1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
|
/*
* Copyright (c) 2009 Rob Sykes <robs@users.sourceforge.net>
* Copyright (c) 2013 Paul B Mahol
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <float.h>
#include <math.h>
#include "libavutil/mem.h"
#include "libavutil/opt.h"
#include "audio.h"
#include "avfilter.h"
#include "internal.h"
#define HISTOGRAM_SIZE 8192
#define HISTOGRAM_MAX (HISTOGRAM_SIZE-1)
#define MEASURE_ALL UINT_MAX
#define MEASURE_NONE 0
#define MEASURE_DC_OFFSET (1 << 0)
#define MEASURE_MIN_LEVEL (1 << 1)
#define MEASURE_MAX_LEVEL (1 << 2)
#define MEASURE_MIN_DIFFERENCE (1 << 3)
#define MEASURE_MAX_DIFFERENCE (1 << 4)
#define MEASURE_MEAN_DIFFERENCE (1 << 5)
#define MEASURE_RMS_DIFFERENCE (1 << 6)
#define MEASURE_PEAK_LEVEL (1 << 7)
#define MEASURE_RMS_LEVEL (1 << 8)
#define MEASURE_RMS_PEAK (1 << 9)
#define MEASURE_RMS_TROUGH (1 << 10)
#define MEASURE_CREST_FACTOR (1 << 11)
#define MEASURE_FLAT_FACTOR (1 << 12)
#define MEASURE_PEAK_COUNT (1 << 13)
#define MEASURE_BIT_DEPTH (1 << 14)
#define MEASURE_DYNAMIC_RANGE (1 << 15)
#define MEASURE_ZERO_CROSSINGS (1 << 16)
#define MEASURE_ZERO_CROSSINGS_RATE (1 << 17)
#define MEASURE_NUMBER_OF_SAMPLES (1 << 18)
#define MEASURE_NUMBER_OF_NANS (1 << 19)
#define MEASURE_NUMBER_OF_INFS (1 << 20)
#define MEASURE_NUMBER_OF_DENORMALS (1 << 21)
#define MEASURE_NOISE_FLOOR (1 << 22)
#define MEASURE_NOISE_FLOOR_COUNT (1 << 23)
#define MEASURE_ENTROPY (1 << 24)
#define MEASURE_ABS_PEAK_COUNT (1 << 25)
#define MEASURE_MINMAXPEAK (MEASURE_MIN_LEVEL | MEASURE_MAX_LEVEL | MEASURE_PEAK_LEVEL)
typedef struct ChannelStats {
double last;
double last_non_zero;
double min_non_zero;
double sigma_x, sigma_x2;
double avg_sigma_x2, min_sigma_x2, max_sigma_x2;
double min, max;
double nmin, nmax;
double min_run, max_run;
double min_runs, max_runs;
double min_diff, max_diff;
double diff1_sum;
double diff1_sum_x2;
double abs_peak;
uint64_t mask[4];
uint64_t min_count, max_count;
uint64_t abs_peak_count;
uint64_t noise_floor_count;
uint64_t zero_runs;
uint64_t nb_samples;
uint64_t nb_nans;
uint64_t nb_infs;
uint64_t nb_denormals;
double *win_samples;
double *sorted_samples;
uint64_t ehistogram[HISTOGRAM_SIZE];
int64_t lasti;
int sorted_front;
int sorted_back;
int win_pos;
int max_index;
double noise_floor;
double entropy;
} ChannelStats;
typedef struct AudioStatsContext {
const AVClass *class;
ChannelStats *chstats;
int nb_channels;
uint64_t tc_samples;
double time_constant;
double mult;
int metadata;
int used;
int reset_count;
int nb_frames;
int maxbitdepth;
int measure_perchannel;
int measure_overall;
int is_float;
int is_double;
} AudioStatsContext;
#define OFFSET(x) offsetof(AudioStatsContext, x)
#define FLAGS AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
static const AVOption astats_options[] = {
{ "length", "set the window length", OFFSET(time_constant), AV_OPT_TYPE_DOUBLE, {.dbl=.05}, 0, 10, FLAGS },
{ "metadata", "inject metadata in the filtergraph", OFFSET(metadata), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS },
{ "reset", "Set the number of frames over which cumulative stats are calculated before being reset", OFFSET(reset_count), AV_OPT_TYPE_INT, {.i64=0}, 0, INT_MAX, FLAGS },
{ "measure_perchannel", "Select the parameters which are measured per channel", OFFSET(measure_perchannel), AV_OPT_TYPE_FLAGS, {.i64=MEASURE_ALL}, 0, UINT_MAX, FLAGS, .unit = "measure" },
{ "none" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_NONE }, 0, 0, FLAGS, .unit = "measure" },
{ "all" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_ALL }, 0, 0, FLAGS, .unit = "measure" },
{ "Bit_depth" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_BIT_DEPTH }, 0, 0, FLAGS, .unit = "measure" },
{ "Crest_factor" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_CREST_FACTOR }, 0, 0, FLAGS, .unit = "measure" },
{ "DC_offset" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_DC_OFFSET }, 0, 0, FLAGS, .unit = "measure" },
{ "Dynamic_range" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_DYNAMIC_RANGE }, 0, 0, FLAGS, .unit = "measure" },
{ "Entropy" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_ENTROPY }, 0, 0, FLAGS, .unit = "measure" },
{ "Flat_factor" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_FLAT_FACTOR }, 0, 0, FLAGS, .unit = "measure" },
{ "Max_difference" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_MAX_DIFFERENCE }, 0, 0, FLAGS, .unit = "measure" },
{ "Max_level" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_MAX_LEVEL }, 0, 0, FLAGS, .unit = "measure" },
{ "Mean_difference" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_MEAN_DIFFERENCE }, 0, 0, FLAGS, .unit = "measure" },
{ "Min_difference" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_MIN_DIFFERENCE }, 0, 0, FLAGS, .unit = "measure" },
{ "Min_level" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_MIN_LEVEL }, 0, 0, FLAGS, .unit = "measure" },
{ "Noise_floor" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_NOISE_FLOOR }, 0, 0, FLAGS, .unit = "measure" },
{ "Noise_floor_count" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_NOISE_FLOOR_COUNT }, 0, 0, FLAGS, .unit = "measure" },
{ "Number_of_Infs" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_NUMBER_OF_INFS }, 0, 0, FLAGS, .unit = "measure" },
{ "Number_of_NaNs" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_NUMBER_OF_NANS }, 0, 0, FLAGS, .unit = "measure" },
{ "Number_of_denormals" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_NUMBER_OF_DENORMALS }, 0, 0, FLAGS, .unit = "measure" },
{ "Number_of_samples" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_NUMBER_OF_SAMPLES }, 0, 0, FLAGS, .unit = "measure" },
{ "Peak_count" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_PEAK_COUNT }, 0, 0, FLAGS, .unit = "measure" },
{ "Peak_level" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_PEAK_LEVEL }, 0, 0, FLAGS, .unit = "measure" },
{ "RMS_difference" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_RMS_DIFFERENCE }, 0, 0, FLAGS, .unit = "measure" },
{ "RMS_level" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_RMS_LEVEL }, 0, 0, FLAGS, .unit = "measure" },
{ "RMS_peak" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_RMS_PEAK }, 0, 0, FLAGS, .unit = "measure" },
{ "RMS_trough" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_RMS_TROUGH }, 0, 0, FLAGS, .unit = "measure" },
{ "Zero_crossings" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_ZERO_CROSSINGS }, 0, 0, FLAGS, .unit = "measure" },
{ "Zero_crossings_rate" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_ZERO_CROSSINGS_RATE }, 0, 0, FLAGS, .unit = "measure" },
{ "Abs_Peak_count" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_ABS_PEAK_COUNT }, 0, 0, FLAGS, .unit = "measure" },
{ "measure_overall", "Select the parameters which are measured overall", OFFSET(measure_overall), AV_OPT_TYPE_FLAGS, {.i64=MEASURE_ALL}, 0, UINT_MAX, FLAGS, .unit = "measure" },
{ NULL }
};
AVFILTER_DEFINE_CLASS(astats);
static void reset_stats(AudioStatsContext *s)
{
int c;
for (c = 0; c < s->nb_channels; c++) {
ChannelStats *p = &s->chstats[c];
p->min = p->nmin = p->min_sigma_x2 = DBL_MAX;
p->max = p->nmax = p->max_sigma_x2 =-DBL_MAX;
p->abs_peak = 0;
p->min_non_zero = DBL_MAX;
p->min_diff = DBL_MAX;
p->max_diff = 0;
p->sigma_x = 0;
p->sigma_x2 = 0;
p->avg_sigma_x2 = 0;
p->min_run = 0;
p->max_run = 0;
p->min_runs = 0;
p->max_runs = 0;
p->diff1_sum = 0;
p->diff1_sum_x2 = 0;
p->mask[0] = 0;
p->mask[1] = 0;
p->mask[2] =~0;
p->mask[3] = 0;
p->min_count = 0;
p->max_count = 0;
p->abs_peak_count = 0;
p->zero_runs = 0;
p->nb_samples = 0;
p->nb_nans = 0;
p->nb_infs = 0;
p->nb_denormals = 0;
p->last = NAN;
p->noise_floor = NAN;
p->noise_floor_count = 0;
p->entropy = 0;
p->win_pos = 0;
p->sorted_front = 0;
p->sorted_back = 0;
memset(p->win_samples, 0, s->tc_samples * sizeof(*p->win_samples));
memset(p->ehistogram, 0, sizeof(p->ehistogram));
for (int n = 0; n < s->tc_samples; n++)
p->sorted_samples[n] = -1.0;
}
}
static int config_output(AVFilterLink *outlink)
{
AudioStatsContext *s = outlink->src->priv;
s->chstats = av_calloc(sizeof(*s->chstats), outlink->ch_layout.nb_channels);
if (!s->chstats)
return AVERROR(ENOMEM);
s->tc_samples = FFMAX(s->time_constant * outlink->sample_rate + .5, 1);
s->nb_channels = outlink->ch_layout.nb_channels;
for (int i = 0; i < s->nb_channels; i++) {
ChannelStats *p = &s->chstats[i];
p->win_samples = av_calloc(s->tc_samples, sizeof(*p->win_samples));
if (!p->win_samples)
return AVERROR(ENOMEM);
p->sorted_samples = av_calloc(s->tc_samples, sizeof(*p->sorted_samples));
if (!p->sorted_samples)
return AVERROR(ENOMEM);
}
s->mult = exp((-1 / s->time_constant / outlink->sample_rate));
s->nb_frames = 0;
s->maxbitdepth = av_get_bytes_per_sample(outlink->format) * 8;
s->is_double = outlink->format == AV_SAMPLE_FMT_DBL ||
outlink->format == AV_SAMPLE_FMT_DBLP;
s->is_float = outlink->format == AV_SAMPLE_FMT_FLT ||
outlink->format == AV_SAMPLE_FMT_FLTP;
reset_stats(s);
return 0;
}
static void bit_depth(AudioStatsContext *s, const uint64_t *const mask, uint8_t *depth)
{
unsigned result = s->maxbitdepth;
uint64_t amask = mask[1] & (~mask[2]);
depth[0] = 0;
for (int i = 0; i < result; i++)
depth[0] += !!(mask[0] & (1ULL << i));
depth[1] = 0;
for (int i = 0; i < result; i++)
depth[1] += !!(mask[1] & (1ULL << i));
depth[2] = result;
for (int i = 0; i < result && !(amask & 1); i++) {
depth[2]--;
amask >>= 1;
}
depth[3] = 0;
for (int i = 0; i < result; i++)
depth[3] += !!(mask[3] & (1ULL << i));
}
static double calc_entropy(AudioStatsContext *s, ChannelStats *p)
{
double entropy = 0.;
for (int i = 0; i < HISTOGRAM_SIZE; i++) {
double entry = p->ehistogram[i] / ((double)p->nb_samples);
if (entry > 1e-8)
entropy += entry * log2(entry);
}
return -entropy / log2(HISTOGRAM_SIZE);
}
static double calc_noise_floor(double *ss, double x, double px,
int n, int *ffront, int *bback)
{
double r, ax = fabs(x);
int front = *ffront;
int back = *bback;
int empty = front == back && ss[front] == -1.0;
if (!empty && fabs(px) == ss[front]) {
ss[front] = -1.0;
if (back != front) {
front--;
if (front < 0)
front = n - 1;
}
empty = front == back;
}
if (!empty && ax >= ss[front]) {
while (1) {
ss[front] = -1.0;
if (back == front) {
empty = 1;
break;
}
front--;
if (front < 0)
front = n - 1;
}
}
while (!empty && ax >= ss[back]) {
ss[back] = -1.0;
if (back == front) {
empty = 1;
break;
}
back++;
if (back >= n)
back = 0;
}
if (!empty) {
back--;
if (back < 0)
back = n - 1;
}
ss[back] = ax;
r = ss[front];
*ffront = front;
*bback = back;
return r;
}
static inline void update_minmax(AudioStatsContext *s, ChannelStats *p, double d)
{
if (d < p->min)
p->min = d;
if (d > p->max)
p->max = d;
}
static inline void update_stat(AudioStatsContext *s, ChannelStats *p, double d, double nd, int64_t i)
{
double abs_d = FFABS(d);
double drop, noise_floor;
int index;
if (p->abs_peak < abs_d) {
p->abs_peak = abs_d;
p->abs_peak_count = 1;
} else if (p->abs_peak == abs_d) {
p->abs_peak_count++;
}
if (d < p->min) {
p->min = d;
p->nmin = nd;
p->min_run = 1;
p->min_runs = 0;
p->min_count = 1;
} else if (d == p->min) {
p->min_count++;
p->min_run = d == p->last ? p->min_run + 1 : 1;
} else if (p->last == p->min) {
p->min_runs += p->min_run * p->min_run;
}
if (d != 0 && FFABS(d) < p->min_non_zero)
p->min_non_zero = FFABS(d);
if (d > p->max) {
p->max = d;
p->nmax = nd;
p->max_run = 1;
p->max_runs = 0;
p->max_count = 1;
} else if (d == p->max) {
p->max_count++;
p->max_run = d == p->last ? p->max_run + 1 : 1;
} else if (p->last == p->max) {
p->max_runs += p->max_run * p->max_run;
}
if (d != 0) {
p->zero_runs += FFSIGN(d) != FFSIGN(p->last_non_zero);
p->last_non_zero = d;
}
p->sigma_x += nd;
p->sigma_x2 += nd * nd;
p->avg_sigma_x2 = p->avg_sigma_x2 * s->mult + (1.0 - s->mult) * nd * nd;
if (!isnan(p->last)) {
p->min_diff = FFMIN(p->min_diff, fabs(d - p->last));
p->max_diff = FFMAX(p->max_diff, fabs(d - p->last));
p->diff1_sum += fabs(d - p->last);
p->diff1_sum_x2 += (d - p->last) * (d - p->last);
}
p->mask[0] |= (i < 0) ? -i : i;
p->mask[1] |= i;
p->mask[2] &= i;
if (!isnan(p->last))
p->mask[3] |= i ^ p->lasti;
p->lasti = i;
p->last = d;
drop = p->win_samples[p->win_pos];
p->win_samples[p->win_pos] = nd;
index = av_clip(lrint(av_clipd(FFABS(nd), 0.0, 1.0) * HISTOGRAM_MAX), 0, HISTOGRAM_MAX);
p->max_index = FFMAX(p->max_index, index);
p->ehistogram[index]++;
p->win_pos++;
if (p->win_pos >= s->tc_samples)
p->win_pos = 0;
if (p->nb_samples >= s->tc_samples) {
p->max_sigma_x2 = FFMAX(p->max_sigma_x2, p->avg_sigma_x2);
p->min_sigma_x2 = FFMIN(p->min_sigma_x2, p->avg_sigma_x2);
}
p->nb_samples++;
noise_floor = calc_noise_floor(p->sorted_samples, nd, drop,
s->tc_samples, &p->sorted_front, &p->sorted_back);
if (p->nb_samples >= s->tc_samples) {
if (isnan(p->noise_floor)) {
p->noise_floor = noise_floor;
p->noise_floor_count = 1;
} else {
if (noise_floor < p->noise_floor) {
p->noise_floor = noise_floor;
p->noise_floor_count = 1;
} else if (noise_floor == p->noise_floor) {
p->noise_floor_count++;
}
}
}
}
static inline void update_float_stat(AudioStatsContext *s, ChannelStats *p, float d)
{
int type = fpclassify(d);
p->nb_nans += type == FP_NAN;
p->nb_infs += type == FP_INFINITE;
p->nb_denormals += type == FP_SUBNORMAL;
}
static inline void update_double_stat(AudioStatsContext *s, ChannelStats *p, double d)
{
int type = fpclassify(d);
p->nb_nans += type == FP_NAN;
p->nb_infs += type == FP_INFINITE;
p->nb_denormals += type == FP_SUBNORMAL;
}
static void set_meta(AVDictionary **metadata, int chan, const char *key,
const char *fmt, double val)
{
uint8_t value[128];
uint8_t key2[128];
snprintf(value, sizeof(value), fmt, val);
if (chan)
snprintf(key2, sizeof(key2), "lavfi.astats.%d.%s", chan, key);
else
snprintf(key2, sizeof(key2), "lavfi.astats.%s", key);
av_dict_set(metadata, key2, value, 0);
}
#define LINEAR_TO_DB(x) (log10(x) * 20)
static void set_metadata(AudioStatsContext *s, AVDictionary **metadata)
{
uint64_t mask[4], min_count = 0, max_count = 0, nb_samples = 0, noise_floor_count = 0;
uint64_t nb_nans = 0, nb_infs = 0, nb_denormals = 0;
uint64_t abs_peak_count = 0;
double min_runs = 0, max_runs = 0,
min = DBL_MAX, max =-DBL_MAX, min_diff = DBL_MAX, max_diff = 0,
nmin = DBL_MAX, nmax =-DBL_MAX,
max_sigma_x = 0,
diff1_sum = 0,
diff1_sum_x2 = 0,
sigma_x2 = 0,
noise_floor = 0,
entropy = 0,
min_sigma_x2 = DBL_MAX,
max_sigma_x2 =-DBL_MAX;
uint8_t depth[4];
int c;
mask[0] = 0;
mask[1] = 0;
mask[2] =~0;
mask[3] = 0;
for (c = 0; c < s->nb_channels; c++) {
ChannelStats *p = &s->chstats[c];
if (p->nb_samples < s->tc_samples)
p->min_sigma_x2 = p->max_sigma_x2 = p->sigma_x2 / p->nb_samples;
min = FFMIN(min, p->min);
max = FFMAX(max, p->max);
nmin = FFMIN(nmin, p->nmin);
nmax = FFMAX(nmax, p->nmax);
min_diff = FFMIN(min_diff, p->min_diff);
max_diff = FFMAX(max_diff, p->max_diff);
diff1_sum += p->diff1_sum;
diff1_sum_x2 += p->diff1_sum_x2;
min_sigma_x2 = FFMIN(min_sigma_x2, p->min_sigma_x2);
max_sigma_x2 = FFMAX(max_sigma_x2, p->max_sigma_x2);
sigma_x2 += p->sigma_x2;
noise_floor = FFMAX(noise_floor, p->noise_floor);
noise_floor_count += p->noise_floor_count;
p->entropy = calc_entropy(s, p);
entropy += p->entropy;
min_count += p->min_count;
max_count += p->max_count;
abs_peak_count += p->abs_peak_count;
min_runs += p->min_runs;
max_runs += p->max_runs;
mask[0] |= p->mask[0];
mask[1] |= p->mask[1];
mask[2] &= p->mask[2];
mask[3] |= p->mask[3];
nb_samples += p->nb_samples;
nb_nans += p->nb_nans;
nb_infs += p->nb_infs;
nb_denormals += p->nb_denormals;
if (fabs(p->sigma_x) > fabs(max_sigma_x))
max_sigma_x = p->sigma_x;
if (s->measure_perchannel & MEASURE_DC_OFFSET)
set_meta(metadata, c + 1, "DC_offset", "%f", p->sigma_x / p->nb_samples);
if (s->measure_perchannel & MEASURE_MIN_LEVEL)
set_meta(metadata, c + 1, "Min_level", "%f", p->min);
if (s->measure_perchannel & MEASURE_MAX_LEVEL)
set_meta(metadata, c + 1, "Max_level", "%f", p->max);
if (s->measure_perchannel & MEASURE_MIN_DIFFERENCE)
set_meta(metadata, c + 1, "Min_difference", "%f", p->min_diff);
if (s->measure_perchannel & MEASURE_MAX_DIFFERENCE)
set_meta(metadata, c + 1, "Max_difference", "%f", p->max_diff);
if (s->measure_perchannel & MEASURE_MEAN_DIFFERENCE)
set_meta(metadata, c + 1, "Mean_difference", "%f", p->diff1_sum / (p->nb_samples - 1));
if (s->measure_perchannel & MEASURE_RMS_DIFFERENCE)
set_meta(metadata, c + 1, "RMS_difference", "%f", sqrt(p->diff1_sum_x2 / (p->nb_samples - 1)));
if (s->measure_perchannel & MEASURE_PEAK_LEVEL)
set_meta(metadata, c + 1, "Peak_level", "%f", LINEAR_TO_DB(FFMAX(-p->nmin, p->nmax)));
if (s->measure_perchannel & MEASURE_RMS_LEVEL)
set_meta(metadata, c + 1, "RMS_level", "%f", LINEAR_TO_DB(sqrt(p->sigma_x2 / p->nb_samples)));
if (s->measure_perchannel & MEASURE_RMS_PEAK)
set_meta(metadata, c + 1, "RMS_peak", "%f", LINEAR_TO_DB(sqrt(p->max_sigma_x2)));
if (s->measure_perchannel & MEASURE_RMS_TROUGH)
set_meta(metadata, c + 1, "RMS_trough", "%f", LINEAR_TO_DB(sqrt(p->min_sigma_x2)));
if (s->measure_perchannel & MEASURE_CREST_FACTOR)
set_meta(metadata, c + 1, "Crest_factor", "%f", p->sigma_x2 ? FFMAX(-p->min, p->max) / sqrt(p->sigma_x2 / p->nb_samples) : 1);
if (s->measure_perchannel & MEASURE_FLAT_FACTOR)
set_meta(metadata, c + 1, "Flat_factor", "%f", LINEAR_TO_DB((p->min_runs + p->max_runs) / (p->min_count + p->max_count)));
if (s->measure_perchannel & MEASURE_PEAK_COUNT)
set_meta(metadata, c + 1, "Peak_count", "%f", (float)(p->min_count + p->max_count));
if (s->measure_perchannel & MEASURE_ABS_PEAK_COUNT)
set_meta(metadata, c + 1, "Peak_count", "%f", p->abs_peak_count);
if (s->measure_perchannel & MEASURE_NOISE_FLOOR)
set_meta(metadata, c + 1, "Noise_floor", "%f", LINEAR_TO_DB(p->noise_floor));
if (s->measure_perchannel & MEASURE_NOISE_FLOOR_COUNT)
set_meta(metadata, c + 1, "Noise_floor_count", "%f", p->noise_floor_count);
if (s->measure_perchannel & MEASURE_ENTROPY)
set_meta(metadata, c + 1, "Entropy", "%f", p->entropy);
if (s->measure_perchannel & MEASURE_BIT_DEPTH) {
bit_depth(s, p->mask, depth);
set_meta(metadata, c + 1, "Bit_depth", "%f", depth[0]);
set_meta(metadata, c + 1, "Bit_depth2", "%f", depth[1]);
set_meta(metadata, c + 1, "Bit_depth3", "%f", depth[2]);
set_meta(metadata, c + 1, "Bit_depth4", "%f", depth[3]);
}
if (s->measure_perchannel & MEASURE_DYNAMIC_RANGE)
set_meta(metadata, c + 1, "Dynamic_range", "%f", LINEAR_TO_DB(2 * FFMAX(FFABS(p->min), FFABS(p->max))/ p->min_non_zero));
if (s->measure_perchannel & MEASURE_ZERO_CROSSINGS)
set_meta(metadata, c + 1, "Zero_crossings", "%f", p->zero_runs);
if (s->measure_perchannel & MEASURE_ZERO_CROSSINGS_RATE)
set_meta(metadata, c + 1, "Zero_crossings_rate", "%f", p->zero_runs/(double)p->nb_samples);
if ((s->is_float || s->is_double) && s->measure_perchannel & MEASURE_NUMBER_OF_NANS)
set_meta(metadata, c + 1, "Number of NaNs", "%f", p->nb_nans);
if ((s->is_float || s->is_double) && s->measure_perchannel & MEASURE_NUMBER_OF_INFS)
set_meta(metadata, c + 1, "Number of Infs", "%f", p->nb_infs);
if ((s->is_float || s->is_double) && s->measure_perchannel & MEASURE_NUMBER_OF_DENORMALS)
set_meta(metadata, c + 1, "Number of denormals", "%f", p->nb_denormals);
}
if (s->measure_overall & MEASURE_DC_OFFSET)
set_meta(metadata, 0, "Overall.DC_offset", "%f", max_sigma_x / (nb_samples / s->nb_channels));
if (s->measure_overall & MEASURE_MIN_LEVEL)
set_meta(metadata, 0, "Overall.Min_level", "%f", min);
if (s->measure_overall & MEASURE_MAX_LEVEL)
set_meta(metadata, 0, "Overall.Max_level", "%f", max);
if (s->measure_overall & MEASURE_MIN_DIFFERENCE)
set_meta(metadata, 0, "Overall.Min_difference", "%f", min_diff);
if (s->measure_overall & MEASURE_MAX_DIFFERENCE)
set_meta(metadata, 0, "Overall.Max_difference", "%f", max_diff);
if (s->measure_overall & MEASURE_MEAN_DIFFERENCE)
set_meta(metadata, 0, "Overall.Mean_difference", "%f", diff1_sum / (nb_samples - s->nb_channels));
if (s->measure_overall & MEASURE_RMS_DIFFERENCE)
set_meta(metadata, 0, "Overall.RMS_difference", "%f", sqrt(diff1_sum_x2 / (nb_samples - s->nb_channels)));
if (s->measure_overall & MEASURE_PEAK_LEVEL)
set_meta(metadata, 0, "Overall.Peak_level", "%f", LINEAR_TO_DB(FFMAX(-nmin, nmax)));
if (s->measure_overall & MEASURE_RMS_LEVEL)
set_meta(metadata, 0, "Overall.RMS_level", "%f", LINEAR_TO_DB(sqrt(sigma_x2 / nb_samples)));
if (s->measure_overall & MEASURE_RMS_PEAK)
set_meta(metadata, 0, "Overall.RMS_peak", "%f", LINEAR_TO_DB(sqrt(max_sigma_x2)));
if (s->measure_overall & MEASURE_RMS_TROUGH)
set_meta(metadata, 0, "Overall.RMS_trough", "%f", LINEAR_TO_DB(sqrt(min_sigma_x2)));
if (s->measure_overall & MEASURE_FLAT_FACTOR)
set_meta(metadata, 0, "Overall.Flat_factor", "%f", LINEAR_TO_DB((min_runs + max_runs) / (min_count + max_count)));
if (s->measure_overall & MEASURE_PEAK_COUNT)
set_meta(metadata, 0, "Overall.Peak_count", "%f", (float)(min_count + max_count) / (double)s->nb_channels);
if (s->measure_overall & MEASURE_ABS_PEAK_COUNT)
set_meta(metadata, 0, "Overall.Abs_Peak_count", "%f", (float)(abs_peak_count) / (double)s->nb_channels);
if (s->measure_overall & MEASURE_NOISE_FLOOR)
set_meta(metadata, 0, "Overall.Noise_floor", "%f", LINEAR_TO_DB(noise_floor));
if (s->measure_overall & MEASURE_NOISE_FLOOR_COUNT)
set_meta(metadata, 0, "Overall.Noise_floor_count", "%f", noise_floor_count / (double)s->nb_channels);
if (s->measure_overall & MEASURE_ENTROPY)
set_meta(metadata, 0, "Overall.Entropy", "%f", entropy / (double)s->nb_channels);
if (s->measure_overall & MEASURE_BIT_DEPTH) {
bit_depth(s, mask, depth);
set_meta(metadata, 0, "Overall.Bit_depth", "%f", depth[0]);
set_meta(metadata, 0, "Overall.Bit_depth2", "%f", depth[1]);
set_meta(metadata, 0, "Overall.Bit_depth3", "%f", depth[2]);
set_meta(metadata, 0, "Overall.Bit_depth4", "%f", depth[3]);
}
if (s->measure_overall & MEASURE_NUMBER_OF_SAMPLES)
set_meta(metadata, 0, "Overall.Number_of_samples", "%f", nb_samples / s->nb_channels);
if ((s->is_float || s->is_double) && s->measure_overall & MEASURE_NUMBER_OF_NANS)
set_meta(metadata, 0, "Number of NaNs", "%f", nb_nans / (float)s->nb_channels);
if ((s->is_float || s->is_double) && s->measure_overall & MEASURE_NUMBER_OF_INFS)
set_meta(metadata, 0, "Number of Infs", "%f", nb_infs / (float)s->nb_channels);
if ((s->is_float || s->is_double) && s->measure_overall & MEASURE_NUMBER_OF_DENORMALS)
set_meta(metadata, 0, "Number of denormals", "%f", nb_denormals / (float)s->nb_channels);
}
#define UPDATE_STATS_P(type, update_func, update_float, channel_func) \
for (int c = start; c < end; c++) { \
ChannelStats *p = &s->chstats[c]; \
const type *src = (const type *)data[c]; \
const type * const srcend = src + samples; \
for (; src < srcend; src++) { \
update_func; \
update_float; \
} \
channel_func; \
}
#define UPDATE_STATS_I(type, update_func, update_float, channel_func) \
for (int c = start; c < end; c++) { \
ChannelStats *p = &s->chstats[c]; \
const type *src = (const type *)data[0]; \
const type * const srcend = src + samples * channels; \
for (src += c; src < srcend; src += channels) { \
update_func; \
update_float; \
} \
channel_func; \
}
#define UPDATE_STATS(planar, type, sample, normalizer_suffix, int_sample) \
if ((s->measure_overall | s->measure_perchannel) & ~MEASURE_MINMAXPEAK) { \
UPDATE_STATS_##planar(type, update_stat(s, p, sample, sample normalizer_suffix, int_sample), s->is_float ? update_float_stat(s, p, sample) : s->is_double ? update_double_stat(s, p, sample) : (void)NULL, ); \
} else { \
UPDATE_STATS_##planar(type, update_minmax(s, p, sample), , p->nmin = p->min normalizer_suffix; p->nmax = p->max normalizer_suffix;); \
}
static int filter_channel(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
AudioStatsContext *s = ctx->priv;
AVFilterLink *inlink = ctx->inputs[0];
AVFrame *buf = arg;
const uint8_t * const * const data = (const uint8_t * const *)buf->extended_data;
const int channels = s->nb_channels;
const int samples = buf->nb_samples;
const int start = (buf->ch_layout.nb_channels * jobnr) / nb_jobs;
const int end = (buf->ch_layout.nb_channels * (jobnr+1)) / nb_jobs;
switch (inlink->format) {
case AV_SAMPLE_FMT_DBLP:
UPDATE_STATS(P, double, *src, , llrint(*src * (UINT64_C(1) << 63)));
break;
case AV_SAMPLE_FMT_DBL:
UPDATE_STATS(I, double, *src, , llrint(*src * (UINT64_C(1) << 63)));
break;
case AV_SAMPLE_FMT_FLTP:
UPDATE_STATS(P, float, *src, , llrint(*src * (UINT64_C(1) << 31)));
break;
case AV_SAMPLE_FMT_FLT:
UPDATE_STATS(I, float, *src, , llrint(*src * (UINT64_C(1) << 31)));
break;
case AV_SAMPLE_FMT_S64P:
UPDATE_STATS(P, int64_t, *src, / (double)INT64_MAX, *src);
break;
case AV_SAMPLE_FMT_S64:
UPDATE_STATS(I, int64_t, *src, / (double)INT64_MAX, *src);
break;
case AV_SAMPLE_FMT_S32P:
UPDATE_STATS(P, int32_t, *src, / (double)INT32_MAX, *src);
break;
case AV_SAMPLE_FMT_S32:
UPDATE_STATS(I, int32_t, *src, / (double)INT32_MAX, *src);
break;
case AV_SAMPLE_FMT_S16P:
UPDATE_STATS(P, int16_t, *src, / (double)INT16_MAX, *src);
break;
case AV_SAMPLE_FMT_S16:
UPDATE_STATS(I, int16_t, *src, / (double)INT16_MAX, *src);
break;
}
return 0;
}
static int filter_frame(AVFilterLink *inlink, AVFrame *buf)
{
AVFilterContext *ctx = inlink->dst;
AudioStatsContext *s = ctx->priv;
AVDictionary **metadata = &buf->metadata;
if (s->reset_count > 0) {
if (s->nb_frames >= s->reset_count) {
reset_stats(s);
s->nb_frames = 0;
}
s->nb_frames++;
}
if (s->used == 0)
s->used = buf->nb_samples > 0;
ff_filter_execute(ctx, filter_channel, buf, NULL,
FFMIN(inlink->ch_layout.nb_channels, ff_filter_get_nb_threads(ctx)));
if (s->metadata)
set_metadata(s, metadata);
return ff_filter_frame(inlink->dst->outputs[0], buf);
}
static void print_stats(AVFilterContext *ctx)
{
AudioStatsContext *s = ctx->priv;
uint64_t mask[4], min_count = 0, max_count = 0, nb_samples = 0, noise_floor_count = 0;
uint64_t nb_nans = 0, nb_infs = 0, nb_denormals = 0, abs_peak_count = 0;
double min_runs = 0, max_runs = 0,
min = DBL_MAX, max =-DBL_MAX, min_diff = DBL_MAX, max_diff = 0,
nmin = DBL_MAX, nmax =-DBL_MAX,
max_sigma_x = 0,
diff1_sum_x2 = 0,
diff1_sum = 0,
sigma_x2 = 0,
noise_floor = 0,
entropy = 0,
min_sigma_x2 = DBL_MAX,
max_sigma_x2 =-DBL_MAX;
uint8_t depth[4];
int c;
mask[0] = 0;
mask[1] = 0;
mask[2] =~0;
mask[3] = 0;
for (c = 0; c < s->nb_channels; c++) {
ChannelStats *p = &s->chstats[c];
if (p->nb_samples == 0 && !s->used)
continue;
if (p->nb_samples < s->tc_samples)
p->min_sigma_x2 = p->max_sigma_x2 = p->sigma_x2 / p->nb_samples;
min = FFMIN(min, p->min);
max = FFMAX(max, p->max);
nmin = FFMIN(nmin, p->nmin);
nmax = FFMAX(nmax, p->nmax);
min_diff = FFMIN(min_diff, p->min_diff);
max_diff = FFMAX(max_diff, p->max_diff);
diff1_sum_x2 += p->diff1_sum_x2;
diff1_sum += p->diff1_sum;
min_sigma_x2 = FFMIN(min_sigma_x2, p->min_sigma_x2);
max_sigma_x2 = FFMAX(max_sigma_x2, p->max_sigma_x2);
sigma_x2 += p->sigma_x2;
noise_floor = FFMAX(noise_floor, p->noise_floor);
p->entropy = calc_entropy(s, p);
entropy += p->entropy;
min_count += p->min_count;
max_count += p->max_count;
abs_peak_count += p->abs_peak_count;
noise_floor_count += p->noise_floor_count;
min_runs += p->min_runs;
max_runs += p->max_runs;
mask[0] |= p->mask[0];
mask[1] |= p->mask[1];
mask[2] &= p->mask[2];
mask[3] |= p->mask[3];
nb_samples += p->nb_samples;
nb_nans += p->nb_nans;
nb_infs += p->nb_infs;
nb_denormals += p->nb_denormals;
if (fabs(p->sigma_x) > fabs(max_sigma_x))
max_sigma_x = p->sigma_x;
if (s->measure_perchannel != MEASURE_NONE)
av_log(ctx, AV_LOG_INFO, "Channel: %d\n", c + 1);
if (s->measure_perchannel & MEASURE_DC_OFFSET)
av_log(ctx, AV_LOG_INFO, "DC offset: %f\n", p->sigma_x / p->nb_samples);
if (s->measure_perchannel & MEASURE_MIN_LEVEL)
av_log(ctx, AV_LOG_INFO, "Min level: %f\n", p->min);
if (s->measure_perchannel & MEASURE_MAX_LEVEL)
av_log(ctx, AV_LOG_INFO, "Max level: %f\n", p->max);
if (s->measure_perchannel & MEASURE_MIN_DIFFERENCE)
av_log(ctx, AV_LOG_INFO, "Min difference: %f\n", p->min_diff);
if (s->measure_perchannel & MEASURE_MAX_DIFFERENCE)
av_log(ctx, AV_LOG_INFO, "Max difference: %f\n", p->max_diff);
if (s->measure_perchannel & MEASURE_MEAN_DIFFERENCE)
av_log(ctx, AV_LOG_INFO, "Mean difference: %f\n", p->diff1_sum / (p->nb_samples - 1));
if (s->measure_perchannel & MEASURE_RMS_DIFFERENCE)
av_log(ctx, AV_LOG_INFO, "RMS difference: %f\n", sqrt(p->diff1_sum_x2 / (p->nb_samples - 1)));
if (s->measure_perchannel & MEASURE_PEAK_LEVEL)
av_log(ctx, AV_LOG_INFO, "Peak level dB: %f\n", LINEAR_TO_DB(FFMAX(-p->nmin, p->nmax)));
if (s->measure_perchannel & MEASURE_RMS_LEVEL)
av_log(ctx, AV_LOG_INFO, "RMS level dB: %f\n", LINEAR_TO_DB(sqrt(p->sigma_x2 / p->nb_samples)));
if (s->measure_perchannel & MEASURE_RMS_PEAK)
av_log(ctx, AV_LOG_INFO, "RMS peak dB: %f\n", LINEAR_TO_DB(sqrt(p->max_sigma_x2)));
if (s->measure_perchannel & MEASURE_RMS_TROUGH)
if (p->min_sigma_x2 != 1)
av_log(ctx, AV_LOG_INFO, "RMS trough dB: %f\n",LINEAR_TO_DB(sqrt(p->min_sigma_x2)));
if (s->measure_perchannel & MEASURE_CREST_FACTOR)
av_log(ctx, AV_LOG_INFO, "Crest factor: %f\n", p->sigma_x2 ? FFMAX(-p->nmin, p->nmax) / sqrt(p->sigma_x2 / p->nb_samples) : 1);
if (s->measure_perchannel & MEASURE_FLAT_FACTOR)
av_log(ctx, AV_LOG_INFO, "Flat factor: %f\n", LINEAR_TO_DB((p->min_runs + p->max_runs) / (p->min_count + p->max_count)));
if (s->measure_perchannel & MEASURE_PEAK_COUNT)
av_log(ctx, AV_LOG_INFO, "Peak count: %"PRId64"\n", p->min_count + p->max_count);
if (s->measure_perchannel & MEASURE_ABS_PEAK_COUNT)
av_log(ctx, AV_LOG_INFO, "Abs Peak count: %"PRId64"\n", p->abs_peak_count);
if (s->measure_perchannel & MEASURE_NOISE_FLOOR)
av_log(ctx, AV_LOG_INFO, "Noise floor dB: %f\n", LINEAR_TO_DB(p->noise_floor));
if (s->measure_perchannel & MEASURE_NOISE_FLOOR_COUNT)
av_log(ctx, AV_LOG_INFO, "Noise floor count: %"PRId64"\n", p->noise_floor_count);
if (s->measure_perchannel & MEASURE_ENTROPY)
av_log(ctx, AV_LOG_INFO, "Entropy: %f\n", p->entropy);
if (s->measure_perchannel & MEASURE_BIT_DEPTH) {
bit_depth(s, p->mask, depth);
av_log(ctx, AV_LOG_INFO, "Bit depth: %u/%u/%u/%u\n", depth[0], depth[1], depth[2], depth[3]);
}
if (s->measure_perchannel & MEASURE_DYNAMIC_RANGE)
av_log(ctx, AV_LOG_INFO, "Dynamic range: %f\n", LINEAR_TO_DB(2 * FFMAX(FFABS(p->min), FFABS(p->max))/ p->min_non_zero));
if (s->measure_perchannel & MEASURE_ZERO_CROSSINGS)
av_log(ctx, AV_LOG_INFO, "Zero crossings: %"PRId64"\n", p->zero_runs);
if (s->measure_perchannel & MEASURE_ZERO_CROSSINGS_RATE)
av_log(ctx, AV_LOG_INFO, "Zero crossings rate: %f\n", p->zero_runs/(double)p->nb_samples);
if ((s->is_float || s->is_double) && s->measure_perchannel & MEASURE_NUMBER_OF_NANS)
av_log(ctx, AV_LOG_INFO, "Number of NaNs: %"PRId64"\n", p->nb_nans);
if ((s->is_float || s->is_double) && s->measure_perchannel & MEASURE_NUMBER_OF_INFS)
av_log(ctx, AV_LOG_INFO, "Number of Infs: %"PRId64"\n", p->nb_infs);
if ((s->is_float || s->is_double) && s->measure_perchannel & MEASURE_NUMBER_OF_DENORMALS)
av_log(ctx, AV_LOG_INFO, "Number of denormals: %"PRId64"\n", p->nb_denormals);
}
if (nb_samples == 0 && !s->used)
return;
if (s->measure_overall != MEASURE_NONE)
av_log(ctx, AV_LOG_INFO, "Overall\n");
if (s->measure_overall & MEASURE_DC_OFFSET)
av_log(ctx, AV_LOG_INFO, "DC offset: %f\n", max_sigma_x / (nb_samples / s->nb_channels));
if (s->measure_overall & MEASURE_MIN_LEVEL)
av_log(ctx, AV_LOG_INFO, "Min level: %f\n", min);
if (s->measure_overall & MEASURE_MAX_LEVEL)
av_log(ctx, AV_LOG_INFO, "Max level: %f\n", max);
if (s->measure_overall & MEASURE_MIN_DIFFERENCE)
av_log(ctx, AV_LOG_INFO, "Min difference: %f\n", min_diff);
if (s->measure_overall & MEASURE_MAX_DIFFERENCE)
av_log(ctx, AV_LOG_INFO, "Max difference: %f\n", max_diff);
if (s->measure_overall & MEASURE_MEAN_DIFFERENCE)
av_log(ctx, AV_LOG_INFO, "Mean difference: %f\n", diff1_sum / (nb_samples - s->nb_channels));
if (s->measure_overall & MEASURE_RMS_DIFFERENCE)
av_log(ctx, AV_LOG_INFO, "RMS difference: %f\n", sqrt(diff1_sum_x2 / (nb_samples - s->nb_channels)));
if (s->measure_overall & MEASURE_PEAK_LEVEL)
av_log(ctx, AV_LOG_INFO, "Peak level dB: %f\n", LINEAR_TO_DB(FFMAX(-nmin, nmax)));
if (s->measure_overall & MEASURE_RMS_LEVEL)
av_log(ctx, AV_LOG_INFO, "RMS level dB: %f\n", LINEAR_TO_DB(sqrt(sigma_x2 / nb_samples)));
if (s->measure_overall & MEASURE_RMS_PEAK)
av_log(ctx, AV_LOG_INFO, "RMS peak dB: %f\n", LINEAR_TO_DB(sqrt(max_sigma_x2)));
if (s->measure_overall & MEASURE_RMS_TROUGH)
if (min_sigma_x2 != 1)
av_log(ctx, AV_LOG_INFO, "RMS trough dB: %f\n", LINEAR_TO_DB(sqrt(min_sigma_x2)));
if (s->measure_overall & MEASURE_FLAT_FACTOR)
av_log(ctx, AV_LOG_INFO, "Flat factor: %f\n", LINEAR_TO_DB((min_runs + max_runs) / (min_count + max_count)));
if (s->measure_overall & MEASURE_PEAK_COUNT)
av_log(ctx, AV_LOG_INFO, "Peak count: %f\n", (min_count + max_count) / (double)s->nb_channels);
if (s->measure_overall & MEASURE_ABS_PEAK_COUNT)
av_log(ctx, AV_LOG_INFO, "Abs Peak count: %f\n", abs_peak_count / (double)s->nb_channels);
if (s->measure_overall & MEASURE_NOISE_FLOOR)
av_log(ctx, AV_LOG_INFO, "Noise floor dB: %f\n", LINEAR_TO_DB(noise_floor));
if (s->measure_overall & MEASURE_NOISE_FLOOR_COUNT)
av_log(ctx, AV_LOG_INFO, "Noise floor count: %f\n", noise_floor_count / (double)s->nb_channels);
if (s->measure_overall & MEASURE_ENTROPY)
av_log(ctx, AV_LOG_INFO, "Entropy: %f\n", entropy / (double)s->nb_channels);
if (s->measure_overall & MEASURE_BIT_DEPTH) {
bit_depth(s, mask, depth);
av_log(ctx, AV_LOG_INFO, "Bit depth: %u/%u/%u/%u\n", depth[0], depth[1], depth[2], depth[3]);
}
if (s->measure_overall & MEASURE_NUMBER_OF_SAMPLES)
av_log(ctx, AV_LOG_INFO, "Number of samples: %"PRId64"\n", nb_samples / s->nb_channels);
if ((s->is_float || s->is_double) && s->measure_overall & MEASURE_NUMBER_OF_NANS)
av_log(ctx, AV_LOG_INFO, "Number of NaNs: %f\n", nb_nans / (float)s->nb_channels);
if ((s->is_float || s->is_double) && s->measure_overall & MEASURE_NUMBER_OF_INFS)
av_log(ctx, AV_LOG_INFO, "Number of Infs: %f\n", nb_infs / (float)s->nb_channels);
if ((s->is_float || s->is_double) && s->measure_overall & MEASURE_NUMBER_OF_DENORMALS)
av_log(ctx, AV_LOG_INFO, "Number of denormals: %f\n", nb_denormals / (float)s->nb_channels);
}
static av_cold void uninit(AVFilterContext *ctx)
{
AudioStatsContext *s = ctx->priv;
if (s->nb_channels)
print_stats(ctx);
if (s->chstats) {
for (int i = 0; i < s->nb_channels; i++) {
ChannelStats *p = &s->chstats[i];
av_freep(&p->win_samples);
av_freep(&p->sorted_samples);
}
}
av_freep(&s->chstats);
}
static const AVFilterPad astats_inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_AUDIO,
.filter_frame = filter_frame,
},
};
static const AVFilterPad astats_outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_AUDIO,
.config_props = config_output,
},
};
const AVFilter ff_af_astats = {
.name = "astats",
.description = NULL_IF_CONFIG_SMALL("Show time domain statistics about audio frames."),
.priv_size = sizeof(AudioStatsContext),
.priv_class = &astats_class,
.uninit = uninit,
FILTER_INPUTS(astats_inputs),
FILTER_OUTPUTS(astats_outputs),
FILTER_SAMPLEFMTS(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S16P,
AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S32P,
AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S64P,
AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_FLTP,
AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_DBLP),
.flags = AVFILTER_FLAG_SLICE_THREADS | AVFILTER_FLAG_METADATA_ONLY,
};
|