1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
|
/*
* Copyright (c) 2022 Paul B Mahol
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <float.h>
#include <math.h>
#include "libavutil/tx.h"
#include "libavutil/avassert.h"
#include "libavutil/avstring.h"
#include "libavutil/channel_layout.h"
#include "libavutil/cpu.h"
#include "libavutil/opt.h"
#include "libavutil/parseutils.h"
#include "audio.h"
#include "video.h"
#include "avfilter.h"
#include "filters.h"
#include "internal.h"
enum FrequencyScale {
FSCALE_LINEAR,
FSCALE_LOG2,
FSCALE_BARK,
FSCALE_MEL,
FSCALE_ERBS,
NB_FSCALE
};
enum DirectionMode {
DIRECTION_LR,
DIRECTION_RL,
DIRECTION_UD,
DIRECTION_DU,
NB_DIRECTION
};
enum SlideMode {
SLIDE_REPLACE,
SLIDE_SCROLL,
SLIDE_FRAME,
NB_SLIDE
};
typedef struct ShowCWTContext {
const AVClass *class;
int w, h;
int mode;
char *rate_str;
AVRational auto_frame_rate;
AVRational frame_rate;
AVTXContext **fft;
AVTXContext **ifft;
av_tx_fn tx_fn;
av_tx_fn itx_fn;
int fft_in_size;
int fft_out_size;
int ifft_in_size;
int ifft_out_size;
int pos;
int64_t in_pts;
int64_t old_pts;
int64_t eof_pts;
float *frequency_band;
AVFrame *kernel;
unsigned *index;
int *kernel_start;
int *kernel_stop;
AVFrame *cache[2];
AVFrame *outpicref;
AVFrame *fft_in;
AVFrame *fft_out;
AVFrame *ifft_in;
AVFrame *ifft_out;
AVFrame *ch_out;
int nb_threads;
int nb_channels;
int nb_consumed_samples;
int pps;
int eof;
int slide;
int new_frame;
int direction;
int hop_size;
int hop_index;
int ihop_size;
int ihop_index;
int input_padding_size;
int input_sample_count;
int output_padding_size;
int output_sample_count;
int frequency_band_count;
float logarithmic_basis;
int frequency_scale;
float minimum_frequency;
float maximum_frequency;
float deviation;
} ShowCWTContext;
#define OFFSET(x) offsetof(ShowCWTContext, x)
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
static const AVOption showcwt_options[] = {
{ "size", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "640x512"}, 0, 0, FLAGS },
{ "s", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "640x512"}, 0, 0, FLAGS },
{ "rate", "set video rate", OFFSET(rate_str), AV_OPT_TYPE_STRING, {.str = "25"}, 0, 0, FLAGS },
{ "r", "set video rate", OFFSET(rate_str), AV_OPT_TYPE_STRING, {.str = "25"}, 0, 0, FLAGS },
{ "scale", "set frequency scale", OFFSET(frequency_scale), AV_OPT_TYPE_INT, {.i64=0}, 0, NB_FSCALE-1, FLAGS, "scale" },
{ "linear", "linear", 0, AV_OPT_TYPE_CONST,{.i64=FSCALE_LINEAR}, 0, 0, FLAGS, "scale" },
{ "log2", "logarithmic", 0, AV_OPT_TYPE_CONST,{.i64=FSCALE_LOG2}, 0, 0, FLAGS, "scale" },
{ "bark", "bark", 0, AV_OPT_TYPE_CONST,{.i64=FSCALE_BARK}, 0, 0, FLAGS, "scale" },
{ "mel", "mel", 0, AV_OPT_TYPE_CONST,{.i64=FSCALE_MEL}, 0, 0, FLAGS, "scale" },
{ "erbs", "erbs", 0, AV_OPT_TYPE_CONST,{.i64=FSCALE_ERBS}, 0, 0, FLAGS, "scale" },
{ "min", "set minimum frequency", OFFSET(minimum_frequency), AV_OPT_TYPE_FLOAT, {.dbl = 20.}, 1, 2000, FLAGS },
{ "max", "set maximum frequency", OFFSET(maximum_frequency), AV_OPT_TYPE_FLOAT, {.dbl = 20000.}, 0, 192000, FLAGS },
{ "logb", "set logarithmic basis", OFFSET(logarithmic_basis), AV_OPT_TYPE_FLOAT, {.dbl = 0.0001}, 0, 1, FLAGS },
{ "deviation", "set frequency deviation", OFFSET(deviation), AV_OPT_TYPE_FLOAT, {.dbl = 1.}, 0, 10, FLAGS },
{ "pps", "set pixels per second", OFFSET(pps), AV_OPT_TYPE_INT, {.i64 = 64}, 1, 1024, FLAGS },
{ "mode", "set output mode", OFFSET(mode), AV_OPT_TYPE_INT, {.i64=0}, 0, 4, FLAGS, "mode" },
{ "magnitude", "magnitude", 0, AV_OPT_TYPE_CONST,{.i64=0}, 0, 0, FLAGS, "mode" },
{ "phase", "phase", 0, AV_OPT_TYPE_CONST,{.i64=1}, 0, 0, FLAGS, "mode" },
{ "magphase", "magnitude+phase", 0, AV_OPT_TYPE_CONST,{.i64=2}, 0, 0, FLAGS, "mode" },
{ "channel", "color per channel", 0, AV_OPT_TYPE_CONST,{.i64=3}, 0, 0, FLAGS, "mode" },
{ "stereo", "stereo difference", 0, AV_OPT_TYPE_CONST,{.i64=4}, 0, 0, FLAGS, "mode" },
{ "slide", "set slide mode", OFFSET(slide), AV_OPT_TYPE_INT, {.i64=0}, 0, NB_SLIDE-1, FLAGS, "slide" },
{ "replace", "replace", 0, AV_OPT_TYPE_CONST,{.i64=SLIDE_REPLACE},0, 0, FLAGS, "slide" },
{ "scroll", "scroll", 0, AV_OPT_TYPE_CONST,{.i64=SLIDE_SCROLL}, 0, 0, FLAGS, "slide" },
{ "frame", "frame", 0, AV_OPT_TYPE_CONST,{.i64=SLIDE_FRAME}, 0, 0, FLAGS, "slide" },
{ "direction", "set direction mode", OFFSET(direction), AV_OPT_TYPE_INT, {.i64=0}, 0, NB_DIRECTION-1, FLAGS, "direction" },
{ "lr", "left to right", 0, AV_OPT_TYPE_CONST,{.i64=DIRECTION_LR}, 0, 0, FLAGS, "direction" },
{ "rl", "right to left", 0, AV_OPT_TYPE_CONST,{.i64=DIRECTION_RL}, 0, 0, FLAGS, "direction" },
{ "ud", "up to down", 0, AV_OPT_TYPE_CONST,{.i64=DIRECTION_UD}, 0, 0, FLAGS, "direction" },
{ "du", "down to up", 0, AV_OPT_TYPE_CONST,{.i64=DIRECTION_DU}, 0, 0, FLAGS, "direction" },
{ NULL }
};
AVFILTER_DEFINE_CLASS(showcwt);
static av_cold void uninit(AVFilterContext *ctx)
{
ShowCWTContext *s = ctx->priv;
av_freep(&s->frequency_band);
av_freep(&s->kernel_start);
av_freep(&s->kernel_stop);
av_freep(&s->index);
av_frame_free(&s->kernel);
av_frame_free(&s->cache[0]);
av_frame_free(&s->cache[1]);
av_frame_free(&s->outpicref);
av_frame_free(&s->fft_in);
av_frame_free(&s->fft_out);
av_frame_free(&s->ifft_in);
av_frame_free(&s->ifft_out);
av_frame_free(&s->ch_out);
if (s->fft) {
for (int n = 0; n < s->nb_threads; n++)
av_tx_uninit(&s->fft[n]);
av_freep(&s->fft);
}
if (s->ifft) {
for (int n = 0; n < s->nb_threads; n++)
av_tx_uninit(&s->ifft[n]);
av_freep(&s->ifft);
}
}
static int query_formats(AVFilterContext *ctx)
{
AVFilterFormats *formats = NULL;
AVFilterChannelLayouts *layouts = NULL;
AVFilterLink *inlink = ctx->inputs[0];
AVFilterLink *outlink = ctx->outputs[0];
static const enum AVSampleFormat sample_fmts[] = { AV_SAMPLE_FMT_FLTP, AV_SAMPLE_FMT_NONE };
static const enum AVPixelFormat pix_fmts[] = { AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVA444P, AV_PIX_FMT_NONE };
int ret;
formats = ff_make_format_list(sample_fmts);
if ((ret = ff_formats_ref(formats, &inlink->outcfg.formats)) < 0)
return ret;
layouts = ff_all_channel_counts();
if ((ret = ff_channel_layouts_ref(layouts, &inlink->outcfg.channel_layouts)) < 0)
return ret;
formats = ff_all_samplerates();
if ((ret = ff_formats_ref(formats, &inlink->outcfg.samplerates)) < 0)
return ret;
formats = ff_make_format_list(pix_fmts);
if ((ret = ff_formats_ref(formats, &outlink->incfg.formats)) < 0)
return ret;
return 0;
}
static void frequency_band(float *frequency_band,
int frequency_band_count,
float frequency_range,
float frequency_offset,
int frequency_scale, float deviation)
{
deviation *= sqrtf(1.f / (4.f * M_PI)); // Heisenberg Gabor Limit
for (int y = 0; y < frequency_band_count; y++) {
float frequency = frequency_range * (1.f - (float)y / frequency_band_count) + frequency_offset;
float frequency_derivative = frequency_range / frequency_band_count;
switch (frequency_scale) {
case FSCALE_LOG2:
frequency = powf(2.f, frequency);
frequency_derivative *= logf(2.f) * frequency;
break;
case FSCALE_BARK:
frequency = 600.f * sinhf(frequency / 6.f);
frequency_derivative *= sqrtf(frequency * frequency + 360000.f) / 6.f;
break;
case FSCALE_MEL:
frequency = 700.f * (powf(10.f, frequency / 2595.f) - 1.f);
frequency_derivative *= (frequency + 700.f) * logf(10.f) / 2595.f;
break;
case FSCALE_ERBS:
frequency = 676170.4f / (47.06538f - expf(frequency * 0.08950404f)) - 14678.49f;
frequency_derivative *= (frequency * frequency + 14990.4 * frequency + 4577850.f) / 160514.f;
break;
}
frequency_band[y*2 ] = frequency;
frequency_band[y*2+1] = frequency_derivative * deviation;
}
}
static float remap_log(float value, float log_factor)
{
float sign = (0 < value) - (value < 0);
value = logf(value * sign) * log_factor;
return 1.f - av_clipf(value, 0.f, 1.f);
}
static int run_channel_cwt_prepare(AVFilterContext *ctx, void *arg, int jobnr, int ch)
{
ShowCWTContext *s = ctx->priv;
const int hop_size = s->hop_size;
AVFrame *fin = arg;
float *cache0 = (float *)s->cache[0]->extended_data[ch];
float *cache = (float *)s->cache[1]->extended_data[ch];
AVComplexFloat *src = (AVComplexFloat *)s->fft_in->extended_data[ch];
AVComplexFloat *dst = (AVComplexFloat *)s->fft_out->extended_data[ch];
if (fin) {
const int offset = s->hop_index;
const float *input = (const float *)fin->extended_data[ch];
memcpy(&cache[offset], input,
fin->nb_samples * sizeof(float));
}
if (fin == NULL) {
memset(&cache[s->hop_index], 0,
(hop_size - s->hop_index) * sizeof(float));
} else if (s->hop_index + fin->nb_samples < hop_size) {
return 0;
}
for (int n = 0; n < hop_size; n++) {
src[n].re = cache0[n];
src[n].im = 0.f;
src[n + hop_size].re = cache[n];
src[n + hop_size].im = 0.f;
}
s->tx_fn(s->fft[jobnr], dst, src, sizeof(*src));
return 0;
}
static int draw(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
ShowCWTContext *s = ctx->priv;
const ptrdiff_t ylinesize = s->outpicref->linesize[0];
const ptrdiff_t ulinesize = s->outpicref->linesize[1];
const ptrdiff_t vlinesize = s->outpicref->linesize[2];
const ptrdiff_t alinesize = s->outpicref->linesize[3];
const float log_factor = 1.f/logf(s->logarithmic_basis);
const int count = s->frequency_band_count;
const int start = (count * jobnr) / nb_jobs;
const int end = (count * (jobnr+1)) / nb_jobs;
const int ihop_index = s->ihop_index;
const int ihop_size = s->ihop_size;
const int direction = s->direction;
uint8_t *dstY, *dstU, *dstV, *dstA;
const int mode = s->mode;
const int w_1 = s->w - 1;
const int x = s->pos;
float Y, U, V;
for (int y = start; y < end; y++) {
const AVComplexFloat *src = ((const AVComplexFloat *)s->ch_out->extended_data[0]) +
y * ihop_size + ihop_index;
switch (direction) {
case DIRECTION_LR:
case DIRECTION_RL:
dstY = s->outpicref->data[0] + y * ylinesize;
dstU = s->outpicref->data[1] + y * ulinesize;
dstV = s->outpicref->data[2] + y * vlinesize;
dstA = s->outpicref->data[3] ? s->outpicref->data[3] + y * alinesize : NULL;
break;
case DIRECTION_UD:
case DIRECTION_DU:
dstY = s->outpicref->data[0] + x * ylinesize + w_1 - y;
dstU = s->outpicref->data[1] + x * ulinesize + w_1 - y;
dstV = s->outpicref->data[2] + x * vlinesize + w_1 - y;
dstA = s->outpicref->data[3] ? s->outpicref->data[3] + x * alinesize + w_1 - y : NULL;
break;
}
switch (s->slide) {
case SLIDE_REPLACE:
case SLIDE_FRAME:
/* nothing to do here */
break;
case SLIDE_SCROLL:
switch (s->direction) {
case DIRECTION_RL:
memmove(dstY, dstY + 1, w_1);
memmove(dstU, dstU + 1, w_1);
memmove(dstV, dstV + 1, w_1);
if (dstA != NULL)
memmove(dstA, dstA + 1, w_1);
break;
case DIRECTION_LR:
memmove(dstY + 1, dstY, w_1);
memmove(dstU + 1, dstU, w_1);
memmove(dstV + 1, dstV, w_1);
if (dstA != NULL)
memmove(dstA + 1, dstA, w_1);
break;
}
break;
}
if (direction == DIRECTION_RL ||
direction == DIRECTION_LR) {
dstY += x;
dstU += x;
dstV += x;
if (dstA != NULL)
dstA += x;
}
switch (mode) {
case 4:
{
const AVComplexFloat *src2 = ((const AVComplexFloat *)s->ch_out->extended_data[FFMIN(1, s->nb_channels - 1)]) +
y * ihop_size + ihop_index;
float z, u, v;
z = hypotf(src[0].re + src2[0].re, src[0].im + src2[0].im);
u = hypotf(src[0].re, src[0].im);
v = hypotf(src2[0].re, src2[0].im);
z = remap_log(z, log_factor);
u = remap_log(u, log_factor);
v = remap_log(v, log_factor);
Y = z;
U = 0.5f + z * sinf((v - u) * M_PI_2);
V = 0.5f + z * sinf((u - v) * M_PI_2);
dstY[0] = av_clip_uint8(lrintf(Y * 255.f));
dstU[0] = av_clip_uint8(lrintf(U * 255.f));
dstV[0] = av_clip_uint8(lrintf(V * 255.f));
if (dstA)
dstA[0] = dstY[0];
}
break;
case 3:
{
const int nb_channels = s->nb_channels;
const float yf = 1.f / nb_channels;
Y = 0.f;
U = V = 0.5f;
for (int ch = 0; ch < nb_channels; ch++) {
const AVComplexFloat *src = ((const AVComplexFloat *)s->ch_out->extended_data[ch]) +
y * ihop_size + ihop_index;
float z;
z = hypotf(src[0].re, src[0].im);
z = remap_log(z, log_factor);
Y += z * yf;
U += z * yf * sinf(2.f * M_PI * ch * yf);
V += z * yf * cosf(2.f * M_PI * ch * yf);
}
dstY[0] = av_clip_uint8(lrintf(Y * 255.f));
dstU[0] = av_clip_uint8(lrintf(U * 255.f));
dstV[0] = av_clip_uint8(lrintf(V * 255.f));
if (dstA)
dstA[0] = dstY[0];
}
break;
case 2:
Y = hypotf(src[0].re, src[0].im);
Y = remap_log(Y, log_factor);
U = atan2f(src[0].im, src[0].re);
U = 0.5f + 0.5f * U * Y / M_PI;
V = 1.f - U;
dstY[0] = av_clip_uint8(lrintf(Y * 255.f));
dstU[0] = av_clip_uint8(lrintf(U * 255.f));
dstV[0] = av_clip_uint8(lrintf(V * 255.f));
if (dstA)
dstA[0] = dstY[0];
break;
case 1:
Y = atan2f(src[0].im, src[0].re);
Y = 0.5f + 0.5f * Y / M_PI;
dstY[0] = av_clip_uint8(lrintf(Y * 255.f));
if (dstA)
dstA[0] = dstY[0];
break;
case 0:
Y = hypotf(src[0].re, src[0].im);
Y = remap_log(Y, log_factor);
dstY[0] = av_clip_uint8(lrintf(Y * 255.f));
if (dstA)
dstA[0] = dstY[0];
break;
}
}
return 0;
}
static int run_channel_cwt(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
ShowCWTContext *s = ctx->priv;
const int ch = *(int *)arg;
AVComplexFloat *dst = (AVComplexFloat *)s->fft_out->extended_data[ch];
const int output_sample_count = s->output_sample_count;
const int ihop_size = s->ihop_size;
const int ioffset = (s->output_padding_size - ihop_size) >> 1;
const int count = s->frequency_band_count;
const int start = (count * jobnr) / nb_jobs;
const int end = (count * (jobnr+1)) / nb_jobs;
for (int y = start; y < end; y++) {
AVComplexFloat *isrc = (AVComplexFloat *)s->ifft_in->extended_data[y];
AVComplexFloat *idst = (AVComplexFloat *)s->ifft_out->extended_data[y];
AVComplexFloat *chout = ((AVComplexFloat *)s->ch_out->extended_data[ch]) + y * ihop_size;
const float *kernel = (const float *)s->kernel->extended_data[y];
const unsigned *index = (const unsigned *)s->index;
const int kernel_start = s->kernel_start[y];
const int kernel_stop = s->kernel_stop[y];
memset(isrc, 0, sizeof(*isrc) * output_sample_count);
for (int i = kernel_start; i < kernel_stop; i++) {
const unsigned n = index[i];
const float ff = kernel[i];
isrc[n].re += ff * dst[i].re;
isrc[n].im += ff * dst[i].im;
}
s->itx_fn(s->ifft[jobnr], idst, isrc, sizeof(*isrc));
memcpy(chout, idst + ioffset, sizeof(*chout) * ihop_size);
}
return 0;
}
static void compute_kernel(AVFilterContext *ctx)
{
ShowCWTContext *s = ctx->priv;
const int size = s->input_sample_count;
const float scale_factor = 1.f/(float)size;
const int output_sample_count = s->output_sample_count;
const int fsize = s->frequency_band_count;
unsigned *index = s->index;
for (int y = 0; y < fsize; y++) {
float *kernel = (float *)s->kernel->extended_data[y];
int *kernel_start = s->kernel_start;
int *kernel_stop = s->kernel_stop;
float frequency = s->frequency_band[y*2];
float deviation = 1.f / (s->frequency_band[y*2+1] *
output_sample_count);
for (int n = 0; n < size; n++) {
float ff, f = fabsf(n-frequency);
f = size - fabsf(f - size);
ff = expf(-f*f*deviation) * scale_factor;
kernel[n] = ff;
}
for (int n = 0; n < size; n++) {
if (kernel[n] != 0.f) {
kernel_start[y] = n;
break;
}
}
for (int n = 0; n < size; n++) {
if (kernel[size - n - 1] != 0.f) {
kernel_stop[y] = size - n;
break;
}
}
}
for (int n = 0; n < size; n++)
index[n] = n % output_sample_count;
}
static int config_output(AVFilterLink *outlink)
{
AVFilterContext *ctx = outlink->src;
AVFilterLink *inlink = ctx->inputs[0];
ShowCWTContext *s = ctx->priv;
float maximum_frequency = fminf(s->maximum_frequency, inlink->sample_rate * 0.5f);
float minimum_frequency = s->minimum_frequency;
float scale = 1.f, factor;
int ret;
uninit(ctx);
switch (s->direction) {
case DIRECTION_LR:
case DIRECTION_RL:
s->frequency_band_count = s->h;
break;
case DIRECTION_UD:
case DIRECTION_DU:
s->frequency_band_count = s->w;
break;
}
s->new_frame = 1;
s->nb_threads = FFMIN(s->frequency_band_count, ff_filter_get_nb_threads(ctx));
s->nb_channels = inlink->ch_layout.nb_channels;
s->old_pts = AV_NOPTS_VALUE;
s->eof_pts = AV_NOPTS_VALUE;
s->nb_consumed_samples = 65536;
s->input_sample_count = s->nb_consumed_samples;
s->hop_size = s->nb_consumed_samples >> 1;
s->input_padding_size = 65536;
s->output_padding_size = FFMAX(16, s->input_padding_size * s->pps / inlink->sample_rate);
outlink->w = s->w;
outlink->h = s->h;
outlink->sample_aspect_ratio = (AVRational){1,1};
s->fft_in_size = FFALIGN(s->input_padding_size, av_cpu_max_align());
s->fft_out_size = FFALIGN(s->input_padding_size, av_cpu_max_align());
s->output_sample_count = s->output_padding_size;
s->ifft_in_size = FFALIGN(s->output_padding_size, av_cpu_max_align());
s->ifft_out_size = FFALIGN(s->output_padding_size, av_cpu_max_align());
s->ihop_size = s->output_padding_size >> 1;
s->fft = av_calloc(s->nb_threads, sizeof(*s->fft));
if (!s->fft)
return AVERROR(ENOMEM);
for (int n = 0; n < s->nb_threads; n++) {
ret = av_tx_init(&s->fft[n], &s->tx_fn, AV_TX_FLOAT_FFT, 0, s->input_padding_size, &scale, 0);
if (ret < 0)
return ret;
}
s->ifft = av_calloc(s->nb_threads, sizeof(*s->ifft));
if (!s->ifft)
return AVERROR(ENOMEM);
for (int n = 0; n < s->nb_threads; n++) {
ret = av_tx_init(&s->ifft[n], &s->itx_fn, AV_TX_FLOAT_FFT, 1, s->output_padding_size, &scale, 0);
if (ret < 0)
return ret;
}
s->frequency_band = av_calloc(s->frequency_band_count,
sizeof(*s->frequency_band) * 2);
s->outpicref = ff_get_video_buffer(outlink, outlink->w, outlink->h);
s->fft_in = ff_get_audio_buffer(inlink, s->fft_in_size * 2);
s->fft_out = ff_get_audio_buffer(inlink, s->fft_out_size * 2);
s->cache[0] = ff_get_audio_buffer(inlink, s->hop_size);
s->cache[1] = ff_get_audio_buffer(inlink, s->hop_size);
s->ch_out = ff_get_audio_buffer(inlink, s->frequency_band_count * 2 * s->ihop_size);
s->ifft_in = av_frame_alloc();
s->ifft_out = av_frame_alloc();
s->kernel = av_frame_alloc();
s->index = av_calloc(s->input_padding_size, sizeof(*s->index));
s->kernel_start = av_calloc(s->frequency_band_count, sizeof(*s->kernel_start));
s->kernel_stop = av_calloc(s->frequency_band_count, sizeof(*s->kernel_stop));
if (!s->outpicref || !s->fft_in || !s->fft_out ||
!s->ifft_in || !s->ifft_out || !s->kernel_start || !s->kernel_stop ||
!s->frequency_band || !s->kernel || !s->cache[0] || !s->cache[1] || !s->index)
return AVERROR(ENOMEM);
s->ifft_in->format = inlink->format;
s->ifft_in->nb_samples = s->ifft_in_size * 2;
s->ifft_in->ch_layout.nb_channels = s->frequency_band_count;
ret = av_frame_get_buffer(s->ifft_in, 0);
if (ret < 0)
return ret;
s->ifft_out->format = inlink->format;
s->ifft_out->nb_samples = s->ifft_out_size * 2;
s->ifft_out->ch_layout.nb_channels = s->frequency_band_count;
ret = av_frame_get_buffer(s->ifft_out, 0);
if (ret < 0)
return ret;
s->kernel->format = inlink->format;
s->kernel->nb_samples = s->input_padding_size;
s->kernel->ch_layout.nb_channels = s->frequency_band_count;
ret = av_frame_get_buffer(s->kernel, 0);
if (ret < 0)
return ret;
s->outpicref->sample_aspect_ratio = (AVRational){1,1};
for (int y = 0; y < outlink->h; y++) {
memset(s->outpicref->data[0] + y * s->outpicref->linesize[0], 0, outlink->w);
memset(s->outpicref->data[1] + y * s->outpicref->linesize[1], 128, outlink->w);
memset(s->outpicref->data[2] + y * s->outpicref->linesize[2], 128, outlink->w);
if (s->outpicref->data[3])
memset(s->outpicref->data[3] + y * s->outpicref->linesize[3], 0, outlink->w);
}
s->outpicref->color_range = AVCOL_RANGE_JPEG;
factor = s->nb_consumed_samples / (float)inlink->sample_rate;
minimum_frequency *= factor;
maximum_frequency *= factor;
switch (s->frequency_scale) {
case FSCALE_LOG2:
minimum_frequency = logf(minimum_frequency) / logf(2.f);
maximum_frequency = logf(maximum_frequency) / logf(2.f);
break;
case FSCALE_BARK:
minimum_frequency = 6.f * asinhf(minimum_frequency / 600.f);
maximum_frequency = 6.f * asinhf(maximum_frequency / 600.f);
break;
case FSCALE_MEL:
minimum_frequency = 2595.f * log10f(1.f + minimum_frequency / 700.f);
maximum_frequency = 2595.f * log10f(1.f + maximum_frequency / 700.f);
break;
case FSCALE_ERBS:
minimum_frequency = 11.17268f * log(1.f + (46.06538f * minimum_frequency) / (minimum_frequency + 14678.49f));
maximum_frequency = 11.17268f * log(1.f + (46.06538f * maximum_frequency) / (maximum_frequency + 14678.49f));
break;
}
frequency_band(s->frequency_band,
s->frequency_band_count, maximum_frequency - minimum_frequency,
minimum_frequency, s->frequency_scale, s->deviation);
av_log(ctx, AV_LOG_DEBUG, "input_sample_count: %d\n", s->input_sample_count);
av_log(ctx, AV_LOG_DEBUG, "output_sample_count: %d\n", s->output_sample_count);
switch (s->direction) {
case DIRECTION_LR:
s->pos = 0;
break;
case DIRECTION_RL:
s->pos = s->w - 1;
break;
case DIRECTION_UD:
s->pos = 0;
break;
case DIRECTION_DU:
s->pos = s->h - 1;
break;
}
s->auto_frame_rate = av_make_q(inlink->sample_rate, s->hop_size);
if (strcmp(s->rate_str, "auto")) {
ret = av_parse_video_rate(&s->frame_rate, s->rate_str);
} else {
s->frame_rate = s->auto_frame_rate;
}
outlink->frame_rate = s->frame_rate;
outlink->time_base = av_inv_q(outlink->frame_rate);
compute_kernel(ctx);
return 0;
}
static int output_frame(AVFilterContext *ctx)
{
AVFilterLink *outlink = ctx->outputs[0];
AVFilterLink *inlink = ctx->inputs[0];
ShowCWTContext *s = ctx->priv;
const int nb_planes = 3 + (s->outpicref->data[3] != NULL);
int ret;
switch (s->slide) {
case SLIDE_SCROLL:
switch (s->direction) {
case DIRECTION_UD:
for (int p = 0; p < nb_planes; p++) {
ptrdiff_t linesize = s->outpicref->linesize[p];
for (int y = s->h - 1; y > 0; y--) {
uint8_t *dst = s->outpicref->data[p] + y * linesize;
memmove(dst, dst - linesize, s->w);
}
}
break;
case DIRECTION_DU:
for (int p = 0; p < nb_planes; p++) {
ptrdiff_t linesize = s->outpicref->linesize[p];
for (int y = 0; y < s->h - 1; y++) {
uint8_t *dst = s->outpicref->data[p] + y * linesize;
memmove(dst, dst + linesize, s->w);
}
}
break;
}
break;
}
ff_filter_execute(ctx, draw, NULL, NULL, s->nb_threads);
switch (s->slide) {
case SLIDE_REPLACE:
case SLIDE_FRAME:
switch (s->direction) {
case DIRECTION_LR:
s->pos++;
if (s->pos >= s->w) {
s->pos = 0;
s->new_frame = 1;
}
break;
case DIRECTION_RL:
s->pos--;
if (s->pos < 0) {
s->pos = s->w - 1;
s->new_frame = 1;
}
break;
case DIRECTION_UD:
s->pos++;
if (s->pos >= s->h) {
s->pos = 0;
s->new_frame = 1;
}
break;
case DIRECTION_DU:
s->pos--;
if (s->pos < 0) {
s->pos = s->h - 1;
s->new_frame = 1;
}
break;
}
break;
case SLIDE_SCROLL:
switch (s->direction) {
case DIRECTION_UD:
case DIRECTION_LR:
s->pos = 0;
break;
case DIRECTION_RL:
s->pos = s->w - 1;
break;
case DIRECTION_DU:
s->pos = s->h - 1;
break;
}
break;
}
if (s->slide == SLIDE_FRAME && s->eof) {
switch (s->direction) {
case DIRECTION_LR:
for (int p = 0; p < nb_planes; p++) {
ptrdiff_t linesize = s->outpicref->linesize[p];
const int size = s->w - s->pos;
const int fill = p > 0 && p < 3 ? 128 : 0;
const int x = s->pos;
for (int y = 0; y < s->h; y++) {
uint8_t *dst = s->outpicref->data[p] + y * linesize + x;
memset(dst, fill, size);
}
}
break;
case DIRECTION_RL:
for (int p = 0; p < nb_planes; p++) {
ptrdiff_t linesize = s->outpicref->linesize[p];
const int size = s->w - s->pos;
const int fill = p > 0 && p < 3 ? 128 : 0;
for (int y = 0; y < s->h; y++) {
uint8_t *dst = s->outpicref->data[p] + y * linesize;
memset(dst, fill, size);
}
}
break;
case DIRECTION_UD:
for (int p = 0; p < nb_planes; p++) {
ptrdiff_t linesize = s->outpicref->linesize[p];
const int fill = p > 0 && p < 3 ? 128 : 0;
for (int y = s->pos; y < s->h; y++) {
uint8_t *dst = s->outpicref->data[p] + y * linesize;
memset(dst, fill, s->w);
}
}
break;
case DIRECTION_DU:
for (int p = 0; p < nb_planes; p++) {
ptrdiff_t linesize = s->outpicref->linesize[p];
const int fill = p > 0 && p < 3 ? 128 : 0;
for (int y = s->h - s->pos; y >= 0; y--) {
uint8_t *dst = s->outpicref->data[p] + y * linesize;
memset(dst, fill, s->w);
}
}
break;
}
}
s->new_frame = s->slide == SLIDE_FRAME && (s->new_frame || s->eof);
if (s->slide != SLIDE_FRAME || s->new_frame == 1) {
int64_t pts_offset = s->new_frame ? 0LL : av_rescale(s->ihop_index, s->hop_size, s->ihop_size);
pts_offset = av_rescale_q(pts_offset, av_make_q(1, inlink->sample_rate), inlink->time_base);
s->outpicref->pts = av_rescale_q(s->in_pts + pts_offset, inlink->time_base, outlink->time_base);
s->outpicref->duration = 1;
}
s->ihop_index++;
if (s->ihop_index >= s->ihop_size)
s->ihop_index = 0;
if (s->slide == SLIDE_FRAME && s->new_frame == 0)
return 1;
if (s->old_pts < s->outpicref->pts) {
AVFrame *out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
if (!out)
return AVERROR(ENOMEM);
ret = av_frame_copy_props(out, s->outpicref);
if (ret < 0)
goto fail;
ret = av_frame_copy(out, s->outpicref);
if (ret < 0)
goto fail;
s->old_pts = s->outpicref->pts;
s->new_frame = 0;
ret = ff_filter_frame(outlink, out);
if (ret <= 0)
return ret;
fail:
av_frame_free(&out);
return ret;
}
return 1;
}
static int run_channels_cwt_prepare(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
ShowCWTContext *s = ctx->priv;
const int count = s->nb_channels;
const int start = (count * jobnr) / nb_jobs;
const int end = (count * (jobnr+1)) / nb_jobs;
for (int ch = start; ch < end; ch++)
run_channel_cwt_prepare(ctx, arg, jobnr, ch);
return 0;
}
static int activate(AVFilterContext *ctx)
{
AVFilterLink *inlink = ctx->inputs[0];
AVFilterLink *outlink = ctx->outputs[0];
ShowCWTContext *s = ctx->priv;
int ret = 0, status;
int64_t pts;
FF_FILTER_FORWARD_STATUS_BACK(outlink, inlink);
if (s->outpicref) {
AVFrame *fin = NULL;
if (s->ihop_index == 0) {
if (!s->eof) {
ret = ff_inlink_consume_samples(inlink, 1, s->hop_size - s->hop_index, &fin);
if (ret < 0)
return ret;
}
if (ret > 0 || s->eof) {
ff_filter_execute(ctx, run_channels_cwt_prepare, fin, NULL,
FFMIN(s->nb_threads, s->nb_channels));
if (fin) {
if ((s->hop_index == 0 && s->slide != SLIDE_FRAME) || s->new_frame) {
s->in_pts = fin->pts;
s->new_frame = 0;
}
s->hop_index += fin->nb_samples;
av_frame_free(&fin);
} else {
s->hop_index = s->hop_size;
}
}
}
if (s->hop_index >= s->hop_size || s->ihop_index > 0) {
if (s->hop_index) {
FFSWAP(AVFrame *, s->cache[0], s->cache[1]);
s->hop_index = 0;
}
for (int ch = 0; ch < s->nb_channels && s->ihop_index == 0; ch++) {
ff_filter_execute(ctx, run_channel_cwt, (void *)&ch, NULL,
s->nb_threads);
}
ret = output_frame(ctx);
if (ret != 1)
return ret;
}
}
if (s->eof && s->eof_pts != AV_NOPTS_VALUE &&
(s->old_pts + 1 >= s->eof_pts || (s->slide == SLIDE_FRAME))) {
if (s->slide == SLIDE_FRAME)
ret = output_frame(ctx);
ff_outlink_set_status(outlink, AVERROR_EOF, s->eof_pts);
return ret;
}
if (!s->eof && ff_inlink_acknowledge_status(inlink, &status, &pts)) {
if (status == AVERROR_EOF) {
s->eof = 1;
ff_filter_set_ready(ctx, 10);
s->eof_pts = av_rescale_q(pts, inlink->time_base, outlink->time_base);
return 0;
}
}
if (ff_inlink_queued_samples(inlink) > 0 || s->ihop_index ||
s->hop_index >= s->hop_size || s->eof) {
ff_filter_set_ready(ctx, 10);
return 0;
}
if (ff_outlink_frame_wanted(outlink)) {
ff_inlink_request_frame(inlink);
return 0;
}
return FFERROR_NOT_READY;
}
static const AVFilterPad showcwt_inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_AUDIO,
},
};
static const AVFilterPad showcwt_outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.config_props = config_output,
},
};
const AVFilter ff_avf_showcwt = {
.name = "showcwt",
.description = NULL_IF_CONFIG_SMALL("Convert input audio to a CWT (Continuous Wavelet Transform) spectrum video output."),
.uninit = uninit,
.priv_size = sizeof(ShowCWTContext),
FILTER_INPUTS(showcwt_inputs),
FILTER_OUTPUTS(showcwt_outputs),
FILTER_QUERY_FUNC(query_formats),
.activate = activate,
.priv_class = &showcwt_class,
.flags = AVFILTER_FLAG_SLICE_THREADS,
};
|