aboutsummaryrefslogtreecommitdiffstats
path: root/libavfilter/f_ebur128.c
blob: b2495aed9b3df5ff74f3cc89dc2ca0f14c0676b5 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
/*
 * Copyright (c) 2012 Clément Bœsch
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/**
 * @file
 * EBU R.128 implementation
 * @see http://tech.ebu.ch/loudness
 * @see https://www.youtube.com/watch?v=iuEtQqC-Sqo "EBU R128 Introduction - Florian Camerer"
 * @todo implement start/stop/reset through filter command injection
 */

#include <float.h>
#include <math.h>

#include "libavutil/avassert.h"
#include "libavutil/channel_layout.h"
#include "libavutil/dict.h"
#include "libavutil/ffmath.h"
#include "libavutil/mem.h"
#include "libavutil/xga_font_data.h"
#include "libavutil/opt.h"
#include "libavutil/timestamp.h"
#include "libswresample/swresample.h"
#include "avfilter.h"
#include "filters.h"
#include "formats.h"
#include "internal.h"
#include "video.h"

#define ABS_THRES    -70            ///< silence gate: we discard anything below this absolute (LUFS) threshold
#define ABS_UP_THRES  10            ///< upper loud limit to consider (ABS_THRES being the minimum)
#define HIST_GRAIN   100            ///< defines histogram precision
#define HIST_SIZE  ((ABS_UP_THRES - ABS_THRES) * HIST_GRAIN + 1)

/**
 * A histogram is an array of HIST_SIZE hist_entry storing all the energies
 * recorded (with an accuracy of 1/HIST_GRAIN) of the loudnesses from ABS_THRES
 * (at 0) to ABS_UP_THRES (at HIST_SIZE-1).
 * This fixed-size system avoids the need of a list of energies growing
 * infinitely over the time and is thus more scalable.
 */
struct hist_entry {
    unsigned count;                 ///< how many times the corresponding value occurred
    double energy;                  ///< E = 10^((L + 0.691) / 10)
    double loudness;                ///< L = -0.691 + 10 * log10(E)
};

struct integrator {
    double **cache;                 ///< window of filtered samples (N ms)
    int cache_pos;                  ///< focus on the last added bin in the cache array
    int cache_size;
    double *sum;                    ///< sum of the last N ms filtered samples (cache content)
    int filled;                     ///< 1 if the cache is completely filled, 0 otherwise
    double rel_threshold;           ///< relative threshold
    double sum_kept_powers;         ///< sum of the powers (weighted sums) above absolute threshold
    int nb_kept_powers;             ///< number of sum above absolute threshold
    struct hist_entry *histogram;   ///< histogram of the powers, used to compute LRA and I
};

struct rect { int x, y, w, h; };

typedef struct EBUR128Context {
    const AVClass *class;           ///< AVClass context for log and options purpose

    /* peak metering */
    int peak_mode;                  ///< enabled peak modes
    double true_peak;               ///< global true peak
    double *true_peaks;             ///< true peaks per channel
    double sample_peak;             ///< global sample peak
    double *sample_peaks;           ///< sample peaks per channel
    double *true_peaks_per_frame;   ///< true peaks in a frame per channel
#if CONFIG_SWRESAMPLE
    SwrContext *swr_ctx;            ///< over-sampling context for true peak metering
    double *swr_buf;                ///< resampled audio data for true peak metering
    int swr_linesize;
#endif

    /* video  */
    int do_video;                   ///< 1 if video output enabled, 0 otherwise
    int w, h;                       ///< size of the video output
    struct rect text;               ///< rectangle for the LU legend on the left
    struct rect graph;              ///< rectangle for the main graph in the center
    struct rect gauge;              ///< rectangle for the gauge on the right
    AVFrame *outpicref;             ///< output picture reference, updated regularly
    int meter;                      ///< select a EBU mode between +9 and +18
    int scale_range;                ///< the range of LU values according to the meter
    int y_zero_lu;                  ///< the y value (pixel position) for 0 LU
    int y_opt_max;                  ///< the y value (pixel position) for 1 LU
    int y_opt_min;                  ///< the y value (pixel position) for -1 LU
    int *y_line_ref;                ///< y reference values for drawing the LU lines in the graph and the gauge

    /* audio */
    int nb_channels;                ///< number of channels in the input
    double *ch_weighting;           ///< channel weighting mapping
    int sample_count;               ///< sample count used for refresh frequency, reset at refresh
    int nb_samples;                 ///< number of samples to consume per single input frame
    int idx_insample;               ///< current sample position of processed samples in single input frame
    AVFrame *insamples;             ///< input samples reference, updated regularly

    /* Filter caches.
     * The mult by 3 in the following is for X[i], X[i-1] and X[i-2] */
    double *x;                      ///< 3 input samples cache for each channel
    double *y;                      ///< 3 pre-filter samples cache for each channel
    double *z;                      ///< 3 RLB-filter samples cache for each channel
    double pre_b[3];                ///< pre-filter numerator coefficients
    double pre_a[3];                ///< pre-filter denominator coefficients
    double rlb_b[3];                ///< rlb-filter numerator coefficients
    double rlb_a[3];                ///< rlb-filter denominator coefficients

    struct integrator i400;         ///< 400ms integrator, used for Momentary loudness  (M), and Integrated loudness (I)
    struct integrator i3000;        ///<    3s integrator, used for Short term loudness (S), and Loudness Range      (LRA)

    /* I and LRA specific */
    double integrated_loudness;     ///< integrated loudness in LUFS (I)
    double loudness_range;          ///< loudness range in LU (LRA)
    double lra_low, lra_high;       ///< low and high LRA values

    /* misc */
    int loglevel;                   ///< log level for frame logging
    int metadata;                   ///< whether or not to inject loudness results in frames
    int dual_mono;                  ///< whether or not to treat single channel input files as dual-mono
    double pan_law;                 ///< pan law value used to calculate dual-mono measurements
    int target;                     ///< target level in LUFS used to set relative zero LU in visualization
    int gauge_type;                 ///< whether gauge shows momentary or short
    int scale;                      ///< display scale type of statistics
} EBUR128Context;

enum {
    PEAK_MODE_NONE          = 0,
    PEAK_MODE_SAMPLES_PEAKS = 1<<1,
    PEAK_MODE_TRUE_PEAKS    = 1<<2,
};

enum {
    GAUGE_TYPE_MOMENTARY = 0,
    GAUGE_TYPE_SHORTTERM = 1,
};

enum {
    SCALE_TYPE_ABSOLUTE = 0,
    SCALE_TYPE_RELATIVE = 1,
};

#define OFFSET(x) offsetof(EBUR128Context, x)
#define A AV_OPT_FLAG_AUDIO_PARAM
#define V AV_OPT_FLAG_VIDEO_PARAM
#define F AV_OPT_FLAG_FILTERING_PARAM
#define X AV_OPT_FLAG_EXPORT
#define R AV_OPT_FLAG_READONLY
static const AVOption ebur128_options[] = {
    { "video", "set video output", OFFSET(do_video), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, V|F },
    { "size",  "set video size",   OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "640x480"}, 0, 0, V|F },
    { "meter", "set scale meter (+9 to +18)",  OFFSET(meter), AV_OPT_TYPE_INT, {.i64 = 9}, 9, 18, V|F },
    { "framelog", "force frame logging level", OFFSET(loglevel), AV_OPT_TYPE_INT, {.i64 = -1},   INT_MIN, INT_MAX, A|V|F, .unit = "level" },
        { "quiet",   "logging disabled",          0, AV_OPT_TYPE_CONST, {.i64 = AV_LOG_QUIET},   INT_MIN, INT_MAX, A|V|F, .unit = "level" },
        { "info",    "information logging level", 0, AV_OPT_TYPE_CONST, {.i64 = AV_LOG_INFO},    INT_MIN, INT_MAX, A|V|F, .unit = "level" },
        { "verbose", "verbose logging level",     0, AV_OPT_TYPE_CONST, {.i64 = AV_LOG_VERBOSE}, INT_MIN, INT_MAX, A|V|F, .unit = "level" },
    { "metadata", "inject metadata in the filtergraph", OFFSET(metadata), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, A|V|F },
    { "peak", "set peak mode", OFFSET(peak_mode), AV_OPT_TYPE_FLAGS, {.i64 = PEAK_MODE_NONE}, 0, INT_MAX, A|F, .unit = "mode" },
        { "none",   "disable any peak mode",   0, AV_OPT_TYPE_CONST, {.i64 = PEAK_MODE_NONE},          INT_MIN, INT_MAX, A|F, .unit = "mode" },
        { "sample", "enable peak-sample mode", 0, AV_OPT_TYPE_CONST, {.i64 = PEAK_MODE_SAMPLES_PEAKS}, INT_MIN, INT_MAX, A|F, .unit = "mode" },
        { "true",   "enable true-peak mode",   0, AV_OPT_TYPE_CONST, {.i64 = PEAK_MODE_TRUE_PEAKS},    INT_MIN, INT_MAX, A|F, .unit = "mode" },
    { "dualmono", "treat mono input files as dual-mono", OFFSET(dual_mono), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, A|F },
    { "panlaw", "set a specific pan law for dual-mono files", OFFSET(pan_law), AV_OPT_TYPE_DOUBLE, {.dbl = -3.01029995663978}, -10.0, 0.0, A|F },
    { "target", "set a specific target level in LUFS (-23 to 0)", OFFSET(target), AV_OPT_TYPE_INT, {.i64 = -23}, -23, 0, V|F },
    { "gauge", "set gauge display type", OFFSET(gauge_type), AV_OPT_TYPE_INT, {.i64 = 0 }, GAUGE_TYPE_MOMENTARY, GAUGE_TYPE_SHORTTERM, V|F, .unit = "gaugetype" },
        { "momentary",   "display momentary value",   0, AV_OPT_TYPE_CONST, {.i64 = GAUGE_TYPE_MOMENTARY}, INT_MIN, INT_MAX, V|F, .unit = "gaugetype" },
        { "m",           "display momentary value",   0, AV_OPT_TYPE_CONST, {.i64 = GAUGE_TYPE_MOMENTARY}, INT_MIN, INT_MAX, V|F, .unit = "gaugetype" },
        { "shortterm",   "display short-term value",  0, AV_OPT_TYPE_CONST, {.i64 = GAUGE_TYPE_SHORTTERM}, INT_MIN, INT_MAX, V|F, .unit = "gaugetype" },
        { "s",           "display short-term value",  0, AV_OPT_TYPE_CONST, {.i64 = GAUGE_TYPE_SHORTTERM}, INT_MIN, INT_MAX, V|F, .unit = "gaugetype" },
    { "scale", "sets display method for the stats", OFFSET(scale), AV_OPT_TYPE_INT, {.i64 = 0}, SCALE_TYPE_ABSOLUTE, SCALE_TYPE_RELATIVE, V|F, .unit = "scaletype" },
        { "absolute",   "display absolute values (LUFS)",          0, AV_OPT_TYPE_CONST, {.i64 = SCALE_TYPE_ABSOLUTE}, INT_MIN, INT_MAX, V|F, .unit = "scaletype" },
        { "LUFS",       "display absolute values (LUFS)",          0, AV_OPT_TYPE_CONST, {.i64 = SCALE_TYPE_ABSOLUTE}, INT_MIN, INT_MAX, V|F, .unit = "scaletype" },
        { "relative",   "display values relative to target (LU)",  0, AV_OPT_TYPE_CONST, {.i64 = SCALE_TYPE_RELATIVE}, INT_MIN, INT_MAX, V|F, .unit = "scaletype" },
        { "LU",         "display values relative to target (LU)",  0, AV_OPT_TYPE_CONST, {.i64 = SCALE_TYPE_RELATIVE}, INT_MIN, INT_MAX, V|F, .unit = "scaletype" },
    { "integrated", "integrated loudness (LUFS)", OFFSET(integrated_loudness), AV_OPT_TYPE_DOUBLE, {.dbl = 0}, -DBL_MAX, DBL_MAX, A|F|X|R },
    { "range", "loudness range (LU)", OFFSET(loudness_range), AV_OPT_TYPE_DOUBLE, {.dbl = 0}, -DBL_MAX, DBL_MAX, A|F|X|R },
    { "lra_low", "LRA low (LUFS)", OFFSET(lra_low), AV_OPT_TYPE_DOUBLE, {.dbl = 0}, -DBL_MAX, DBL_MAX, A|F|X|R },
    { "lra_high", "LRA high (LUFS)", OFFSET(lra_high), AV_OPT_TYPE_DOUBLE, {.dbl = 0}, -DBL_MAX, DBL_MAX, A|F|X|R },
    { "sample_peak", "sample peak (dBFS)", OFFSET(sample_peak), AV_OPT_TYPE_DOUBLE, {.dbl = 0}, -DBL_MAX, DBL_MAX, A|F|X|R },
    { "true_peak", "true peak (dBFS)", OFFSET(true_peak), AV_OPT_TYPE_DOUBLE, {.dbl = 0}, -DBL_MAX, DBL_MAX, A|F|X|R },
    { NULL },
};

AVFILTER_DEFINE_CLASS(ebur128);

static const uint8_t graph_colors[] = {
    0xdd, 0x66, 0x66,   // value above 1LU non reached below -1LU (impossible)
    0x66, 0x66, 0xdd,   // value below 1LU non reached below -1LU
    0x96, 0x33, 0x33,   // value above 1LU reached below -1LU (impossible)
    0x33, 0x33, 0x96,   // value below 1LU reached below -1LU
    0xdd, 0x96, 0x96,   // value above 1LU line non reached below -1LU (impossible)
    0x96, 0x96, 0xdd,   // value below 1LU line non reached below -1LU
    0xdd, 0x33, 0x33,   // value above 1LU line reached below -1LU (impossible)
    0x33, 0x33, 0xdd,   // value below 1LU line reached below -1LU
    0xdd, 0x66, 0x66,   // value above 1LU non reached above -1LU
    0x66, 0xdd, 0x66,   // value below 1LU non reached above -1LU
    0x96, 0x33, 0x33,   // value above 1LU reached above -1LU
    0x33, 0x96, 0x33,   // value below 1LU reached above -1LU
    0xdd, 0x96, 0x96,   // value above 1LU line non reached above -1LU
    0x96, 0xdd, 0x96,   // value below 1LU line non reached above -1LU
    0xdd, 0x33, 0x33,   // value above 1LU line reached above -1LU
    0x33, 0xdd, 0x33,   // value below 1LU line reached above -1LU
};

static const uint8_t *get_graph_color(const EBUR128Context *ebur128, int v, int y)
{
    const int above_opt_max = y > ebur128->y_opt_max;
    const int below_opt_min = y < ebur128->y_opt_min;
    const int reached = y >= v;
    const int line    = ebur128->y_line_ref[y] || y == ebur128->y_zero_lu;
    const int colorid = 8*below_opt_min+ 4*line + 2*reached + above_opt_max;
    return graph_colors + 3*colorid;
}

static inline int lu_to_y(const EBUR128Context *ebur128, double v)
{
    v += 2 * ebur128->meter;                            // make it in range [0;...]
    v  = av_clipf(v, 0, ebur128->scale_range);          // make sure it's in the graph scale
    v  = ebur128->scale_range - v;                      // invert value (y=0 is on top)
    return v * ebur128->graph.h / ebur128->scale_range; // rescale from scale range to px height
}

#define FONT8   0
#define FONT16  1

static const uint8_t font_colors[] = {
    0xdd, 0xdd, 0x00,
    0x00, 0x96, 0x96,
};

static void drawtext(AVFrame *pic, int x, int y, int ftid, const uint8_t *color, const char *fmt, ...)
{
    int i;
    char buf[128] = {0};
    const uint8_t *font;
    int font_height;
    va_list vl;

    if      (ftid == FONT16) font = avpriv_vga16_font, font_height = 16;
    else if (ftid == FONT8)  font = avpriv_cga_font,   font_height =  8;
    else return;

    va_start(vl, fmt);
    vsnprintf(buf, sizeof(buf), fmt, vl);
    va_end(vl);

    for (i = 0; buf[i]; i++) {
        int char_y, mask;
        uint8_t *p = pic->data[0] + y*pic->linesize[0] + (x + i*8)*3;

        for (char_y = 0; char_y < font_height; char_y++) {
            for (mask = 0x80; mask; mask >>= 1) {
                if (font[buf[i] * font_height + char_y] & mask)
                    memcpy(p, color, 3);
                else
                    memcpy(p, "\x00\x00\x00", 3);
                p += 3;
            }
            p += pic->linesize[0] - 8*3;
        }
    }
}

static void drawline(AVFrame *pic, int x, int y, int len, int step)
{
    int i;
    uint8_t *p = pic->data[0] + y*pic->linesize[0] + x*3;

    for (i = 0; i < len; i++) {
        memcpy(p, "\x00\xff\x00", 3);
        p += step;
    }
}

static int config_video_output(AVFilterLink *outlink)
{
    int i, x, y;
    uint8_t *p;
    FilterLink *l = ff_filter_link(outlink);
    AVFilterContext *ctx = outlink->src;
    EBUR128Context *ebur128 = ctx->priv;
    AVFrame *outpicref;

    /* check if there is enough space to represent everything decently */
    if (ebur128->w < 640 || ebur128->h < 480) {
        av_log(ctx, AV_LOG_ERROR, "Video size %dx%d is too small, "
               "minimum size is 640x480\n", ebur128->w, ebur128->h);
        return AVERROR(EINVAL);
    }
    outlink->w = ebur128->w;
    outlink->h = ebur128->h;
    outlink->sample_aspect_ratio = (AVRational){1,1};
    l->frame_rate = av_make_q(10, 1);
    outlink->time_base = av_inv_q(l->frame_rate);

#define PAD 8

    /* configure text area position and size */
    ebur128->text.x  = PAD;
    ebur128->text.y  = 40;
    ebur128->text.w  = 3 * 8;   // 3 characters
    ebur128->text.h  = ebur128->h - PAD - ebur128->text.y;

    /* configure gauge position and size */
    ebur128->gauge.w = 20;
    ebur128->gauge.h = ebur128->text.h;
    ebur128->gauge.x = ebur128->w - PAD - ebur128->gauge.w;
    ebur128->gauge.y = ebur128->text.y;

    /* configure graph position and size */
    ebur128->graph.x = ebur128->text.x + ebur128->text.w + PAD;
    ebur128->graph.y = ebur128->gauge.y;
    ebur128->graph.w = ebur128->gauge.x - ebur128->graph.x - PAD;
    ebur128->graph.h = ebur128->gauge.h;

    /* graph and gauge share the LU-to-pixel code */
    av_assert0(ebur128->graph.h == ebur128->gauge.h);

    /* prepare the initial picref buffer */
    av_frame_free(&ebur128->outpicref);
    ebur128->outpicref = outpicref =
        ff_get_video_buffer(outlink, outlink->w, outlink->h);
    if (!outpicref)
        return AVERROR(ENOMEM);
    outpicref->sample_aspect_ratio = (AVRational){1,1};

    /* init y references values (to draw LU lines) */
    ebur128->y_line_ref = av_calloc(ebur128->graph.h + 1, sizeof(*ebur128->y_line_ref));
    if (!ebur128->y_line_ref)
        return AVERROR(ENOMEM);

    /* black background */
    for (int y = 0; y < ebur128->h; y++)
        memset(outpicref->data[0] + y * outpicref->linesize[0], 0, ebur128->w * 3);

    /* draw LU legends */
    drawtext(outpicref, PAD, PAD+16, FONT8, font_colors+3, " LU");
    for (i = ebur128->meter; i >= -ebur128->meter * 2; i--) {
        y = lu_to_y(ebur128, i);
        x = PAD + (i < 10 && i > -10) * 8;
        ebur128->y_line_ref[y] = i;
        y -= 4; // -4 to center vertically
        drawtext(outpicref, x, y + ebur128->graph.y, FONT8, font_colors+3,
                 "%c%d", i < 0 ? '-' : i > 0 ? '+' : ' ', FFABS(i));
    }

    /* draw graph */
    ebur128->y_zero_lu = lu_to_y(ebur128, 0);
    ebur128->y_opt_max = lu_to_y(ebur128, 1);
    ebur128->y_opt_min = lu_to_y(ebur128, -1);
    p = outpicref->data[0] + ebur128->graph.y * outpicref->linesize[0]
                           + ebur128->graph.x * 3;
    for (y = 0; y < ebur128->graph.h; y++) {
        const uint8_t *c = get_graph_color(ebur128, INT_MAX, y);

        for (x = 0; x < ebur128->graph.w; x++)
            memcpy(p + x*3, c, 3);
        p += outpicref->linesize[0];
    }

    /* draw fancy rectangles around the graph and the gauge */
#define DRAW_RECT(r) do { \
    drawline(outpicref, r.x,       r.y - 1,   r.w, 3); \
    drawline(outpicref, r.x,       r.y + r.h, r.w, 3); \
    drawline(outpicref, r.x - 1,   r.y,       r.h, outpicref->linesize[0]); \
    drawline(outpicref, r.x + r.w, r.y,       r.h, outpicref->linesize[0]); \
} while (0)
    DRAW_RECT(ebur128->graph);
    DRAW_RECT(ebur128->gauge);

    return 0;
}

static int config_audio_input(AVFilterLink *inlink)
{
    AVFilterContext *ctx = inlink->dst;
    EBUR128Context *ebur128 = ctx->priv;

    /* Unofficial reversed parametrization of PRE
     * and RLB from 48kHz */

    double f0 = 1681.974450955533;
    double G = 3.999843853973347;
    double Q = 0.7071752369554196;

    double K = tan(M_PI * f0 / (double)inlink->sample_rate);
    double Vh = pow(10.0, G / 20.0);
    double Vb = pow(Vh, 0.4996667741545416);

    double a0 = 1.0 + K / Q + K * K;

    ebur128->pre_b[0] = (Vh + Vb * K / Q + K * K) / a0;
    ebur128->pre_b[1] = 2.0 * (K * K - Vh) / a0;
    ebur128->pre_b[2] = (Vh - Vb * K / Q + K * K) / a0;
    ebur128->pre_a[1] = 2.0 * (K * K - 1.0) / a0;
    ebur128->pre_a[2] = (1.0 - K / Q + K * K) / a0;

    f0 = 38.13547087602444;
    Q = 0.5003270373238773;
    K = tan(M_PI * f0 / (double)inlink->sample_rate);

    ebur128->rlb_b[0] = 1.0;
    ebur128->rlb_b[1] = -2.0;
    ebur128->rlb_b[2] = 1.0;
    ebur128->rlb_a[1] = 2.0 * (K * K - 1.0) / (1.0 + K / Q + K * K);
    ebur128->rlb_a[2] = (1.0 - K / Q + K * K) / (1.0 + K / Q + K * K);

    /* Force 100ms framing in case of metadata injection: the frames must have
     * a granularity of the window overlap to be accurately exploited.
     * As for the true peaks mode, it just simplifies the resampling buffer
     * allocation and the lookup in it (since sample buffers differ in size, it
     * can be more complex to integrate in the one-sample loop of
     * filter_frame()). */
    if (ebur128->metadata || (ebur128->peak_mode & PEAK_MODE_TRUE_PEAKS))
        ebur128->nb_samples = FFMAX(inlink->sample_rate / 10, 1);
    return 0;
}

static int config_audio_output(AVFilterLink *outlink)
{
    int i;
    AVFilterContext *ctx = outlink->src;
    EBUR128Context *ebur128 = ctx->priv;
    const int nb_channels = outlink->ch_layout.nb_channels;

#define BACK_MASK (AV_CH_BACK_LEFT    |AV_CH_BACK_CENTER    |AV_CH_BACK_RIGHT| \
                   AV_CH_TOP_BACK_LEFT|AV_CH_TOP_BACK_CENTER|AV_CH_TOP_BACK_RIGHT| \
                   AV_CH_SIDE_LEFT                          |AV_CH_SIDE_RIGHT| \
                   AV_CH_SURROUND_DIRECT_LEFT               |AV_CH_SURROUND_DIRECT_RIGHT)

    ebur128->nb_channels  = nb_channels;
    ebur128->x            = av_calloc(nb_channels, 3 * sizeof(*ebur128->x));
    ebur128->y            = av_calloc(nb_channels, 3 * sizeof(*ebur128->y));
    ebur128->z            = av_calloc(nb_channels, 3 * sizeof(*ebur128->z));
    ebur128->ch_weighting = av_calloc(nb_channels, sizeof(*ebur128->ch_weighting));
    if (!ebur128->ch_weighting || !ebur128->x || !ebur128->y || !ebur128->z)
        return AVERROR(ENOMEM);

#define I400_BINS(x)  ((x) * 4 / 10)
#define I3000_BINS(x) ((x) * 3)

    ebur128->i400.sum = av_calloc(nb_channels, sizeof(*ebur128->i400.sum));
    ebur128->i3000.sum = av_calloc(nb_channels, sizeof(*ebur128->i3000.sum));
    ebur128->i400.cache = av_calloc(nb_channels, sizeof(*ebur128->i400.cache));
    ebur128->i3000.cache = av_calloc(nb_channels, sizeof(*ebur128->i3000.cache));
    if (!ebur128->i400.sum || !ebur128->i3000.sum ||
        !ebur128->i400.cache || !ebur128->i3000.cache)
        return AVERROR(ENOMEM);

    for (i = 0; i < nb_channels; i++) {
        /* channel weighting */
        const enum AVChannel chl = av_channel_layout_channel_from_index(&outlink->ch_layout, i);
        if (chl == AV_CHAN_LOW_FREQUENCY || chl == AV_CHAN_LOW_FREQUENCY_2) {
            ebur128->ch_weighting[i] = 0;
        } else if (chl < 64 && (1ULL << chl) & BACK_MASK) {
            ebur128->ch_weighting[i] = 1.41;
        } else {
            ebur128->ch_weighting[i] = 1.0;
        }

        if (!ebur128->ch_weighting[i])
            continue;

        /* bins buffer for the two integration window (400ms and 3s) */
        ebur128->i400.cache_size = I400_BINS(outlink->sample_rate);
        ebur128->i3000.cache_size = I3000_BINS(outlink->sample_rate);
        ebur128->i400.cache[i]  = av_calloc(ebur128->i400.cache_size,  sizeof(*ebur128->i400.cache[0]));
        ebur128->i3000.cache[i] = av_calloc(ebur128->i3000.cache_size, sizeof(*ebur128->i3000.cache[0]));
        if (!ebur128->i400.cache[i] || !ebur128->i3000.cache[i])
            return AVERROR(ENOMEM);
    }

#if CONFIG_SWRESAMPLE
    if (ebur128->peak_mode & PEAK_MODE_TRUE_PEAKS) {
        int ret;

        ebur128->swr_buf    = av_malloc_array(nb_channels, 19200 * sizeof(double));
        ebur128->true_peaks = av_calloc(nb_channels, sizeof(*ebur128->true_peaks));
        ebur128->true_peaks_per_frame = av_calloc(nb_channels, sizeof(*ebur128->true_peaks_per_frame));
        ebur128->swr_ctx    = swr_alloc();
        if (!ebur128->swr_buf || !ebur128->true_peaks ||
            !ebur128->true_peaks_per_frame || !ebur128->swr_ctx)
            return AVERROR(ENOMEM);

        av_opt_set_chlayout(ebur128->swr_ctx, "in_chlayout",    &outlink->ch_layout, 0);
        av_opt_set_int(ebur128->swr_ctx, "in_sample_rate",       outlink->sample_rate, 0);
        av_opt_set_sample_fmt(ebur128->swr_ctx, "in_sample_fmt", outlink->format, 0);

        av_opt_set_chlayout(ebur128->swr_ctx, "out_chlayout",    &outlink->ch_layout, 0);
        av_opt_set_int(ebur128->swr_ctx, "out_sample_rate",       192000, 0);
        av_opt_set_sample_fmt(ebur128->swr_ctx, "out_sample_fmt", outlink->format, 0);

        ret = swr_init(ebur128->swr_ctx);
        if (ret < 0)
            return ret;
    }
#endif

    if (ebur128->peak_mode & PEAK_MODE_SAMPLES_PEAKS) {
        ebur128->sample_peaks = av_calloc(nb_channels, sizeof(*ebur128->sample_peaks));
        if (!ebur128->sample_peaks)
            return AVERROR(ENOMEM);
    }

    return 0;
}

#define ENERGY(loudness) (ff_exp10(((loudness) + 0.691) / 10.))
#define LOUDNESS(energy) (-0.691 + 10 * log10(energy))
#define DBFS(energy) (20 * log10(energy))

static struct hist_entry *get_histogram(void)
{
    int i;
    struct hist_entry *h = av_calloc(HIST_SIZE, sizeof(*h));

    if (!h)
        return NULL;
    for (i = 0; i < HIST_SIZE; i++) {
        h[i].loudness = i / (double)HIST_GRAIN + ABS_THRES;
        h[i].energy   = ENERGY(h[i].loudness);
    }
    return h;
}

static av_cold int init(AVFilterContext *ctx)
{
    EBUR128Context *ebur128 = ctx->priv;
    AVFilterPad pad;
    int ret;

    if (ebur128->loglevel != AV_LOG_INFO &&
        ebur128->loglevel != AV_LOG_QUIET &&
        ebur128->loglevel != AV_LOG_VERBOSE) {
        if (ebur128->do_video || ebur128->metadata)
            ebur128->loglevel = AV_LOG_VERBOSE;
        else
            ebur128->loglevel = AV_LOG_INFO;
    }

    if (!CONFIG_SWRESAMPLE && (ebur128->peak_mode & PEAK_MODE_TRUE_PEAKS)) {
        av_log(ctx, AV_LOG_ERROR,
               "True-peak mode requires libswresample to be performed\n");
        return AVERROR(EINVAL);
    }

    // if meter is  +9 scale, scale range is from -18 LU to  +9 LU (or 3*9)
    // if meter is +18 scale, scale range is from -36 LU to +18 LU (or 3*18)
    ebur128->scale_range = 3 * ebur128->meter;

    ebur128->i400.histogram  = get_histogram();
    ebur128->i3000.histogram = get_histogram();
    if (!ebur128->i400.histogram || !ebur128->i3000.histogram)
        return AVERROR(ENOMEM);

    ebur128->integrated_loudness = ABS_THRES;
    ebur128->loudness_range = 0;

    /* insert output pads */
    if (ebur128->do_video) {
        pad = (AVFilterPad){
            .name         = "out0",
            .type         = AVMEDIA_TYPE_VIDEO,
            .config_props = config_video_output,
        };
        ret = ff_append_outpad(ctx, &pad);
        if (ret < 0)
            return ret;
    }
    pad = (AVFilterPad){
        .name         = ebur128->do_video ? "out1" : "out0",
        .type         = AVMEDIA_TYPE_AUDIO,
        .config_props = config_audio_output,
    };
    ret = ff_append_outpad(ctx, &pad);
    if (ret < 0)
        return ret;

    /* summary */
    av_log(ctx, AV_LOG_VERBOSE, "EBU +%d scale\n", ebur128->meter);

    return 0;
}

#define HIST_POS(power) (int)(((power) - ABS_THRES) * HIST_GRAIN)

/* loudness and power should be set such as loudness = -0.691 +
 * 10*log10(power), we just avoid doing that calculus two times */
static int gate_update(struct integrator *integ, double power,
                       double loudness, int gate_thres)
{
    int ipower;
    double relative_threshold;
    int gate_hist_pos;

    /* update powers histograms by incrementing current power count */
    ipower = av_clip(HIST_POS(loudness), 0, HIST_SIZE - 1);
    integ->histogram[ipower].count++;

    /* compute relative threshold and get its position in the histogram */
    integ->sum_kept_powers += power;
    integ->nb_kept_powers++;
    relative_threshold = integ->sum_kept_powers / integ->nb_kept_powers;
    if (!relative_threshold)
        relative_threshold = 1e-12;
    integ->rel_threshold = LOUDNESS(relative_threshold) + gate_thres;
    gate_hist_pos = av_clip(HIST_POS(integ->rel_threshold), 0, HIST_SIZE - 1);

    return gate_hist_pos;
}

static int filter_frame(AVFilterLink *inlink, AVFrame *insamples)
{
    int i, ch, idx_insample, ret;
    AVFilterContext *ctx = inlink->dst;
    EBUR128Context *ebur128 = ctx->priv;
    const int nb_channels = ebur128->nb_channels;
    const int nb_samples  = insamples->nb_samples;
    const double *samples = (double *)insamples->data[0];
    AVFrame *pic;

#if CONFIG_SWRESAMPLE
    if (ebur128->peak_mode & PEAK_MODE_TRUE_PEAKS && ebur128->idx_insample == 0) {
        const double *swr_samples = ebur128->swr_buf;
        int ret = swr_convert(ebur128->swr_ctx, (uint8_t**)&ebur128->swr_buf, 19200,
                              (const uint8_t **)insamples->data, nb_samples);
        if (ret < 0)
            return ret;
        for (ch = 0; ch < nb_channels; ch++)
            ebur128->true_peaks_per_frame[ch] = 0.0;
        for (idx_insample = 0; idx_insample < ret; idx_insample++) {
            for (ch = 0; ch < nb_channels; ch++) {
                ebur128->true_peaks[ch] = FFMAX(ebur128->true_peaks[ch], fabs(*swr_samples));
                ebur128->true_peaks_per_frame[ch] = FFMAX(ebur128->true_peaks_per_frame[ch],
                                                          fabs(*swr_samples));
                swr_samples++;
            }
        }
    }
#endif

    for (idx_insample = ebur128->idx_insample; idx_insample < nb_samples; idx_insample++) {
        const int bin_id_400  = ebur128->i400.cache_pos;
        const int bin_id_3000 = ebur128->i3000.cache_pos;

#define MOVE_TO_NEXT_CACHED_ENTRY(time) do {                \
    ebur128->i##time.cache_pos++;                           \
    if (ebur128->i##time.cache_pos ==                       \
        ebur128->i##time.cache_size) {                      \
        ebur128->i##time.filled    = 1;                     \
        ebur128->i##time.cache_pos = 0;                     \
    }                                                       \
} while (0)

        MOVE_TO_NEXT_CACHED_ENTRY(400);
        MOVE_TO_NEXT_CACHED_ENTRY(3000);

        for (ch = 0; ch < nb_channels; ch++) {
            double bin;

            if (ebur128->peak_mode & PEAK_MODE_SAMPLES_PEAKS)
                ebur128->sample_peaks[ch] = FFMAX(ebur128->sample_peaks[ch], fabs(samples[idx_insample * nb_channels + ch]));

            ebur128->x[ch * 3] = samples[idx_insample * nb_channels + ch]; // set X[i]

            if (!ebur128->ch_weighting[ch])
                continue;

            /* Y[i] = X[i]*b0 + X[i-1]*b1 + X[i-2]*b2 - Y[i-1]*a1 - Y[i-2]*a2 */
#define FILTER(Y, X, NUM, DEN) do {                                             \
            double *dst = ebur128->Y + ch*3;                                    \
            double *src = ebur128->X + ch*3;                                    \
            dst[2] = dst[1];                                                    \
            dst[1] = dst[0];                                                    \
            dst[0] = src[0]*NUM[0] + src[1]*NUM[1] + src[2]*NUM[2]              \
                                   - dst[1]*DEN[1] - dst[2]*DEN[2];             \
} while (0)

            // TODO: merge both filters in one?
            FILTER(y, x, ebur128->pre_b, ebur128->pre_a);  // apply pre-filter
            ebur128->x[ch * 3 + 2] = ebur128->x[ch * 3 + 1];
            ebur128->x[ch * 3 + 1] = ebur128->x[ch * 3    ];
            FILTER(z, y, ebur128->rlb_b, ebur128->rlb_a);  // apply RLB-filter

            bin = ebur128->z[ch * 3] * ebur128->z[ch * 3];

            /* add the new value, and limit the sum to the cache size (400ms or 3s)
             * by removing the oldest one */
            ebur128->i400.sum [ch] = ebur128->i400.sum [ch] + bin - ebur128->i400.cache [ch][bin_id_400];
            ebur128->i3000.sum[ch] = ebur128->i3000.sum[ch] + bin - ebur128->i3000.cache[ch][bin_id_3000];

            /* override old cache entry with the new value */
            ebur128->i400.cache [ch][bin_id_400 ] = bin;
            ebur128->i3000.cache[ch][bin_id_3000] = bin;
        }

#define FIND_PEAK(global, sp, ptype) do {                        \
    int ch;                                                      \
    double maxpeak;                                              \
    maxpeak = 0.0;                                               \
    if (ebur128->peak_mode & PEAK_MODE_ ## ptype ## _PEAKS) {    \
        for (ch = 0; ch < ebur128->nb_channels; ch++)            \
            maxpeak = FFMAX(maxpeak, sp[ch]);                    \
        global = DBFS(maxpeak);                                  \
    }                                                            \
} while (0)

        FIND_PEAK(ebur128->sample_peak, ebur128->sample_peaks, SAMPLES);
        FIND_PEAK(ebur128->true_peak,   ebur128->true_peaks,   TRUE);

        /* For integrated loudness, gating blocks are 400ms long with 75%
         * overlap (see BS.1770-2 p5), so a re-computation is needed each 100ms
         * (4800 samples at 48kHz). */
        if (++ebur128->sample_count == inlink->sample_rate / 10) {
            double loudness_400, loudness_3000;
            double power_400 = 1e-12, power_3000 = 1e-12;
            AVFilterLink *outlink = ctx->outputs[0];
            const int64_t pts = insamples->pts +
                av_rescale_q(idx_insample, (AVRational){ 1, inlink->sample_rate },
                             ctx->outputs[ebur128->do_video]->time_base);

            ebur128->sample_count = 0;

#define COMPUTE_LOUDNESS(m, time) do {                                              \
    if (ebur128->i##time.filled) {                                                  \
        /* weighting sum of the last <time> ms */                                   \
        for (ch = 0; ch < nb_channels; ch++)                                        \
            power_##time += ebur128->ch_weighting[ch] * ebur128->i##time.sum[ch];   \
        power_##time /= I##time##_BINS(inlink->sample_rate);                        \
    }                                                                               \
    loudness_##time = LOUDNESS(power_##time);                                       \
} while (0)

            COMPUTE_LOUDNESS(M,  400);
            COMPUTE_LOUDNESS(S, 3000);

            /* Integrated loudness */
#define I_GATE_THRES -10  // initially defined to -8 LU in the first EBU standard

            if (loudness_400 >= ABS_THRES) {
                double integrated_sum = 0.0;
                uint64_t nb_integrated = 0;
                int gate_hist_pos = gate_update(&ebur128->i400, power_400,
                                                loudness_400, I_GATE_THRES);

                /* compute integrated loudness by summing the histogram values
                 * above the relative threshold */
                for (i = gate_hist_pos; i < HIST_SIZE; i++) {
                    const unsigned nb_v = ebur128->i400.histogram[i].count;
                    nb_integrated  += nb_v;
                    integrated_sum += nb_v * ebur128->i400.histogram[i].energy;
                }
                if (nb_integrated) {
                    ebur128->integrated_loudness = LOUDNESS(integrated_sum / nb_integrated);
                    /* dual-mono correction */
                    if (nb_channels == 1 && ebur128->dual_mono) {
                        ebur128->integrated_loudness -= ebur128->pan_law;
                    }
                }
            }

            /* LRA */
#define LRA_GATE_THRES -20
#define LRA_LOWER_PRC   10
#define LRA_HIGHER_PRC  95

            /* XXX: example code in EBU 3342 is ">=" but formula in BS.1770
             * specs is ">" */
            if (loudness_3000 >= ABS_THRES) {
                uint64_t nb_powers = 0;
                int gate_hist_pos = gate_update(&ebur128->i3000, power_3000,
                                                loudness_3000, LRA_GATE_THRES);

                for (i = gate_hist_pos; i < HIST_SIZE; i++)
                    nb_powers += ebur128->i3000.histogram[i].count;
                if (nb_powers) {
                    uint64_t n, nb_pow;

                    /* get lower loudness to consider */
                    n = 0;
                    nb_pow = LRA_LOWER_PRC * nb_powers * 0.01 + 0.5;
                    for (i = gate_hist_pos; i < HIST_SIZE; i++) {
                        n += ebur128->i3000.histogram[i].count;
                        if (n >= nb_pow) {
                            ebur128->lra_low = ebur128->i3000.histogram[i].loudness;
                            break;
                        }
                    }

                    /* get higher loudness to consider */
                    n = nb_powers;
                    nb_pow = LRA_HIGHER_PRC * nb_powers * 0.01 + 0.5;
                    for (i = HIST_SIZE - 1; i >= 0; i--) {
                        n -= FFMIN(n, ebur128->i3000.histogram[i].count);
                        if (n < nb_pow) {
                            ebur128->lra_high = ebur128->i3000.histogram[i].loudness;
                            break;
                        }
                    }

                    // XXX: show low & high on the graph?
                    ebur128->loudness_range = ebur128->lra_high - ebur128->lra_low;
                }
            }

            /* dual-mono correction */
            if (nb_channels == 1 && ebur128->dual_mono) {
                loudness_400 -= ebur128->pan_law;
                loudness_3000 -= ebur128->pan_law;
            }

#define LOG_FMT "TARGET:%d LUFS    M:%6.1f S:%6.1f     I:%6.1f %s       LRA:%6.1f LU"

            /* push one video frame */
            if (ebur128->do_video) {
                AVFrame *clone;
                int x, y;
                uint8_t *p;
                double gauge_value;
                int y_loudness_lu_graph, y_loudness_lu_gauge;

                if (ebur128->gauge_type == GAUGE_TYPE_MOMENTARY) {
                    gauge_value = loudness_400 - ebur128->target;
                } else {
                    gauge_value = loudness_3000 - ebur128->target;
                }

                y_loudness_lu_graph = lu_to_y(ebur128, loudness_3000 - ebur128->target);
                y_loudness_lu_gauge = lu_to_y(ebur128, gauge_value);

                ret = ff_inlink_make_frame_writable(outlink, &ebur128->outpicref);
                if (ret < 0) {
                    av_frame_free(&insamples);
                    ebur128->insamples = NULL;
                    return ret;
                }
                pic = ebur128->outpicref;
                /* draw the graph using the short-term loudness */
                p = pic->data[0] + ebur128->graph.y*pic->linesize[0] + ebur128->graph.x*3;
                for (y = 0; y < ebur128->graph.h; y++) {
                    const uint8_t *c = get_graph_color(ebur128, y_loudness_lu_graph, y);

                    memmove(p, p + 3, (ebur128->graph.w - 1) * 3);
                    memcpy(p + (ebur128->graph.w - 1) * 3, c, 3);
                    p += pic->linesize[0];
                }

                /* draw the gauge using either momentary or short-term loudness */
                p = pic->data[0] + ebur128->gauge.y*pic->linesize[0] + ebur128->gauge.x*3;
                for (y = 0; y < ebur128->gauge.h; y++) {
                    const uint8_t *c = get_graph_color(ebur128, y_loudness_lu_gauge, y);

                    for (x = 0; x < ebur128->gauge.w; x++)
                        memcpy(p + x*3, c, 3);
                    p += pic->linesize[0];
                }

                /* draw textual info */
                if (ebur128->scale == SCALE_TYPE_ABSOLUTE) {
                    drawtext(pic, PAD, PAD - PAD/2, FONT16, font_colors,
                             LOG_FMT "     ", // padding to erase trailing characters
                             ebur128->target, loudness_400, loudness_3000,
                             ebur128->integrated_loudness, "LUFS", ebur128->loudness_range);
                } else {
                    drawtext(pic, PAD, PAD - PAD/2, FONT16, font_colors,
                             LOG_FMT "     ", // padding to erase trailing characters
                             ebur128->target, loudness_400-ebur128->target, loudness_3000-ebur128->target,
                             ebur128->integrated_loudness-ebur128->target, "LU", ebur128->loudness_range);
                }

                /* set pts and push frame */
                pic->pts = av_rescale_q(pts, inlink->time_base, outlink->time_base);
                pic->duration = 1;
                clone = av_frame_clone(pic);
                if (!clone)
                    return AVERROR(ENOMEM);
                ebur128->idx_insample = idx_insample + 1;
                ff_filter_set_ready(ctx, 100);
                return ff_filter_frame(outlink, clone);
            }

            if (ebur128->metadata) { /* happens only once per filter_frame call */
                char metabuf[128];
#define META_PREFIX "lavfi.r128."

#define SET_META(name, var) do {                                            \
    snprintf(metabuf, sizeof(metabuf), "%.3f", var);                        \
    av_dict_set(&insamples->metadata, name, metabuf, 0);                    \
} while (0)

#define SET_META_PEAK(name, ptype) do {                                     \
    if (ebur128->peak_mode & PEAK_MODE_ ## ptype ## _PEAKS) {               \
        double max_peak = 0.0;                                              \
        char key[64];                                                       \
        for (ch = 0; ch < nb_channels; ch++) {                              \
            snprintf(key, sizeof(key),                                      \
                     META_PREFIX AV_STRINGIFY(name) "_peaks_ch%d", ch);     \
            max_peak = fmax(max_peak, ebur128->name##_peaks[ch]);           \
            SET_META(key, ebur128->name##_peaks[ch]);                       \
        }                                                                   \
        snprintf(key, sizeof(key),                                          \
                 META_PREFIX AV_STRINGIFY(name) "_peak");                   \
        SET_META(key, max_peak);                                            \
    }                                                                       \
} while (0)

                SET_META(META_PREFIX "M",        loudness_400);
                SET_META(META_PREFIX "S",        loudness_3000);
                SET_META(META_PREFIX "I",        ebur128->integrated_loudness);
                SET_META(META_PREFIX "LRA",      ebur128->loudness_range);
                SET_META(META_PREFIX "LRA.low",  ebur128->lra_low);
                SET_META(META_PREFIX "LRA.high", ebur128->lra_high);

                SET_META_PEAK(sample, SAMPLES);
                SET_META_PEAK(true,   TRUE);
            }

            if (ebur128->loglevel != AV_LOG_QUIET) {
            if (ebur128->scale == SCALE_TYPE_ABSOLUTE) {
                av_log(ctx, ebur128->loglevel, "t: %-10s " LOG_FMT,
                       av_ts2timestr(pts, &outlink->time_base),
                       ebur128->target, loudness_400, loudness_3000,
                       ebur128->integrated_loudness, "LUFS", ebur128->loudness_range);
            } else {
                av_log(ctx, ebur128->loglevel, "t: %-10s " LOG_FMT,
                       av_ts2timestr(pts, &outlink->time_base),
                       ebur128->target, loudness_400-ebur128->target, loudness_3000-ebur128->target,
                       ebur128->integrated_loudness-ebur128->target, "LU", ebur128->loudness_range);
            }

#define PRINT_PEAKS(str, sp, ptype) do {                            \
    if (ebur128->peak_mode & PEAK_MODE_ ## ptype ## _PEAKS) {       \
        av_log(ctx, ebur128->loglevel, "  " str ":");               \
        for (ch = 0; ch < nb_channels; ch++)                        \
            av_log(ctx, ebur128->loglevel, " %5.1f", DBFS(sp[ch])); \
        av_log(ctx, ebur128->loglevel, " dBFS");                    \
    }                                                               \
} while (0)

            PRINT_PEAKS("SPK", ebur128->sample_peaks, SAMPLES);
            PRINT_PEAKS("FTPK", ebur128->true_peaks_per_frame, TRUE);
            PRINT_PEAKS("TPK", ebur128->true_peaks,   TRUE);
            av_log(ctx, ebur128->loglevel, "\n");
            }
        }
    }

    ebur128->idx_insample = 0;
    ebur128->insamples = NULL;

    return ff_filter_frame(ctx->outputs[ebur128->do_video], insamples);
}

static int activate(AVFilterContext *ctx)
{
    AVFilterLink *inlink = ctx->inputs[0];
    EBUR128Context *ebur128 = ctx->priv;
    AVFilterLink *voutlink = ctx->outputs[0];
    AVFilterLink *outlink = ctx->outputs[ebur128->do_video];
    int ret;

    FF_FILTER_FORWARD_STATUS_BACK(outlink, inlink);
    if (ebur128->do_video)
        FF_FILTER_FORWARD_STATUS_BACK(voutlink, inlink);

    if (!ebur128->insamples) {
        AVFrame *in;

        if (ebur128->nb_samples > 0) {
            ret = ff_inlink_consume_samples(inlink, ebur128->nb_samples, ebur128->nb_samples, &in);
        } else {
            ret = ff_inlink_consume_frame(inlink, &in);
        }
        if (ret < 0)
            return ret;
        if (ret > 0)
            ebur128->insamples = in;
    }

    if (ebur128->insamples)
        ret = filter_frame(inlink, ebur128->insamples);

    FF_FILTER_FORWARD_STATUS_ALL(inlink, ctx);
    FF_FILTER_FORWARD_WANTED(outlink, inlink);
    if (ebur128->do_video)
        FF_FILTER_FORWARD_WANTED(voutlink, inlink);

    return ret;
}

static int query_formats(AVFilterContext *ctx)
{
    EBUR128Context *ebur128 = ctx->priv;
    AVFilterFormats *formats;
    AVFilterChannelLayouts *layouts;
    AVFilterLink *inlink = ctx->inputs[0];
    AVFilterLink *outlink = ctx->outputs[0];
    int ret;

    static const enum AVSampleFormat sample_fmts[] = { AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_NONE };
    static const enum AVPixelFormat pix_fmts[] = { AV_PIX_FMT_RGB24, AV_PIX_FMT_NONE };

    /* set optional output video format */
    if (ebur128->do_video) {
        formats = ff_make_format_list(pix_fmts);
        if ((ret = ff_formats_ref(formats, &outlink->incfg.formats)) < 0)
            return ret;
        outlink = ctx->outputs[1];
    }

    /* set input and output audio formats
     * Note: ff_set_common_* functions are not used because they affect all the
     * links, and thus break the video format negotiation */
    formats = ff_make_format_list(sample_fmts);
    if ((ret = ff_formats_ref(formats, &inlink->outcfg.formats)) < 0 ||
        (ret = ff_formats_ref(formats, &outlink->incfg.formats)) < 0)
        return ret;

    layouts = ff_all_channel_layouts();
    if ((ret = ff_channel_layouts_ref(layouts, &inlink->outcfg.channel_layouts)) < 0 ||
        (ret = ff_channel_layouts_ref(layouts, &outlink->incfg.channel_layouts)) < 0)
        return ret;

    formats = ff_all_samplerates();
    if ((ret = ff_formats_ref(formats, &inlink->outcfg.samplerates)) < 0 ||
        (ret = ff_formats_ref(formats, &outlink->incfg.samplerates)) < 0)
        return ret;

    return 0;
}

static av_cold void uninit(AVFilterContext *ctx)
{
    EBUR128Context *ebur128 = ctx->priv;

    /* dual-mono correction */
    if (ebur128->nb_channels == 1 && ebur128->dual_mono) {
        ebur128->i400.rel_threshold -= ebur128->pan_law;
        ebur128->i3000.rel_threshold -= ebur128->pan_law;
        ebur128->lra_low -= ebur128->pan_law;
        ebur128->lra_high -= ebur128->pan_law;
    }

    if (ebur128->nb_channels > 0) {
    av_log(ctx, AV_LOG_INFO, "Summary:\n\n"
           "  Integrated loudness:\n"
           "    I:         %5.1f LUFS\n"
           "    Threshold: %5.1f LUFS\n\n"
           "  Loudness range:\n"
           "    LRA:       %5.1f LU\n"
           "    Threshold: %5.1f LUFS\n"
           "    LRA low:   %5.1f LUFS\n"
           "    LRA high:  %5.1f LUFS",
           ebur128->integrated_loudness, ebur128->i400.rel_threshold,
           ebur128->loudness_range,      ebur128->i3000.rel_threshold,
           ebur128->lra_low, ebur128->lra_high);

#define PRINT_PEAK_SUMMARY(str, value, ptype) do {               \
    if (ebur128->peak_mode & PEAK_MODE_ ## ptype ## _PEAKS) {    \
        av_log(ctx, AV_LOG_INFO, "\n\n  " str " peak:\n"         \
               "    Peak:      %5.1f dBFS", value);              \
    }                                                            \
} while (0)

    PRINT_PEAK_SUMMARY("Sample", ebur128->sample_peak, SAMPLES);
    PRINT_PEAK_SUMMARY("True",   ebur128->true_peak,   TRUE);
    av_log(ctx, AV_LOG_INFO, "\n");
    }

    av_freep(&ebur128->y_line_ref);
    av_freep(&ebur128->x);
    av_freep(&ebur128->y);
    av_freep(&ebur128->z);
    av_freep(&ebur128->ch_weighting);
    av_freep(&ebur128->true_peaks);
    av_freep(&ebur128->sample_peaks);
    av_freep(&ebur128->true_peaks_per_frame);
    av_freep(&ebur128->i400.sum);
    av_freep(&ebur128->i3000.sum);
    av_freep(&ebur128->i400.histogram);
    av_freep(&ebur128->i3000.histogram);
    for (int i = 0; i < ebur128->nb_channels; i++) {
        if (ebur128->i400.cache)
            av_freep(&ebur128->i400.cache[i]);
        if (ebur128->i3000.cache)
            av_freep(&ebur128->i3000.cache[i]);
    }
    av_freep(&ebur128->i400.cache);
    av_freep(&ebur128->i3000.cache);
    av_frame_free(&ebur128->outpicref);
#if CONFIG_SWRESAMPLE
    av_freep(&ebur128->swr_buf);
    swr_free(&ebur128->swr_ctx);
#endif
}

static const AVFilterPad ebur128_inputs[] = {
    {
        .name         = "default",
        .type         = AVMEDIA_TYPE_AUDIO,
        .config_props = config_audio_input,
    },
};

const AVFilter ff_af_ebur128 = {
    .name          = "ebur128",
    .description   = NULL_IF_CONFIG_SMALL("EBU R128 scanner."),
    .priv_size     = sizeof(EBUR128Context),
    .init          = init,
    .uninit        = uninit,
    .activate      = activate,
    FILTER_INPUTS(ebur128_inputs),
    .outputs       = NULL,
    FILTER_QUERY_FUNC(query_formats),
    .priv_class    = &ebur128_class,
    .flags         = AVFILTER_FLAG_DYNAMIC_OUTPUTS,
};