1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
|
/*
* Copyright (c) 2008-2009 Rob Sykes <robs@users.sourceforge.net>
* Copyright (c) 2017 Paul B Mahol
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/avassert.h"
#include "libavutil/channel_layout.h"
#include "libavutil/opt.h"
#include "libavutil/tx.h"
#include "audio.h"
#include "avfilter.h"
#include "filters.h"
#include "formats.h"
#include "internal.h"
typedef struct SincContext {
const AVClass *class;
int sample_rate, nb_samples;
float att, beta, phase, Fc0, Fc1, tbw0, tbw1;
int num_taps[2];
int round;
int n, rdft_len;
float *coeffs;
int64_t pts;
AVTXContext *tx, *itx;
av_tx_fn tx_fn, itx_fn;
} SincContext;
static int activate(AVFilterContext *ctx)
{
AVFilterLink *outlink = ctx->outputs[0];
SincContext *s = ctx->priv;
const float *coeffs = s->coeffs;
AVFrame *frame = NULL;
int nb_samples;
if (!ff_outlink_frame_wanted(outlink))
return FFERROR_NOT_READY;
nb_samples = FFMIN(s->nb_samples, s->n - s->pts);
if (nb_samples <= 0) {
ff_outlink_set_status(outlink, AVERROR_EOF, s->pts);
return 0;
}
if (!(frame = ff_get_audio_buffer(outlink, nb_samples)))
return AVERROR(ENOMEM);
memcpy(frame->data[0], coeffs + s->pts, nb_samples * sizeof(float));
frame->pts = s->pts;
s->pts += nb_samples;
return ff_filter_frame(outlink, frame);
}
static int query_formats(AVFilterContext *ctx)
{
SincContext *s = ctx->priv;
static const AVChannelLayout chlayouts[] = { AV_CHANNEL_LAYOUT_MONO, { 0 } };
int sample_rates[] = { s->sample_rate, -1 };
static const enum AVSampleFormat sample_fmts[] = { AV_SAMPLE_FMT_FLT,
AV_SAMPLE_FMT_NONE };
int ret = ff_set_common_formats_from_list(ctx, sample_fmts);
if (ret < 0)
return ret;
ret = ff_set_common_channel_layouts_from_list(ctx, chlayouts);
if (ret < 0)
return ret;
return ff_set_common_samplerates_from_list(ctx, sample_rates);
}
static float *make_lpf(int num_taps, float Fc, float beta, float rho,
float scale, int dc_norm)
{
int i, m = num_taps - 1;
float *h = av_calloc(num_taps, sizeof(*h)), sum = 0;
float mult = scale / av_bessel_i0(beta), mult1 = 1.f / (.5f * m + rho);
if (!h)
return NULL;
av_assert0(Fc >= 0 && Fc <= 1);
for (i = 0; i <= m / 2; i++) {
float z = i - .5f * m, x = z * M_PI, y = z * mult1;
h[i] = x ? sinf(Fc * x) / x : Fc;
sum += h[i] *= av_bessel_i0(beta * sqrtf(1.f - y * y)) * mult;
if (m - i != i) {
h[m - i] = h[i];
sum += h[i];
}
}
for (i = 0; dc_norm && i < num_taps; i++)
h[i] *= scale / sum;
return h;
}
static float kaiser_beta(float att, float tr_bw)
{
if (att >= 60.f) {
static const float coefs[][4] = {
{-6.784957e-10, 1.02856e-05, 0.1087556, -0.8988365 + .001},
{-6.897885e-10, 1.027433e-05, 0.10876, -0.8994658 + .002},
{-1.000683e-09, 1.030092e-05, 0.1087677, -0.9007898 + .003},
{-3.654474e-10, 1.040631e-05, 0.1087085, -0.8977766 + .006},
{8.106988e-09, 6.983091e-06, 0.1091387, -0.9172048 + .015},
{9.519571e-09, 7.272678e-06, 0.1090068, -0.9140768 + .025},
{-5.626821e-09, 1.342186e-05, 0.1083999, -0.9065452 + .05},
{-9.965946e-08, 5.073548e-05, 0.1040967, -0.7672778 + .085},
{1.604808e-07, -5.856462e-05, 0.1185998, -1.34824 + .1},
{-1.511964e-07, 6.363034e-05, 0.1064627, -0.9876665 + .18},
};
float realm = logf(tr_bw / .0005f) / logf(2.f);
float const *c0 = coefs[av_clip((int)realm, 0, FF_ARRAY_ELEMS(coefs) - 1)];
float const *c1 = coefs[av_clip(1 + (int)realm, 0, FF_ARRAY_ELEMS(coefs) - 1)];
float b0 = ((c0[0] * att + c0[1]) * att + c0[2]) * att + c0[3];
float b1 = ((c1[0] * att + c1[1]) * att + c1[2]) * att + c1[3];
return b0 + (b1 - b0) * (realm - (int)realm);
}
if (att > 50.f)
return .1102f * (att - 8.7f);
if (att > 20.96f)
return .58417f * powf(att - 20.96f, .4f) + .07886f * (att - 20.96f);
return 0;
}
static void kaiser_params(float att, float Fc, float tr_bw, float *beta, int *num_taps)
{
*beta = *beta < 0.f ? kaiser_beta(att, tr_bw * .5f / Fc): *beta;
att = att < 60.f ? (att - 7.95f) / (2.285f * M_PI * 2.f) :
((.0007528358f-1.577737e-05 * *beta) * *beta + 0.6248022f) * *beta + .06186902f;
*num_taps = !*num_taps ? ceilf(att/tr_bw + 1) : *num_taps;
}
static float *lpf(float Fn, float Fc, float tbw, int *num_taps, float att, float *beta, int round)
{
int n = *num_taps;
if ((Fc /= Fn) <= 0.f || Fc >= 1.f) {
*num_taps = 0;
return NULL;
}
att = att ? att : 120.f;
kaiser_params(att, Fc, (tbw ? tbw / Fn : .05f) * .5f, beta, num_taps);
if (!n) {
n = *num_taps;
*num_taps = av_clip(n, 11, 32767);
if (round)
*num_taps = 1 + 2 * (int)((int)((*num_taps / 2) * Fc + .5f) / Fc + .5f);
}
return make_lpf(*num_taps |= 1, Fc, *beta, 0.f, 1.f, 0);
}
static void invert(float *h, int n)
{
for (int i = 0; i < n; i++)
h[i] = -h[i];
h[(n - 1) / 2] += 1;
}
#define SQR(a) ((a) * (a))
static float safe_log(float x)
{
av_assert0(x >= 0);
if (x)
return logf(x);
return -26;
}
static int fir_to_phase(SincContext *s, float **h, int *len, int *post_len, float phase)
{
float *pi_wraps, *work, phase1 = (phase > 50.f ? 100.f - phase : phase) / 50.f;
int i, work_len, begin, end, imp_peak = 0, peak = 0, ret;
float imp_sum = 0, peak_imp_sum = 0, scale = 1.f;
float prev_angle2 = 0, cum_2pi = 0, prev_angle1 = 0, cum_1pi = 0;
for (i = *len, work_len = 2 * 2 * 8; i > 1; work_len <<= 1, i >>= 1);
/* The first part is for work (+2 for (UN)PACK), the latter for pi_wraps. */
work = av_calloc((work_len + 2) + (work_len / 2 + 1), sizeof(float));
if (!work)
return AVERROR(ENOMEM);
pi_wraps = &work[work_len + 2];
memcpy(work, *h, *len * sizeof(*work));
av_tx_uninit(&s->tx);
av_tx_uninit(&s->itx);
ret = av_tx_init(&s->tx, &s->tx_fn, AV_TX_FLOAT_RDFT, 0, work_len, &scale, AV_TX_INPLACE);
if (ret < 0)
goto fail;
ret = av_tx_init(&s->itx, &s->itx_fn, AV_TX_FLOAT_RDFT, 1, work_len, &scale, AV_TX_INPLACE);
if (ret < 0)
goto fail;
s->tx_fn(s->tx, work, work, sizeof(float)); /* Cepstral: */
for (i = 0; i <= work_len; i += 2) {
float angle = atan2f(work[i + 1], work[i]);
float detect = 2 * M_PI;
float delta = angle - prev_angle2;
float adjust = detect * ((delta < -detect * .7f) - (delta > detect * .7f));
prev_angle2 = angle;
cum_2pi += adjust;
angle += cum_2pi;
detect = M_PI;
delta = angle - prev_angle1;
adjust = detect * ((delta < -detect * .7f) - (delta > detect * .7f));
prev_angle1 = angle;
cum_1pi += fabsf(adjust); /* fabs for when 2pi and 1pi have combined */
pi_wraps[i >> 1] = cum_1pi;
work[i] = safe_log(sqrtf(SQR(work[i]) + SQR(work[i + 1])));
work[i + 1] = 0;
}
s->itx_fn(s->itx, work, work, sizeof(AVComplexFloat));
for (i = 0; i < work_len; i++)
work[i] *= 2.f / work_len;
for (i = 1; i < work_len / 2; i++) { /* Window to reject acausal components */
work[i] *= 2;
work[i + work_len / 2] = 0;
}
s->tx_fn(s->tx, work, work, sizeof(float));
for (i = 2; i < work_len; i += 2) /* Interpolate between linear & min phase */
work[i + 1] = phase1 * i / work_len * pi_wraps[work_len >> 1] + (1 - phase1) * (work[i + 1] + pi_wraps[i >> 1]) - pi_wraps[i >> 1];
work[0] = exp(work[0]);
work[1] = exp(work[1]);
for (i = 2; i < work_len; i += 2) {
float x = expf(work[i]);
work[i ] = x * cosf(work[i + 1]);
work[i + 1] = x * sinf(work[i + 1]);
}
s->itx_fn(s->itx, work, work, sizeof(AVComplexFloat));
for (i = 0; i < work_len; i++)
work[i] *= 2.f / work_len;
/* Find peak pos. */
for (i = 0; i <= (int) (pi_wraps[work_len >> 1] / M_PI + .5f); i++) {
imp_sum += work[i];
if (fabs(imp_sum) > fabs(peak_imp_sum)) {
peak_imp_sum = imp_sum;
peak = i;
}
if (work[i] > work[imp_peak]) /* For debug check only */
imp_peak = i;
}
while (peak && fabsf(work[peak - 1]) > fabsf(work[peak]) && (work[peak - 1] * work[peak] > 0)) {
peak--;
}
if (!phase1) {
begin = 0;
} else if (phase1 == 1) {
begin = peak - *len / 2;
} else {
begin = (.997f - (2 - phase1) * .22f) * *len + .5f;
end = (.997f + (0 - phase1) * .22f) * *len + .5f;
begin = peak - (begin & ~3);
end = peak + 1 + ((end + 3) & ~3);
*len = end - begin;
*h = av_realloc_f(*h, *len, sizeof(**h));
if (!*h) {
av_free(work);
return AVERROR(ENOMEM);
}
}
for (i = 0; i < *len; i++) {
(*h)[i] = work[(begin + (phase > 50.f ? *len - 1 - i : i) + work_len) & (work_len - 1)];
}
*post_len = phase > 50 ? peak - begin : begin + *len - (peak + 1);
av_log(s, AV_LOG_DEBUG, "%d nPI=%g peak-sum@%i=%g (val@%i=%g); len=%i post=%i (%g%%)\n",
work_len, pi_wraps[work_len >> 1] / M_PI, peak, peak_imp_sum, imp_peak,
work[imp_peak], *len, *post_len, 100.f - 100.f * *post_len / (*len - 1));
fail:
av_free(work);
return ret;
}
static int config_output(AVFilterLink *outlink)
{
AVFilterContext *ctx = outlink->src;
SincContext *s = ctx->priv;
float Fn = s->sample_rate * .5f;
float *h[2];
int i, n, post_peak, longer;
outlink->sample_rate = s->sample_rate;
s->pts = 0;
if (s->Fc0 >= Fn || s->Fc1 >= Fn) {
av_log(ctx, AV_LOG_ERROR,
"filter frequency must be less than %d/2.\n", s->sample_rate);
return AVERROR(EINVAL);
}
h[0] = lpf(Fn, s->Fc0, s->tbw0, &s->num_taps[0], s->att, &s->beta, s->round);
h[1] = lpf(Fn, s->Fc1, s->tbw1, &s->num_taps[1], s->att, &s->beta, s->round);
if (h[0])
invert(h[0], s->num_taps[0]);
longer = s->num_taps[1] > s->num_taps[0];
n = s->num_taps[longer];
if (h[0] && h[1]) {
for (i = 0; i < s->num_taps[!longer]; i++)
h[longer][i + (n - s->num_taps[!longer]) / 2] += h[!longer][i];
if (s->Fc0 < s->Fc1)
invert(h[longer], n);
av_free(h[!longer]);
}
if (s->phase != 50.f) {
int ret = fir_to_phase(s, &h[longer], &n, &post_peak, s->phase);
if (ret < 0)
return ret;
} else {
post_peak = n >> 1;
}
s->n = 1 << (av_log2(n) + 1);
s->rdft_len = 1 << av_log2(n);
s->coeffs = av_calloc(s->n, sizeof(*s->coeffs));
if (!s->coeffs)
return AVERROR(ENOMEM);
for (i = 0; i < n; i++)
s->coeffs[i] = h[longer][i];
av_free(h[longer]);
av_tx_uninit(&s->tx);
av_tx_uninit(&s->itx);
return 0;
}
static av_cold void uninit(AVFilterContext *ctx)
{
SincContext *s = ctx->priv;
av_freep(&s->coeffs);
av_tx_uninit(&s->tx);
av_tx_uninit(&s->itx);
}
static const AVFilterPad sinc_outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_AUDIO,
.config_props = config_output,
},
};
#define AF AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
#define OFFSET(x) offsetof(SincContext, x)
static const AVOption sinc_options[] = {
{ "sample_rate", "set sample rate", OFFSET(sample_rate), AV_OPT_TYPE_INT, {.i64=44100}, 1, INT_MAX, AF },
{ "r", "set sample rate", OFFSET(sample_rate), AV_OPT_TYPE_INT, {.i64=44100}, 1, INT_MAX, AF },
{ "nb_samples", "set the number of samples per requested frame", OFFSET(nb_samples), AV_OPT_TYPE_INT, {.i64=1024}, 1, INT_MAX, AF },
{ "n", "set the number of samples per requested frame", OFFSET(nb_samples), AV_OPT_TYPE_INT, {.i64=1024}, 1, INT_MAX, AF },
{ "hp", "set high-pass filter frequency", OFFSET(Fc0), AV_OPT_TYPE_FLOAT, {.dbl=0}, 0, INT_MAX, AF },
{ "lp", "set low-pass filter frequency", OFFSET(Fc1), AV_OPT_TYPE_FLOAT, {.dbl=0}, 0, INT_MAX, AF },
{ "phase", "set filter phase response", OFFSET(phase), AV_OPT_TYPE_FLOAT, {.dbl=50}, 0, 100, AF },
{ "beta", "set kaiser window beta", OFFSET(beta), AV_OPT_TYPE_FLOAT, {.dbl=-1}, -1, 256, AF },
{ "att", "set stop-band attenuation", OFFSET(att), AV_OPT_TYPE_FLOAT, {.dbl=120}, 40, 180, AF },
{ "round", "enable rounding", OFFSET(round), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, AF },
{ "hptaps", "set number of taps for high-pass filter", OFFSET(num_taps[0]), AV_OPT_TYPE_INT, {.i64=0}, 0, 32768, AF },
{ "lptaps", "set number of taps for low-pass filter", OFFSET(num_taps[1]), AV_OPT_TYPE_INT, {.i64=0}, 0, 32768, AF },
{ NULL }
};
AVFILTER_DEFINE_CLASS(sinc);
const AVFilter ff_asrc_sinc = {
.name = "sinc",
.description = NULL_IF_CONFIG_SMALL("Generate a sinc kaiser-windowed low-pass, high-pass, band-pass, or band-reject FIR coefficients."),
.priv_size = sizeof(SincContext),
.priv_class = &sinc_class,
.uninit = uninit,
.activate = activate,
.inputs = NULL,
FILTER_OUTPUTS(sinc_outputs),
FILTER_QUERY_FUNC(query_formats),
};
|