aboutsummaryrefslogtreecommitdiffstats
path: root/libavfilter/afir_template.c
blob: 08e1ca4692615e39af828dba1246201eee6852a3 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
/*
 * Copyright (c) 2017 Paul B Mahol
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

#include "libavutil/tx.h"
#include "avfilter.h"
#include "internal.h"
#include "audio.h"

#undef ctype
#undef ftype
#undef SQRT
#undef HYPOT
#undef SAMPLE_FORMAT
#undef TX_TYPE
#undef FABS
#undef POW
#if DEPTH == 32
#define SAMPLE_FORMAT float
#define SQRT sqrtf
#define HYPOT hypotf
#define ctype AVComplexFloat
#define ftype float
#define TX_TYPE AV_TX_FLOAT_RDFT
#define FABS fabsf
#define POW powf
#else
#define SAMPLE_FORMAT double
#define SQRT sqrt
#define HYPOT hypot
#define ctype AVComplexDouble
#define ftype double
#define TX_TYPE AV_TX_DOUBLE_RDFT
#define FABS fabs
#define POW pow
#endif

#define fn3(a,b)   a##_##b
#define fn2(a,b)   fn3(a,b)
#define fn(a)      fn2(a, SAMPLE_FORMAT)

static ftype fn(ir_gain)(AVFilterContext *ctx, AudioFIRContext *s,
                         int cur_nb_taps, const ftype *time)
{
    ftype ch_gain, sum = 0;

    if (s->ir_norm < 0.f) {
        ch_gain = 1;
    } else if (s->ir_norm == 0.f) {
        for (int i = 0; i < cur_nb_taps; i++)
            sum += time[i];
        ch_gain = 1. / sum;
    } else {
        ftype ir_norm = s->ir_norm;

        for (int i = 0; i < cur_nb_taps; i++)
            sum += POW(FABS(time[i]), ir_norm);
        ch_gain = 1. / POW(sum, 1. / ir_norm);
    }

    return ch_gain;
}

static void fn(ir_scale)(AVFilterContext *ctx, AudioFIRContext *s,
                         int cur_nb_taps, int ch,
                         ftype *time, ftype ch_gain)
{
    if (ch_gain != 1. || s->ir_gain != 1.) {
        ftype gain = ch_gain * s->ir_gain;

        av_log(ctx, AV_LOG_DEBUG, "ch%d gain %f\n", ch, gain);
#if DEPTH == 32
        s->fdsp->vector_fmul_scalar(time, time, gain, FFALIGN(cur_nb_taps, 4));
#else
        s->fdsp->vector_dmul_scalar(time, time, gain, FFALIGN(cur_nb_taps, 8));
#endif
    }
}

static void fn(convert_channel)(AVFilterContext *ctx, AudioFIRContext *s, int ch,
                                AudioFIRSegment *seg, int coeff_partition, int selir)
{
    const int coffset = coeff_partition * seg->coeff_size;
    const int nb_taps = s->nb_taps[selir];
    ftype *time = (ftype *)s->norm_ir[selir]->extended_data[ch];
    ftype *tempin = (ftype *)seg->tempin->extended_data[ch];
    ftype *tempout = (ftype *)seg->tempout->extended_data[ch];
    ctype *coeff = (ctype *)seg->coeff->extended_data[ch];
    const int remaining = nb_taps - (seg->input_offset + coeff_partition * seg->part_size);
    const int size = remaining >= seg->part_size ? seg->part_size : remaining;

    memset(tempin + size, 0, sizeof(*tempin) * (seg->block_size - size));
    memcpy(tempin, time + seg->input_offset + coeff_partition * seg->part_size,
           size * sizeof(*tempin));
    seg->ctx_fn(seg->ctx[ch], tempout, tempin, sizeof(*tempin));
    memcpy(coeff + coffset, tempout, seg->coeff_size * sizeof(*coeff));

    av_log(ctx, AV_LOG_DEBUG, "channel: %d\n", ch);
    av_log(ctx, AV_LOG_DEBUG, "nb_partitions: %d\n", seg->nb_partitions);
    av_log(ctx, AV_LOG_DEBUG, "partition size: %d\n", seg->part_size);
    av_log(ctx, AV_LOG_DEBUG, "block size: %d\n", seg->block_size);
    av_log(ctx, AV_LOG_DEBUG, "fft_length: %d\n", seg->fft_length);
    av_log(ctx, AV_LOG_DEBUG, "coeff_size: %d\n", seg->coeff_size);
    av_log(ctx, AV_LOG_DEBUG, "input_size: %d\n", seg->input_size);
    av_log(ctx, AV_LOG_DEBUG, "input_offset: %d\n", seg->input_offset);
}

static void fn(fir_fadd)(AudioFIRContext *s, ftype *dst, const ftype *src, int nb_samples)
{
    if ((nb_samples & 15) == 0 && nb_samples >= 8) {
#if DEPTH == 32
        s->fdsp->vector_fmac_scalar(dst, src, 1.f, nb_samples);
#else
        s->fdsp->vector_dmac_scalar(dst, src, 1.0, nb_samples);
#endif
    } else {
        for (int n = 0; n < nb_samples; n++)
            dst[n] += src[n];
    }
}

static int fn(fir_quantum)(AVFilterContext *ctx, AVFrame *out, int ch, int ioffset, int offset, int selir)
{
    AudioFIRContext *s = ctx->priv;
    const ftype *in = (const ftype *)s->in->extended_data[ch] + ioffset;
    ftype *blockout, *ptr = (ftype *)out->extended_data[ch] + offset;
    const int min_part_size = s->min_part_size;
    const int nb_samples = FFMIN(min_part_size, out->nb_samples - offset);
    const int nb_segments = s->nb_segments[selir];
    const float dry_gain = s->dry_gain;
    const float wet_gain = s->wet_gain;

    for (int segment = 0; segment < nb_segments; segment++) {
        AudioFIRSegment *seg = &s->seg[selir][segment];
        ftype *src = (ftype *)seg->input->extended_data[ch];
        ftype *dst = (ftype *)seg->output->extended_data[ch];
        ftype *sumin = (ftype *)seg->sumin->extended_data[ch];
        ftype *sumout = (ftype *)seg->sumout->extended_data[ch];
        ftype *tempin = (ftype *)seg->tempin->extended_data[ch];
        ftype *buf = (ftype *)seg->buffer->extended_data[ch];
        int *output_offset = &seg->output_offset[ch];
        const int nb_partitions = seg->nb_partitions;
        const int input_offset = seg->input_offset;
        const int part_size = seg->part_size;
        int j;

        seg->part_index[ch] = seg->part_index[ch] % nb_partitions;
        if (dry_gain == 1.f) {
            memcpy(src + input_offset, in, nb_samples * sizeof(*src));
        } else if (min_part_size >= 8) {
#if DEPTH == 32
            s->fdsp->vector_fmul_scalar(src + input_offset, in, dry_gain, FFALIGN(nb_samples, 4));
#else
            s->fdsp->vector_dmul_scalar(src + input_offset, in, dry_gain, FFALIGN(nb_samples, 8));
#endif
        } else {
            ftype *src2 = src + input_offset;
            for (int n = 0; n < nb_samples; n++)
                src2[n] = in[n] * dry_gain;
        }

        output_offset[0] += min_part_size;
        if (output_offset[0] >= part_size) {
            output_offset[0] = 0;
        } else {
            memmove(src, src + min_part_size, (seg->input_size - min_part_size) * sizeof(*src));

            dst += output_offset[0];
            fn(fir_fadd)(s, ptr, dst, nb_samples);
            continue;
        }

        memset(sumin, 0, sizeof(*sumin) * seg->fft_length);

        blockout = (ftype *)seg->blockout->extended_data[ch] + seg->part_index[ch] * seg->block_size;
        memset(tempin + part_size, 0, sizeof(*tempin) * (seg->block_size - part_size));
        memcpy(tempin, src, sizeof(*src) * part_size);
        seg->tx_fn(seg->tx[ch], blockout, tempin, sizeof(ftype));

        j = seg->part_index[ch];
        for (int i = 0; i < nb_partitions; i++) {
            const int input_partition = j;
            const int coeff_partition = i;
            const int coffset = coeff_partition * seg->coeff_size;
            const ftype *blockout = (const ftype *)seg->blockout->extended_data[ch] + input_partition * seg->block_size;
            const ctype *coeff = ((const ctype *)seg->coeff->extended_data[ch]) + coffset;

            if (j == 0)
                j = nb_partitions;
            j--;

#if DEPTH == 32
            s->afirdsp.fcmul_add(sumin, blockout, (const ftype *)coeff, part_size);
#else
            s->afirdsp.dcmul_add(sumin, blockout, (const ftype *)coeff, part_size);
#endif
        }

        seg->itx_fn(seg->itx[ch], sumout, sumin, sizeof(ctype));

        fn(fir_fadd)(s, buf, sumout, part_size);
        memcpy(dst, buf, part_size * sizeof(*dst));
        memcpy(buf, sumout + part_size, part_size * sizeof(*buf));

        fn(fir_fadd)(s, ptr, dst, nb_samples);

        if (part_size != min_part_size)
            memmove(src, src + min_part_size, (seg->input_size - min_part_size) * sizeof(*src));

        seg->part_index[ch] = (seg->part_index[ch] + 1) % nb_partitions;
    }

    if (wet_gain == 1.f)
        return 0;

    if (min_part_size >= 8) {
#if DEPTH == 32
        s->fdsp->vector_fmul_scalar(ptr, ptr, wet_gain, FFALIGN(nb_samples, 4));
#else
        s->fdsp->vector_dmul_scalar(ptr, ptr, wet_gain, FFALIGN(nb_samples, 8));
#endif
    } else {
        for (int n = 0; n < nb_samples; n++)
            ptr[n] *= wet_gain;
    }

    return 0;
}

static void fn(fir_quantums)(AVFilterContext *ctx, AudioFIRContext *s, AVFrame *out,
                             int min_part_size, int ch, int offset,
                             int prev_selir, int selir)
{
    if (ctx->is_disabled || s->prev_is_disabled) {
        const ftype *in = (const ftype *)s->in->extended_data[ch] + offset;
        const ftype *xfade0 = (const ftype *)s->xfade[0]->extended_data[ch];
        const ftype *xfade1 = (const ftype *)s->xfade[1]->extended_data[ch];
        ftype *src0 = (ftype *)s->fadein[0]->extended_data[ch];
        ftype *src1 = (ftype *)s->fadein[1]->extended_data[ch];
        ftype *dst = ((ftype *)out->extended_data[ch]) + offset;

        if (ctx->is_disabled && !s->prev_is_disabled) {
            memset(src0, 0, min_part_size * sizeof(ftype));
            fn(fir_quantum)(ctx, s->fadein[0], ch, offset, 0, selir);
            for (int n = 0; n < min_part_size; n++)
                dst[n] = xfade1[n] * src0[n] + xfade0[n] * in[n];
        } else if (!ctx->is_disabled && s->prev_is_disabled) {
            memset(src1, 0, min_part_size * sizeof(ftype));
            fn(fir_quantum)(ctx, s->fadein[1], ch, offset, 0, selir);
            for (int n = 0; n < min_part_size; n++)
                dst[n] = xfade1[n] * in[n] + xfade0[n] * src1[n];
        } else {
            memcpy(dst, in, sizeof(ftype) * min_part_size);
        }
    } else if (prev_selir != selir && s->loading[ch] != 0) {
        const ftype *xfade0 = (const ftype *)s->xfade[0]->extended_data[ch];
        const ftype *xfade1 = (const ftype *)s->xfade[1]->extended_data[ch];
        ftype *src0 = (ftype *)s->fadein[0]->extended_data[ch];
        ftype *src1 = (ftype *)s->fadein[1]->extended_data[ch];
        ftype *dst = ((ftype *)out->extended_data[ch]) + offset;

        memset(src0, 0, min_part_size * sizeof(ftype));
        memset(src1, 0, min_part_size * sizeof(ftype));

        fn(fir_quantum)(ctx, s->fadein[0], ch, offset, 0, prev_selir);
        fn(fir_quantum)(ctx, s->fadein[1], ch, offset, 0, selir);

        if (s->loading[ch] > s->max_offset[selir]) {
            for (int n = 0; n < min_part_size; n++)
                dst[n] = xfade1[n] * src0[n] + xfade0[n] * src1[n];
            s->loading[ch] = 0;
        } else {
            memcpy(dst, src0, min_part_size * sizeof(ftype));
        }
    } else {
        fn(fir_quantum)(ctx, out, ch, offset, offset, selir);
    }
}