aboutsummaryrefslogtreecommitdiffstats
path: root/libavfilter/edge_common.c
blob: d72e8521cd458f22b916d2f5625b1f0de766802e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
/*
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

#include "edge_common.h"

// Internal helper for ff_sobel()
static int get_rounded_direction(int gx, int gy)
{
    /* reference angles:
     *   tan( pi/8) = sqrt(2)-1
     *   tan(3pi/8) = sqrt(2)+1
     * Gy/Gx is the tangent of the angle (theta), so Gy/Gx is compared against
     * <ref-angle>, or more simply Gy against <ref-angle>*Gx
     *
     * Gx and Gy bounds = [-1020;1020], using 16-bit arithmetic:
     *   round((sqrt(2)-1) * (1<<16)) =  27146
     *   round((sqrt(2)+1) * (1<<16)) = 158218
     */
    if (gx) {
        int tanpi8gx, tan3pi8gx;

        if (gx < 0)
            gx = -gx, gy = -gy;
        gy *= (1 << 16);
        tanpi8gx  =  27146 * gx;
        tan3pi8gx = 158218 * gx;
        if (gy > -tan3pi8gx && gy < -tanpi8gx)  return DIRECTION_45UP;
        if (gy > -tanpi8gx  && gy <  tanpi8gx)  return DIRECTION_HORIZONTAL;
        if (gy >  tanpi8gx  && gy <  tan3pi8gx) return DIRECTION_45DOWN;
    }
    return DIRECTION_VERTICAL;
}

// Simple sobel operator to get rounded gradients
void ff_sobel(int w, int h,
                    uint16_t *dst, int dst_linesize,
                    int8_t *dir, int dir_linesize,
                    const uint8_t *src, int src_linesize)
{
    int i, j;

    for (j = 1; j < h - 1; j++) {
        dst += dst_linesize;
        dir += dir_linesize;
        src += src_linesize;
        for (i = 1; i < w - 1; i++) {
            const int gx =
                -1*src[-src_linesize + i-1] + 1*src[-src_linesize + i+1]
                -2*src[                i-1] + 2*src[                i+1]
                -1*src[ src_linesize + i-1] + 1*src[ src_linesize + i+1];
            const int gy =
                -1*src[-src_linesize + i-1] + 1*src[ src_linesize + i-1]
                -2*src[-src_linesize + i  ] + 2*src[ src_linesize + i  ]
                -1*src[-src_linesize + i+1] + 1*src[ src_linesize + i+1];

            dst[i] = FFABS(gx) + FFABS(gy);
            dir[i] = get_rounded_direction(gx, gy);
        }
    }
}

// Filters rounded gradients to drop all non-maxima
// Expects gradients generated by ff_sobel()
// Expects zero's destination buffer
void ff_non_maximum_suppression(int w, int h,
                                      uint8_t *dst, int dst_linesize,
                                      const int8_t *dir, int dir_linesize,
                                      const uint16_t *src, int src_linesize)
{
    int i, j;

#define COPY_MAXIMA(ay, ax, by, bx) do {                \
    if (src[i] > src[(ay)*src_linesize + i+(ax)] &&     \
        src[i] > src[(by)*src_linesize + i+(bx)])       \
        dst[i] = av_clip_uint8(src[i]);                 \
} while (0)

    for (j = 1; j < h - 1; j++) {
        dst += dst_linesize;
        dir += dir_linesize;
        src += src_linesize;
        for (i = 1; i < w - 1; i++) {
            switch (dir[i]) {
            case DIRECTION_45UP:        COPY_MAXIMA( 1, -1, -1,  1); break;
            case DIRECTION_45DOWN:      COPY_MAXIMA(-1, -1,  1,  1); break;
            case DIRECTION_HORIZONTAL:  COPY_MAXIMA( 0, -1,  0,  1); break;
            case DIRECTION_VERTICAL:    COPY_MAXIMA(-1,  0,  1,  0); break;
            }
        }
    }
}

// Filter to keep all pixels > high, and keep all pixels > low where all surrounding pixels > high
void ff_double_threshold(int low, int high, int w, int h,
                               uint8_t *dst, int dst_linesize,
                               const uint8_t *src, int src_linesize)
{
    int i, j;

    for (j = 0; j < h; j++) {
        for (i = 0; i < w; i++) {
            if (src[i] > high) {
                dst[i] = src[i];
                continue;
            }

            if (!(!i || i == w - 1 || !j || j == h - 1) &&
                src[i] > low &&
                (src[-src_linesize + i-1] > high ||
                 src[-src_linesize + i  ] > high ||
                 src[-src_linesize + i+1] > high ||
                 src[                i-1] > high ||
                 src[                i+1] > high ||
                 src[ src_linesize + i-1] > high ||
                 src[ src_linesize + i  ] > high ||
                 src[ src_linesize + i+1] > high))
                dst[i] = src[i];
            else
                dst[i] = 0;
        }
        dst += dst_linesize;
        src += src_linesize;
    }
}

// Applies gaussian blur, using 5x5 kernels, sigma = 1.4
void ff_gaussian_blur(int w, int h,
                      uint8_t *dst, int dst_linesize,
                      const uint8_t *src, int src_linesize)
{
    int i, j;

    memcpy(dst, src, w); dst += dst_linesize; src += src_linesize;
    memcpy(dst, src, w); dst += dst_linesize; src += src_linesize;
    for (j = 2; j < h - 2; j++) {
        dst[0] = src[0];
        dst[1] = src[1];
        for (i = 2; i < w - 2; i++) {
            /* Gaussian mask of size 5x5 with sigma = 1.4 */
            dst[i] = ((src[-2*src_linesize + i-2] + src[2*src_linesize + i-2]) * 2
                    + (src[-2*src_linesize + i-1] + src[2*src_linesize + i-1]) * 4
                    + (src[-2*src_linesize + i  ] + src[2*src_linesize + i  ]) * 5
                    + (src[-2*src_linesize + i+1] + src[2*src_linesize + i+1]) * 4
                    + (src[-2*src_linesize + i+2] + src[2*src_linesize + i+2]) * 2

                    + (src[  -src_linesize + i-2] + src[  src_linesize + i-2]) *  4
                    + (src[  -src_linesize + i-1] + src[  src_linesize + i-1]) *  9
                    + (src[  -src_linesize + i  ] + src[  src_linesize + i  ]) * 12
                    + (src[  -src_linesize + i+1] + src[  src_linesize + i+1]) *  9
                    + (src[  -src_linesize + i+2] + src[  src_linesize + i+2]) *  4

                    + src[i-2] *  5
                    + src[i-1] * 12
                    + src[i  ] * 15
                    + src[i+1] * 12
                    + src[i+2] *  5) / 159;
        }
        dst[i    ] = src[i    ];
        dst[i + 1] = src[i + 1];

        dst += dst_linesize;
        src += src_linesize;
    }
    memcpy(dst, src, w); dst += dst_linesize; src += src_linesize;
    memcpy(dst, src, w);
}