aboutsummaryrefslogtreecommitdiffstats
path: root/libavfilter/af_atempo.c
blob: 3b03caa4d0161ec6a299a5494d536bb75e1d4e77 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
/*
 * Copyright (c) 2012 Pavel Koshevoy <pkoshevoy at gmail dot com>
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/**
 * @file
 * tempo scaling audio filter -- an implementation of WSOLA algorithm
 *
 * Based on MIT licensed yaeAudioTempoFilter.h and yaeAudioFragment.h
 * from Apprentice Video player by Pavel Koshevoy.
 * https://sourceforge.net/projects/apprenticevideo/
 *
 * An explanation of SOLA algorithm is available at
 * http://www.surina.net/article/time-and-pitch-scaling.html
 *
 * WSOLA is very similar to SOLA, only one major difference exists between
 * these algorithms.  SOLA shifts audio fragments along the output stream,
 * where as WSOLA shifts audio fragments along the input stream.
 *
 * The advantage of WSOLA algorithm is that the overlap region size is
 * always the same, therefore the blending function is constant and
 * can be precomputed.
 */

#include <float.h>
#include "libavutil/avassert.h"
#include "libavutil/channel_layout.h"
#include "libavutil/mem.h"
#include "libavutil/opt.h"
#include "libavutil/samplefmt.h"
#include "libavutil/tx.h"
#include "avfilter.h"
#include "audio.h"
#include "filters.h"

/**
 * A fragment of audio waveform
 */
typedef struct AudioFragment {
    // index of the first sample of this fragment in the overall waveform;
    // 0: input sample position
    // 1: output sample position
    int64_t position[2];

    // original packed multi-channel samples:
    uint8_t *data;

    // number of samples in this fragment:
    int nsamples;

    // rDFT transform of the down-mixed mono fragment, used for
    // fast waveform alignment via correlation in frequency domain:
    float *xdat_in;
    float *xdat;
} AudioFragment;

/**
 * Filter state machine states
 */
typedef enum {
    YAE_LOAD_FRAGMENT,
    YAE_ADJUST_POSITION,
    YAE_RELOAD_FRAGMENT,
    YAE_OUTPUT_OVERLAP_ADD,
    YAE_FLUSH_OUTPUT,
} FilterState;

/**
 * Filter state machine
 */
typedef struct ATempoContext {
    const AVClass *class;

    // ring-buffer of input samples, necessary because some times
    // input fragment position may be adjusted backwards:
    uint8_t *buffer;

    // ring-buffer maximum capacity, expressed in sample rate time base:
    int ring;

    // ring-buffer house keeping:
    int size;
    int head;
    int tail;

    // 0: input sample position corresponding to the ring buffer tail
    // 1: output sample position
    int64_t position[2];

    // first input timestamp, all other timestamps are offset by this one
    int64_t start_pts;

    // sample format:
    enum AVSampleFormat format;

    // number of channels:
    int channels;

    // row of bytes to skip from one sample to next, across multple channels;
    // stride = (number-of-channels * bits-per-sample-per-channel) / 8
    int stride;

    // fragment window size, power-of-two integer:
    int window;

    // Hann window coefficients, for feathering
    // (blending) the overlapping fragment region:
    float *hann;

    // tempo scaling factor:
    double tempo;

    // a snapshot of previous fragment input and output position values
    // captured when the tempo scale factor was set most recently:
    int64_t origin[2];

    // current/previous fragment ring-buffer:
    AudioFragment frag[2];

    // current fragment index:
    uint64_t nfrag;

    // current state:
    FilterState state;

    // for fast correlation calculation in frequency domain:
    AVTXContext *real_to_complex;
    AVTXContext *complex_to_real;
    av_tx_fn r2c_fn, c2r_fn;
    float *correlation_in;
    float *correlation;

    // for managing AVFilterPad.request_frame and AVFilterPad.filter_frame
    AVFrame *dst_buffer;
    uint8_t *dst;
    uint8_t *dst_end;
    uint64_t nsamples_in;
    uint64_t nsamples_out;
} ATempoContext;

#define YAE_ATEMPO_MIN 0.5
#define YAE_ATEMPO_MAX 100.0

#define OFFSET(x) offsetof(ATempoContext, x)

static const AVOption atempo_options[] = {
    { "tempo", "set tempo scale factor",
      OFFSET(tempo), AV_OPT_TYPE_DOUBLE, { .dbl = 1.0 },
      YAE_ATEMPO_MIN,
      YAE_ATEMPO_MAX,
      AV_OPT_FLAG_AUDIO_PARAM | AV_OPT_FLAG_FILTERING_PARAM | AV_OPT_FLAG_RUNTIME_PARAM },
    { NULL }
};

AVFILTER_DEFINE_CLASS(atempo);

inline static AudioFragment *yae_curr_frag(ATempoContext *atempo)
{
    return &atempo->frag[atempo->nfrag % 2];
}

inline static AudioFragment *yae_prev_frag(ATempoContext *atempo)
{
    return &atempo->frag[(atempo->nfrag + 1) % 2];
}

/**
 * Reset filter to initial state, do not deallocate existing local buffers.
 */
static void yae_clear(ATempoContext *atempo)
{
    atempo->size = 0;
    atempo->head = 0;
    atempo->tail = 0;

    atempo->nfrag = 0;
    atempo->state = YAE_LOAD_FRAGMENT;
    atempo->start_pts = AV_NOPTS_VALUE;

    atempo->position[0] = 0;
    atempo->position[1] = 0;

    atempo->origin[0] = 0;
    atempo->origin[1] = 0;

    atempo->frag[0].position[0] = 0;
    atempo->frag[0].position[1] = 0;
    atempo->frag[0].nsamples    = 0;

    atempo->frag[1].position[0] = 0;
    atempo->frag[1].position[1] = 0;
    atempo->frag[1].nsamples    = 0;

    // shift left position of 1st fragment by half a window
    // so that no re-normalization would be required for
    // the left half of the 1st fragment:
    atempo->frag[0].position[0] = -(int64_t)(atempo->window / 2);
    atempo->frag[0].position[1] = -(int64_t)(atempo->window / 2);

    av_frame_free(&atempo->dst_buffer);
    atempo->dst     = NULL;
    atempo->dst_end = NULL;

    atempo->nsamples_in       = 0;
    atempo->nsamples_out      = 0;
}

/**
 * Reset filter to initial state and deallocate all buffers.
 */
static void yae_release_buffers(ATempoContext *atempo)
{
    yae_clear(atempo);

    av_freep(&atempo->frag[0].data);
    av_freep(&atempo->frag[1].data);
    av_freep(&atempo->frag[0].xdat_in);
    av_freep(&atempo->frag[1].xdat_in);
    av_freep(&atempo->frag[0].xdat);
    av_freep(&atempo->frag[1].xdat);

    av_freep(&atempo->buffer);
    av_freep(&atempo->hann);
    av_freep(&atempo->correlation_in);
    av_freep(&atempo->correlation);

    av_tx_uninit(&atempo->real_to_complex);
    av_tx_uninit(&atempo->complex_to_real);
}

/**
 * Prepare filter for processing audio data of given format,
 * sample rate and number of channels.
 */
static int yae_reset(ATempoContext *atempo,
                     enum AVSampleFormat format,
                     int sample_rate,
                     int channels)
{
    const int sample_size = av_get_bytes_per_sample(format);
    uint32_t nlevels  = 0;
    float scale = 1.f, iscale = 1.f;
    uint32_t pot;
    int ret;
    int i;

    atempo->format   = format;
    atempo->channels = channels;
    atempo->stride   = sample_size * channels;

    // pick a segment window size:
    atempo->window = sample_rate / 24;

    // adjust window size to be a power-of-two integer:
    nlevels = av_log2(atempo->window);
    pot = 1 << nlevels;
    av_assert0(pot <= atempo->window);

    if (pot < atempo->window) {
        atempo->window = pot * 2;
        nlevels++;
    }

    /* av_realloc is not aligned enough, so simply discard all the old buffers
     * (fortunately, their data does not need to be preserved) */
    yae_release_buffers(atempo);

    // initialize audio fragment buffers:
    if (!(atempo->frag[0].data    = av_calloc(atempo->window, atempo->stride)) ||
        !(atempo->frag[1].data    = av_calloc(atempo->window, atempo->stride)) ||
        !(atempo->frag[0].xdat_in = av_calloc(atempo->window + 1, sizeof(AVComplexFloat))) ||
        !(atempo->frag[1].xdat_in = av_calloc(atempo->window + 1, sizeof(AVComplexFloat))) ||
        !(atempo->frag[0].xdat    = av_calloc(atempo->window + 1, sizeof(AVComplexFloat))) ||
        !(atempo->frag[1].xdat    = av_calloc(atempo->window + 1, sizeof(AVComplexFloat)))) {
        ret = AVERROR(ENOMEM);
        goto fail;
    }

    // initialize rDFT contexts:
    ret = av_tx_init(&atempo->real_to_complex, &atempo->r2c_fn,
                     AV_TX_FLOAT_RDFT, 0, 1 << (nlevels + 1), &scale, 0);
    if (ret < 0)
        goto fail;

    ret = av_tx_init(&atempo->complex_to_real, &atempo->c2r_fn,
                     AV_TX_FLOAT_RDFT, 1, 1 << (nlevels + 1), &iscale, 0);
    if (ret < 0)
        goto fail;

    if (!(atempo->correlation_in = av_calloc(atempo->window + 1, sizeof(AVComplexFloat))) ||
        !(atempo->correlation    = av_calloc(atempo->window,     sizeof(AVComplexFloat)))) {
        ret = AVERROR(ENOMEM);
        goto fail;
    }

    atempo->ring = atempo->window * 3;
    atempo->buffer = av_calloc(atempo->ring, atempo->stride);
    if (!atempo->buffer) {
        ret = AVERROR(ENOMEM);
        goto fail;
    }

    // initialize the Hann window function:
    atempo->hann = av_malloc_array(atempo->window, sizeof(float));
    if (!atempo->hann) {
        ret = AVERROR(ENOMEM);
        goto fail;
    }

    for (i = 0; i < atempo->window; i++) {
        double t = (double)i / (double)(atempo->window - 1);
        double h = 0.5 * (1.0 - cos(2.0 * M_PI * t));
        atempo->hann[i] = (float)h;
    }

    return 0;
fail:
    yae_release_buffers(atempo);
    return ret;
}

static int yae_update(AVFilterContext *ctx)
{
    const AudioFragment *prev;
    ATempoContext *atempo = ctx->priv;

    prev = yae_prev_frag(atempo);
    atempo->origin[0] = prev->position[0] + atempo->window / 2;
    atempo->origin[1] = prev->position[1] + atempo->window / 2;
    return 0;
}

/**
 * A helper macro for initializing complex data buffer with scalar data
 * of a given type.
 */
#define yae_init_xdat(scalar_type, scalar_max)                          \
    do {                                                                \
        const uint8_t *src_end = src +                                  \
            frag->nsamples * atempo->channels * sizeof(scalar_type);    \
                                                                        \
        float *xdat = frag->xdat_in;                                    \
        scalar_type tmp;                                                \
                                                                        \
        if (atempo->channels == 1) {                                    \
            for (; src < src_end; xdat++) {                             \
                tmp = *(const scalar_type *)src;                        \
                src += sizeof(scalar_type);                             \
                                                                        \
                *xdat = (float)tmp;                                     \
            }                                                           \
        } else {                                                        \
            float s, max, ti, si;                                       \
            int i;                                                      \
                                                                        \
            for (; src < src_end; xdat++) {                             \
                tmp = *(const scalar_type *)src;                        \
                src += sizeof(scalar_type);                             \
                                                                        \
                max = (float)tmp;                                       \
                s = FFMIN((float)scalar_max,                            \
                          (float)fabsf(max));                           \
                                                                        \
                for (i = 1; i < atempo->channels; i++) {                \
                    tmp = *(const scalar_type *)src;                    \
                    src += sizeof(scalar_type);                         \
                                                                        \
                    ti = (float)tmp;                                    \
                    si = FFMIN((float)scalar_max,                       \
                               (float)fabsf(ti));                       \
                                                                        \
                    if (s < si) {                                       \
                        s   = si;                                       \
                        max = ti;                                       \
                    }                                                   \
                }                                                       \
                                                                        \
                *xdat = max;                                            \
            }                                                           \
        }                                                               \
    } while (0)

/**
 * Initialize complex data buffer of a given audio fragment
 * with down-mixed mono data of appropriate scalar type.
 */
static void yae_downmix(ATempoContext *atempo, AudioFragment *frag)
{
    // shortcuts:
    const uint8_t *src = frag->data;

    // init complex data buffer used for FFT and Correlation:
    memset(frag->xdat_in, 0, sizeof(AVComplexFloat) * (atempo->window + 1));

    if (atempo->format == AV_SAMPLE_FMT_U8) {
        yae_init_xdat(uint8_t, 127);
    } else if (atempo->format == AV_SAMPLE_FMT_S16) {
        yae_init_xdat(int16_t, 32767);
    } else if (atempo->format == AV_SAMPLE_FMT_S32) {
        yae_init_xdat(int, 2147483647);
    } else if (atempo->format == AV_SAMPLE_FMT_FLT) {
        yae_init_xdat(float, 1);
    } else if (atempo->format == AV_SAMPLE_FMT_DBL) {
        yae_init_xdat(double, 1);
    }
}

/**
 * Populate the internal data buffer on as-needed basis.
 *
 * @return
 *   0 if requested data was already available or was successfully loaded,
 *   AVERROR(EAGAIN) if more input data is required.
 */
static int yae_load_data(ATempoContext *atempo,
                         const uint8_t **src_ref,
                         const uint8_t *src_end,
                         int64_t stop_here)
{
    // shortcut:
    const uint8_t *src = *src_ref;
    const int read_size = stop_here - atempo->position[0];

    if (stop_here <= atempo->position[0]) {
        return 0;
    }

    // samples are not expected to be skipped, unless tempo is greater than 2:
    av_assert0(read_size <= atempo->ring || atempo->tempo > 2.0);

    while (atempo->position[0] < stop_here && src < src_end) {
        int src_samples = (src_end - src) / atempo->stride;

        // load data piece-wise, in order to avoid complicating the logic:
        int nsamples = FFMIN(read_size, src_samples);
        int na;
        int nb;

        nsamples = FFMIN(nsamples, atempo->ring);
        na = FFMIN(nsamples, atempo->ring - atempo->tail);
        nb = FFMIN(nsamples - na, atempo->ring);

        if (na) {
            uint8_t *a = atempo->buffer + atempo->tail * atempo->stride;
            memcpy(a, src, na * atempo->stride);

            src += na * atempo->stride;
            atempo->position[0] += na;

            atempo->size = FFMIN(atempo->size + na, atempo->ring);
            atempo->tail = (atempo->tail + na) % atempo->ring;
            atempo->head =
                atempo->size < atempo->ring ?
                atempo->tail - atempo->size :
                atempo->tail;
        }

        if (nb) {
            uint8_t *b = atempo->buffer;
            memcpy(b, src, nb * atempo->stride);

            src += nb * atempo->stride;
            atempo->position[0] += nb;

            atempo->size = FFMIN(atempo->size + nb, atempo->ring);
            atempo->tail = (atempo->tail + nb) % atempo->ring;
            atempo->head =
                atempo->size < atempo->ring ?
                atempo->tail - atempo->size :
                atempo->tail;
        }
    }

    // pass back the updated source buffer pointer:
    *src_ref = src;

    // sanity check:
    av_assert0(atempo->position[0] <= stop_here);

    return atempo->position[0] == stop_here ? 0 : AVERROR(EAGAIN);
}

/**
 * Populate current audio fragment data buffer.
 *
 * @return
 *   0 when the fragment is ready,
 *   AVERROR(EAGAIN) if more input data is required.
 */
static int yae_load_frag(ATempoContext *atempo,
                         const uint8_t **src_ref,
                         const uint8_t *src_end)
{
    // shortcuts:
    AudioFragment *frag = yae_curr_frag(atempo);
    uint8_t *dst;
    int64_t missing, start, zeros;
    uint32_t nsamples;
    const uint8_t *a, *b;
    int i0, i1, n0, n1, na, nb;

    int64_t stop_here = frag->position[0] + atempo->window;
    if (src_ref && yae_load_data(atempo, src_ref, src_end, stop_here) != 0) {
        return AVERROR(EAGAIN);
    }

    // calculate the number of samples we don't have:
    missing =
        stop_here > atempo->position[0] ?
        stop_here - atempo->position[0] : 0;

    nsamples =
        missing < (int64_t)atempo->window ?
        (uint32_t)(atempo->window - missing) : 0;

    // setup the output buffer:
    frag->nsamples = nsamples;
    dst = frag->data;

    start = atempo->position[0] - atempo->size;

    // what we don't have we substitute with zeros:
    zeros =
      frag->position[0] < start ?
      FFMIN(start - frag->position[0], (int64_t)nsamples) : 0;

    if (zeros == nsamples) {
        return 0;
    }

    if (frag->position[0] < start) {
        memset(dst, 0, zeros * atempo->stride);
        dst += zeros * atempo->stride;
    }

    // get the remaining data from the ring buffer:
    na = (atempo->head < atempo->tail ?
          atempo->tail - atempo->head :
          atempo->ring - atempo->head);

    nb = atempo->head < atempo->tail ? 0 : atempo->tail;

    // sanity check:
    av_assert0(nsamples <= zeros + na + nb);

    a = atempo->buffer + atempo->head * atempo->stride;
    b = atempo->buffer;

    i0 = frag->position[0] + zeros - start;
    i1 = i0 < na ? 0 : i0 - na;

    n0 = i0 < na ? FFMIN(na - i0, (int)(nsamples - zeros)) : 0;
    n1 = nsamples - zeros - n0;

    if (n0) {
        memcpy(dst, a + i0 * atempo->stride, n0 * atempo->stride);
        dst += n0 * atempo->stride;
    }

    if (n1) {
        memcpy(dst, b + i1 * atempo->stride, n1 * atempo->stride);
    }

    return 0;
}

/**
 * Prepare for loading next audio fragment.
 */
static void yae_advance_to_next_frag(ATempoContext *atempo)
{
    const double fragment_step = atempo->tempo * (double)(atempo->window / 2);

    const AudioFragment *prev;
    AudioFragment       *frag;

    atempo->nfrag++;
    prev = yae_prev_frag(atempo);
    frag = yae_curr_frag(atempo);

    frag->position[0] = prev->position[0] + (int64_t)fragment_step;
    frag->position[1] = prev->position[1] + atempo->window / 2;
    frag->nsamples    = 0;
}

/**
 * Calculate cross-correlation via rDFT.
 *
 * Multiply two vectors of complex numbers (result of real_to_complex rDFT)
 * and transform back via complex_to_real rDFT.
 */
static void yae_xcorr_via_rdft(float *xcorr_in,
                               float *xcorr,
                               AVTXContext *complex_to_real,
                               av_tx_fn c2r_fn,
                               const AVComplexFloat *xa,
                               const AVComplexFloat *xb,
                               const int window)
{
    AVComplexFloat *xc = (AVComplexFloat *)xcorr_in;
    int i;

    for (i = 0; i <= window; i++, xa++, xb++, xc++) {
        xc->re = (xa->re * xb->re + xa->im * xb->im);
        xc->im = (xa->im * xb->re - xa->re * xb->im);
    }

    // apply inverse rDFT:
    c2r_fn(complex_to_real, xcorr, xcorr_in, sizeof(*xc));
}

/**
 * Calculate alignment offset for given fragment
 * relative to the previous fragment.
 *
 * @return alignment offset of current fragment relative to previous.
 */
static int yae_align(AudioFragment *frag,
                     const AudioFragment *prev,
                     const int window,
                     const int delta_max,
                     const int drift,
                     float *correlation_in,
                     float *correlation,
                     AVTXContext *complex_to_real,
                     av_tx_fn c2r_fn)
{
    int       best_offset = -drift;
    float     best_metric = -FLT_MAX;
    float    *xcorr;

    int i0;
    int i1;
    int i;

    yae_xcorr_via_rdft(correlation_in,
                       correlation,
                       complex_to_real,
                       c2r_fn,
                       (const AVComplexFloat *)prev->xdat,
                       (const AVComplexFloat *)frag->xdat,
                       window);

    // identify search window boundaries:
    i0 = FFMAX(window / 2 - delta_max - drift, 0);
    i0 = FFMIN(i0, window);

    i1 = FFMIN(window / 2 + delta_max - drift, window - window / 16);
    i1 = FFMAX(i1, 0);

    // identify cross-correlation peaks within search window:
    xcorr = correlation + i0;

    for (i = i0; i < i1; i++, xcorr++) {
        float metric = *xcorr;

        // normalize:
        float drifti = (float)(drift + i);
        metric *= drifti * (float)(i - i0) * (float)(i1 - i);

        if (metric > best_metric) {
            best_metric = metric;
            best_offset = i - window / 2;
        }
    }

    return best_offset;
}

/**
 * Adjust current fragment position for better alignment
 * with previous fragment.
 *
 * @return alignment correction.
 */
static int yae_adjust_position(ATempoContext *atempo)
{
    const AudioFragment *prev = yae_prev_frag(atempo);
    AudioFragment       *frag = yae_curr_frag(atempo);

    const double prev_output_position =
        (double)(prev->position[1] - atempo->origin[1] + atempo->window / 2) *
        atempo->tempo;

    const double ideal_output_position =
        (double)(prev->position[0] - atempo->origin[0] + atempo->window / 2);

    const int drift = (int)(prev_output_position - ideal_output_position);

    const int delta_max  = atempo->window / 2;
    const int correction = yae_align(frag,
                                     prev,
                                     atempo->window,
                                     delta_max,
                                     drift,
                                     atempo->correlation_in,
                                     atempo->correlation,
                                     atempo->complex_to_real,
                                     atempo->c2r_fn);

    if (correction) {
        // adjust fragment position:
        frag->position[0] -= correction;

        // clear so that the fragment can be reloaded:
        frag->nsamples = 0;
    }

    return correction;
}

/**
 * A helper macro for blending the overlap region of previous
 * and current audio fragment.
 */
#define yae_blend(scalar_type)                                          \
    do {                                                                \
        const scalar_type *aaa = (const scalar_type *)a;                \
        const scalar_type *bbb = (const scalar_type *)b;                \
                                                                        \
        scalar_type *out     = (scalar_type *)dst;                      \
        scalar_type *out_end = (scalar_type *)dst_end;                  \
        int64_t i;                                                      \
                                                                        \
        for (i = 0; i < overlap && out < out_end;                       \
             i++, atempo->position[1]++, wa++, wb++) {                  \
            float w0 = *wa;                                             \
            float w1 = *wb;                                             \
            int j;                                                      \
                                                                        \
            for (j = 0; j < atempo->channels;                           \
                 j++, aaa++, bbb++, out++) {                            \
                float t0 = (float)*aaa;                                 \
                float t1 = (float)*bbb;                                 \
                                                                        \
                *out =                                                  \
                    frag->position[0] + i < 0 ?                         \
                    *aaa :                                              \
                    (scalar_type)(t0 * w0 + t1 * w1);                   \
            }                                                           \
        }                                                               \
        dst = (uint8_t *)out;                                           \
    } while (0)

/**
 * Blend the overlap region of previous and current audio fragment
 * and output the results to the given destination buffer.
 *
 * @return
 *   0 if the overlap region was completely stored in the dst buffer,
 *   AVERROR(EAGAIN) if more destination buffer space is required.
 */
static int yae_overlap_add(ATempoContext *atempo,
                           uint8_t **dst_ref,
                           uint8_t *dst_end)
{
    // shortcuts:
    const AudioFragment *prev = yae_prev_frag(atempo);
    const AudioFragment *frag = yae_curr_frag(atempo);

    const int64_t start_here = FFMAX(atempo->position[1],
                                     frag->position[1]);

    const int64_t stop_here = FFMIN(prev->position[1] + prev->nsamples,
                                    frag->position[1] + frag->nsamples);

    const int64_t overlap = stop_here - start_here;

    const int64_t ia = start_here - prev->position[1];
    const int64_t ib = start_here - frag->position[1];

    const float *wa = atempo->hann + ia;
    const float *wb = atempo->hann + ib;

    const uint8_t *a = prev->data + ia * atempo->stride;
    const uint8_t *b = frag->data + ib * atempo->stride;

    uint8_t *dst = *dst_ref;

    av_assert0(start_here <= stop_here &&
               frag->position[1] <= start_here &&
               overlap <= frag->nsamples);

    if (atempo->format == AV_SAMPLE_FMT_U8) {
        yae_blend(uint8_t);
    } else if (atempo->format == AV_SAMPLE_FMT_S16) {
        yae_blend(int16_t);
    } else if (atempo->format == AV_SAMPLE_FMT_S32) {
        yae_blend(int);
    } else if (atempo->format == AV_SAMPLE_FMT_FLT) {
        yae_blend(float);
    } else if (atempo->format == AV_SAMPLE_FMT_DBL) {
        yae_blend(double);
    }

    // pass-back the updated destination buffer pointer:
    *dst_ref = dst;

    return atempo->position[1] == stop_here ? 0 : AVERROR(EAGAIN);
}

/**
 * Feed as much data to the filter as it is able to consume
 * and receive as much processed data in the destination buffer
 * as it is able to produce or store.
 */
static void
yae_apply(ATempoContext *atempo,
          const uint8_t **src_ref,
          const uint8_t *src_end,
          uint8_t **dst_ref,
          uint8_t *dst_end)
{
    while (1) {
        if (atempo->state == YAE_LOAD_FRAGMENT) {
            // load additional data for the current fragment:
            if (yae_load_frag(atempo, src_ref, src_end) != 0) {
                break;
            }

            // down-mix to mono:
            yae_downmix(atempo, yae_curr_frag(atempo));

            // apply rDFT:
            atempo->r2c_fn(atempo->real_to_complex, yae_curr_frag(atempo)->xdat, yae_curr_frag(atempo)->xdat_in, sizeof(float));

            // must load the second fragment before alignment can start:
            if (!atempo->nfrag) {
                yae_advance_to_next_frag(atempo);
                continue;
            }

            atempo->state = YAE_ADJUST_POSITION;
        }

        if (atempo->state == YAE_ADJUST_POSITION) {
            // adjust position for better alignment:
            if (yae_adjust_position(atempo)) {
                // reload the fragment at the corrected position, so that the
                // Hann window blending would not require normalization:
                atempo->state = YAE_RELOAD_FRAGMENT;
            } else {
                atempo->state = YAE_OUTPUT_OVERLAP_ADD;
            }
        }

        if (atempo->state == YAE_RELOAD_FRAGMENT) {
            // load additional data if necessary due to position adjustment:
            if (yae_load_frag(atempo, src_ref, src_end) != 0) {
                break;
            }

            // down-mix to mono:
            yae_downmix(atempo, yae_curr_frag(atempo));

            // apply rDFT:
            atempo->r2c_fn(atempo->real_to_complex, yae_curr_frag(atempo)->xdat, yae_curr_frag(atempo)->xdat_in, sizeof(float));

            atempo->state = YAE_OUTPUT_OVERLAP_ADD;
        }

        if (atempo->state == YAE_OUTPUT_OVERLAP_ADD) {
            // overlap-add and output the result:
            if (yae_overlap_add(atempo, dst_ref, dst_end) != 0) {
                break;
            }

            // advance to the next fragment, repeat:
            yae_advance_to_next_frag(atempo);
            atempo->state = YAE_LOAD_FRAGMENT;
        }
    }
}

/**
 * Flush any buffered data from the filter.
 *
 * @return
 *   0 if all data was completely stored in the dst buffer,
 *   AVERROR(EAGAIN) if more destination buffer space is required.
 */
static int yae_flush(ATempoContext *atempo,
                     uint8_t **dst_ref,
                     uint8_t *dst_end)
{
    AudioFragment *frag = yae_curr_frag(atempo);
    int64_t overlap_end;
    int64_t start_here;
    int64_t stop_here;
    int64_t offset;

    const uint8_t *src;
    uint8_t *dst;

    int src_size;
    int dst_size;
    int nbytes;

    atempo->state = YAE_FLUSH_OUTPUT;

    if (!atempo->nfrag) {
        // there is nothing to flush:
        return 0;
    }

    if (atempo->position[0] == frag->position[0] + frag->nsamples &&
        atempo->position[1] == frag->position[1] + frag->nsamples) {
        // the current fragment is already flushed:
        return 0;
    }

    if (frag->position[0] + frag->nsamples < atempo->position[0]) {
        // finish loading the current (possibly partial) fragment:
        yae_load_frag(atempo, NULL, NULL);

        if (atempo->nfrag) {
            // down-mix to mono:
            yae_downmix(atempo, frag);

            // apply rDFT:
            atempo->r2c_fn(atempo->real_to_complex, frag->xdat, frag->xdat_in, sizeof(float));

            // align current fragment to previous fragment:
            if (yae_adjust_position(atempo)) {
                // reload the current fragment due to adjusted position:
                yae_load_frag(atempo, NULL, NULL);
            }
        }
    }

    // flush the overlap region:
    overlap_end = frag->position[1] + FFMIN(atempo->window / 2,
                                            frag->nsamples);

    while (atempo->position[1] < overlap_end) {
        if (yae_overlap_add(atempo, dst_ref, dst_end) != 0) {
            return AVERROR(EAGAIN);
        }
    }

    // check whether all of the input samples have been consumed:
    if (frag->position[0] + frag->nsamples < atempo->position[0]) {
        yae_advance_to_next_frag(atempo);
        return AVERROR(EAGAIN);
    }

    // flush the remainder of the current fragment:
    start_here = FFMAX(atempo->position[1], overlap_end);
    stop_here  = frag->position[1] + frag->nsamples;
    offset     = start_here - frag->position[1];
    av_assert0(start_here <= stop_here && frag->position[1] <= start_here);

    src = frag->data + offset * atempo->stride;
    dst = (uint8_t *)*dst_ref;

    src_size = (int)(stop_here - start_here) * atempo->stride;
    dst_size = dst_end - dst;
    nbytes = FFMIN(src_size, dst_size);

    memcpy(dst, src, nbytes);
    dst += nbytes;

    atempo->position[1] += (nbytes / atempo->stride);

    // pass-back the updated destination buffer pointer:
    *dst_ref = (uint8_t *)dst;

    return atempo->position[1] == stop_here ? 0 : AVERROR(EAGAIN);
}

static av_cold int init(AVFilterContext *ctx)
{
    ATempoContext *atempo = ctx->priv;
    atempo->format = AV_SAMPLE_FMT_NONE;
    atempo->state  = YAE_LOAD_FRAGMENT;
    return 0;
}

static av_cold void uninit(AVFilterContext *ctx)
{
    ATempoContext *atempo = ctx->priv;
    yae_release_buffers(atempo);
}

// WSOLA necessitates an internal sliding window ring buffer
// for incoming audio stream.
//
// Planar sample formats are too cumbersome to store in a ring buffer,
// therefore planar sample formats are not supported.
//
static const enum AVSampleFormat sample_fmts[] = {
    AV_SAMPLE_FMT_U8,
    AV_SAMPLE_FMT_S16,
    AV_SAMPLE_FMT_S32,
    AV_SAMPLE_FMT_FLT,
    AV_SAMPLE_FMT_DBL,
    AV_SAMPLE_FMT_NONE
};

static int config_props(AVFilterLink *inlink)
{
    AVFilterContext  *ctx = inlink->dst;
    ATempoContext *atempo = ctx->priv;

    enum AVSampleFormat format = inlink->format;
    int sample_rate = (int)inlink->sample_rate;

    return yae_reset(atempo, format, sample_rate, inlink->ch_layout.nb_channels);
}

static int push_samples(ATempoContext *atempo,
                        AVFilterLink *outlink,
                        int n_out)
{
    int ret;

    atempo->dst_buffer->sample_rate = outlink->sample_rate;
    atempo->dst_buffer->nb_samples  = n_out;

    // adjust the PTS:
    atempo->dst_buffer->pts = atempo->start_pts +
        av_rescale_q(atempo->nsamples_out,
                     (AVRational){ 1, outlink->sample_rate },
                     outlink->time_base);

    ret = ff_filter_frame(outlink, atempo->dst_buffer);
    atempo->dst_buffer = NULL;
    atempo->dst        = NULL;
    atempo->dst_end    = NULL;
    if (ret < 0)
        return ret;

    atempo->nsamples_out += n_out;
    return 0;
}

static int filter_frame(AVFilterLink *inlink, AVFrame *src_buffer)
{
    AVFilterContext  *ctx = inlink->dst;
    ATempoContext *atempo = ctx->priv;
    AVFilterLink *outlink = ctx->outputs[0];

    int ret = 0;
    int n_in = src_buffer->nb_samples;
    int n_out = (int)(0.5 + ((double)n_in) / atempo->tempo);

    const uint8_t *src = src_buffer->data[0];
    const uint8_t *src_end = src + n_in * atempo->stride;

    if (atempo->start_pts == AV_NOPTS_VALUE)
        atempo->start_pts = av_rescale_q(src_buffer->pts,
                                         inlink->time_base,
                                         outlink->time_base);

    while (src < src_end) {
        if (!atempo->dst_buffer) {
            atempo->dst_buffer = ff_get_audio_buffer(outlink, n_out);
            if (!atempo->dst_buffer) {
                av_frame_free(&src_buffer);
                return AVERROR(ENOMEM);
            }
            av_frame_copy_props(atempo->dst_buffer, src_buffer);

            atempo->dst = atempo->dst_buffer->data[0];
            atempo->dst_end = atempo->dst + n_out * atempo->stride;
        }

        yae_apply(atempo, &src, src_end, &atempo->dst, atempo->dst_end);

        if (atempo->dst == atempo->dst_end) {
            int n_samples = ((atempo->dst - atempo->dst_buffer->data[0]) /
                             atempo->stride);
            ret = push_samples(atempo, outlink, n_samples);
            if (ret < 0)
                goto end;
        }
    }

    atempo->nsamples_in += n_in;
end:
    av_frame_free(&src_buffer);
    return ret;
}

static int request_frame(AVFilterLink *outlink)
{
    AVFilterContext  *ctx = outlink->src;
    ATempoContext *atempo = ctx->priv;
    int ret;

    ret = ff_request_frame(ctx->inputs[0]);

    if (ret == AVERROR_EOF) {
        // flush the filter:
        int n_max = atempo->ring;
        int n_out;
        int err = AVERROR(EAGAIN);

        while (err == AVERROR(EAGAIN)) {
            if (!atempo->dst_buffer) {
                atempo->dst_buffer = ff_get_audio_buffer(outlink, n_max);
                if (!atempo->dst_buffer)
                    return AVERROR(ENOMEM);

                atempo->dst = atempo->dst_buffer->data[0];
                atempo->dst_end = atempo->dst + n_max * atempo->stride;
            }

            err = yae_flush(atempo, &atempo->dst, atempo->dst_end);

            n_out = ((atempo->dst - atempo->dst_buffer->data[0]) /
                     atempo->stride);

            if (n_out) {
                ret = push_samples(atempo, outlink, n_out);
                if (ret < 0)
                    return ret;
            }
        }

        av_frame_free(&atempo->dst_buffer);
        atempo->dst     = NULL;
        atempo->dst_end = NULL;

        return AVERROR_EOF;
    }

    return ret;
}

static int process_command(AVFilterContext *ctx,
                           const char *cmd,
                           const char *arg,
                           char *res,
                           int res_len,
                           int flags)
{
    int ret = ff_filter_process_command(ctx, cmd, arg, res, res_len, flags);

    if (ret < 0)
        return ret;

    return yae_update(ctx);
}

static const AVFilterPad atempo_inputs[] = {
    {
        .name         = "default",
        .type         = AVMEDIA_TYPE_AUDIO,
        .filter_frame = filter_frame,
        .config_props = config_props,
    },
};

static const AVFilterPad atempo_outputs[] = {
    {
        .name          = "default",
        .request_frame = request_frame,
        .type          = AVMEDIA_TYPE_AUDIO,
    },
};

const AVFilter ff_af_atempo = {
    .name            = "atempo",
    .description     = NULL_IF_CONFIG_SMALL("Adjust audio tempo."),
    .init            = init,
    .uninit          = uninit,
    .process_command = process_command,
    .priv_size       = sizeof(ATempoContext),
    .priv_class      = &atempo_class,
    FILTER_INPUTS(atempo_inputs),
    FILTER_OUTPUTS(atempo_outputs),
    FILTER_SAMPLEFMTS_ARRAY(sample_fmts),
};