192, 214, 31, 181, 199, 106, 157,
184, 84, 204, 176, 115, 121, 50, 45, 127, 4, 150, 254, 138, 236, 205, 93,
222, 114, 67, 29, 24, 72, 243, 141, 128, 195, 78, 66, 215, 61, 156, 180
};
int ff_perlin_init(FFPerlin *perlin, double period, int octaves, double persistence,
enum FFPerlinRandomMode random_mode, unsigned int random_seed)
{
int i;
perlin->period = period;
perlin->octaves = octaves;
perlin->persistence = persistence;
perlin->random_mode = random_mode;
perlin->random_seed = random_seed;
if (perlin->random_mode == FF_PERLIN_RANDOM_MODE_KEN) {
for (i = 0; i < 512; i++) {
perlin->permutations[i] = ken_permutations[i % 256];
}
} else {
AVLFG lfg;
uint8_t random_permutations[256];
if (perlin->random_mode == FF_PERLIN_RANDOM_MODE_RANDOM)
perlin->random_seed = av_get_random_seed();
av_lfg_init(&lfg, perlin->random_seed);
for (i = 0; i < 256; i++) {
random_permutations[i] = i;
}
for (i = 0; i < 256; i++) {
unsigned int random_idx = av_lfg_get(&lfg) % (256-i);
uint8_t random_val = random_permutations[random_idx];
random_permutations[random_idx] = random_permutations[255-i];
perlin->permutations[i] = perlin->permutations[i+256] = random_val;
}
}
return 0;
}
static double perlin_get(FFPerlin *perlin, double x, double y, double z)
{
int xi, yi, zi;
double xf, yf, zf;
double u, v, w;
const uint8_t *p = perlin->permutations;
double period = perlin->period;
int aaa, aba, aab, abb, baa, bba, bab, bbb;
double x1, x2, y1, y2;
if (perlin->period > 0) {
// If we have any period on, change the coordinates to their "local" repetitions
x = fmod(x, perlin->period);
y = fmod(y, perlin->period);
z = fmod(z, perlin->period);
}
// Calculate the "unit cube" that the point asked will be located in
// The left bound is ( |_x_|,|_y_|,|_z_| ) and the right bound is that
// plus 1. Next we calculate the location (from 0.0 to 1.0) in that cube.
xi = (int)x & 255;
yi = (int)y & 255;
zi = (int)z & 255;
xf = x - (int)x;
yf = y - (int)y;
zf = z - (int)z;
// We also fade the location to smooth the result.
u = fade(xf);
v = fade(yf);
w = fade(zf);
aaa = p[p[p[ xi ] + yi ] + zi ];
aba = p[p[p[ xi ] + inc(yi, period)] + zi ];
aab = p[p[p[ xi ] + yi ] + inc(zi, period)];
abb = p[p[p[ xi ] + inc(yi, period)] + inc(zi, period)];
baa = p[p[p[inc(xi, period)] + yi ] + zi ];
bba = p[p[p[inc(xi, period)] + inc(yi, period)] + zi ];
bab = p[p[p[inc(xi, period)] + yi ] + inc(zi, period)];
bbb = p[p[p[inc(xi, period)] + inc(yi, period)] + inc(zi, period)];
// The gradient function calculates the dot product between a pseudorandom
// gradient vector and the vector from the input coordinate to the 8
// surrounding points in its unit cube.
// This is all then lerped together as a sort of weighted average based on the faded (u,v,w)
// values we made earlier.
x1 = lerp(grad(aaa, xf , yf , zf),
grad(baa, xf-1, yf , zf),
u);
x2 = lerp(grad(aba, xf , yf-1, zf),
grad(bba, xf-1, yf-1, zf),
u);
y1 = lerp(x1, x2, v);
x1 = lerp(grad(aab, xf , yf , zf-1),
grad(bab, xf-1, yf , zf-1),
u);
x2 = lerp(grad(abb, xf , yf-1, zf-1),
grad(bbb, xf-1, yf-1, zf-1),
u);
y2 = lerp(x1, x2, v);
// For convenience we bound it to 0 - 1 (theoretical min/max before is -1 - 1)
return (lerp(y1, y2, w) + 1) / 2;
}
double ff_perlin_get(FFPerlin *perlin, double x, double y, double z)
{
double total = 0;
double frequency = 1;
double amplitude = 1;
double max_value = 0; // Used for normalizing result to 0.0 - 1.0
for (int i = 0; i < perlin->octaves; i++) {
total += perlin_get(perlin, x * frequency, y * frequency, z * frequency) * amplitude;
max_value += amplitude;
amplitude *= perlin->persistence;
frequency *= 2;
}
return total / max_value;
}
|