1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
|
/*
* Copyright (c) 2013-2015 Paul B Mahol
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* fade audio filter
*/
#include "config_components.h"
#include "libavutil/opt.h"
#include "audio.h"
#include "avfilter.h"
#include "filters.h"
#include "internal.h"
typedef struct AudioFadeContext {
const AVClass *class;
int type;
int curve, curve2;
int64_t nb_samples;
int64_t start_sample;
int64_t duration;
int64_t start_time;
double silence;
double unity;
int overlap;
int cf0_eof;
int crossfade_is_over;
int64_t pts;
void (*fade_samples)(uint8_t **dst, uint8_t * const *src,
int nb_samples, int channels, int direction,
int64_t start, int64_t range, int curve,
double silence, double unity);
void (*scale_samples)(uint8_t **dst, uint8_t * const *src,
int nb_samples, int channels, double unity);
void (*crossfade_samples)(uint8_t **dst, uint8_t * const *cf0,
uint8_t * const *cf1,
int nb_samples, int channels,
int curve0, int curve1);
} AudioFadeContext;
enum CurveType { NONE = -1, TRI, QSIN, ESIN, HSIN, LOG, IPAR, QUA, CUB, SQU, CBR, PAR, EXP, IQSIN, IHSIN, DESE, DESI, LOSI, SINC, ISINC, NB_CURVES };
#define OFFSET(x) offsetof(AudioFadeContext, x)
#define FLAGS AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
#define TFLAGS AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
static const enum AVSampleFormat sample_fmts[] = {
AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S16P,
AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S32P,
AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_FLTP,
AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_DBLP,
AV_SAMPLE_FMT_NONE
};
static double fade_gain(int curve, int64_t index, int64_t range, double silence, double unity)
{
#define CUBE(a) ((a)*(a)*(a))
double gain;
gain = av_clipd(1.0 * index / range, 0, 1.0);
switch (curve) {
case QSIN:
gain = sin(gain * M_PI / 2.0);
break;
case IQSIN:
/* 0.6... = 2 / M_PI */
gain = 0.6366197723675814 * asin(gain);
break;
case ESIN:
gain = 1.0 - cos(M_PI / 4.0 * (CUBE(2.0*gain - 1) + 1));
break;
case HSIN:
gain = (1.0 - cos(gain * M_PI)) / 2.0;
break;
case IHSIN:
/* 0.3... = 1 / M_PI */
gain = 0.3183098861837907 * acos(1 - 2 * gain);
break;
case EXP:
/* -11.5... = 5*ln(0.1) */
gain = exp(-11.512925464970227 * (1 - gain));
break;
case LOG:
gain = av_clipd(1 + 0.2 * log10(gain), 0, 1.0);
break;
case PAR:
gain = 1 - sqrt(1 - gain);
break;
case IPAR:
gain = (1 - (1 - gain) * (1 - gain));
break;
case QUA:
gain *= gain;
break;
case CUB:
gain = CUBE(gain);
break;
case SQU:
gain = sqrt(gain);
break;
case CBR:
gain = cbrt(gain);
break;
case DESE:
gain = gain <= 0.5 ? cbrt(2 * gain) / 2: 1 - cbrt(2 * (1 - gain)) / 2;
break;
case DESI:
gain = gain <= 0.5 ? CUBE(2 * gain) / 2: 1 - CUBE(2 * (1 - gain)) / 2;
break;
case LOSI: {
const double a = 1. / (1. - 0.787) - 1;
double A = 1. / (1.0 + exp(0 -((gain-0.5) * a * 2.0)));
double B = 1. / (1.0 + exp(a));
double C = 1. / (1.0 + exp(0-a));
gain = (A - B) / (C - B);
}
break;
case SINC:
gain = gain >= 1.0 ? 1.0 : sin(M_PI * (1.0 - gain)) / (M_PI * (1.0 - gain));
break;
case ISINC:
gain = gain <= 0.0 ? 0.0 : 1.0 - sin(M_PI * gain) / (M_PI * gain);
break;
case NONE:
gain = 1.0;
break;
}
return silence + (unity - silence) * gain;
}
#define FADE_PLANAR(name, type) \
static void fade_samples_## name ##p(uint8_t **dst, uint8_t * const *src, \
int nb_samples, int channels, int dir, \
int64_t start, int64_t range,int curve,\
double silence, double unity) \
{ \
int i, c; \
\
for (i = 0; i < nb_samples; i++) { \
double gain = fade_gain(curve, start + i * dir,range,silence,unity);\
for (c = 0; c < channels; c++) { \
type *d = (type *)dst[c]; \
const type *s = (type *)src[c]; \
\
d[i] = s[i] * gain; \
} \
} \
}
#define FADE(name, type) \
static void fade_samples_## name (uint8_t **dst, uint8_t * const *src, \
int nb_samples, int channels, int dir, \
int64_t start, int64_t range, int curve, \
double silence, double unity) \
{ \
type *d = (type *)dst[0]; \
const type *s = (type *)src[0]; \
int i, c, k = 0; \
\
for (i = 0; i < nb_samples; i++) { \
double gain = fade_gain(curve, start + i * dir,range,silence,unity);\
for (c = 0; c < channels; c++, k++) \
d[k] = s[k] * gain; \
} \
}
FADE_PLANAR(dbl, double)
FADE_PLANAR(flt, float)
FADE_PLANAR(s16, int16_t)
FADE_PLANAR(s32, int32_t)
FADE(dbl, double)
FADE(flt, float)
FADE(s16, int16_t)
FADE(s32, int32_t)
#define SCALE_PLANAR(name, type) \
static void scale_samples_## name ##p(uint8_t **dst, uint8_t * const *src, \
int nb_samples, int channels, \
double gain) \
{ \
int i, c; \
\
for (i = 0; i < nb_samples; i++) { \
for (c = 0; c < channels; c++) { \
type *d = (type *)dst[c]; \
const type *s = (type *)src[c]; \
\
d[i] = s[i] * gain; \
} \
} \
}
#define SCALE(name, type) \
static void scale_samples_## name (uint8_t **dst, uint8_t * const *src, \
int nb_samples, int channels, double gain)\
{ \
type *d = (type *)dst[0]; \
const type *s = (type *)src[0]; \
int i, c, k = 0; \
\
for (i = 0; i < nb_samples; i++) { \
for (c = 0; c < channels; c++, k++) \
d[k] = s[k] * gain; \
} \
}
SCALE_PLANAR(dbl, double)
SCALE_PLANAR(flt, float)
SCALE_PLANAR(s16, int16_t)
SCALE_PLANAR(s32, int32_t)
SCALE(dbl, double)
SCALE(flt, float)
SCALE(s16, int16_t)
SCALE(s32, int32_t)
static int config_output(AVFilterLink *outlink)
{
AVFilterContext *ctx = outlink->src;
AudioFadeContext *s = ctx->priv;
switch (outlink->format) {
case AV_SAMPLE_FMT_DBL: s->fade_samples = fade_samples_dbl;
s->scale_samples = scale_samples_dbl;
break;
case AV_SAMPLE_FMT_DBLP: s->fade_samples = fade_samples_dblp;
s->scale_samples = scale_samples_dblp;
break;
case AV_SAMPLE_FMT_FLT: s->fade_samples = fade_samples_flt;
s->scale_samples = scale_samples_flt;
break;
case AV_SAMPLE_FMT_FLTP: s->fade_samples = fade_samples_fltp;
s->scale_samples = scale_samples_fltp;
break;
case AV_SAMPLE_FMT_S16: s->fade_samples = fade_samples_s16;
s->scale_samples = scale_samples_s16;
break;
case AV_SAMPLE_FMT_S16P: s->fade_samples = fade_samples_s16p;
s->scale_samples = scale_samples_s16p;
break;
case AV_SAMPLE_FMT_S32: s->fade_samples = fade_samples_s32;
s->scale_samples = scale_samples_s32;
break;
case AV_SAMPLE_FMT_S32P: s->fade_samples = fade_samples_s32p;
s->scale_samples = scale_samples_s32p;
break;
}
if (s->duration)
s->nb_samples = av_rescale(s->duration, outlink->sample_rate, AV_TIME_BASE);
s->duration = 0;
if (s->start_time)
s->start_sample = av_rescale(s->start_time, outlink->sample_rate, AV_TIME_BASE);
s->start_time = 0;
return 0;
}
#if CONFIG_AFADE_FILTER
static const AVOption afade_options[] = {
{ "type", "set the fade direction", OFFSET(type), AV_OPT_TYPE_INT, {.i64 = 0 }, 0, 1, TFLAGS, "type" },
{ "t", "set the fade direction", OFFSET(type), AV_OPT_TYPE_INT, {.i64 = 0 }, 0, 1, TFLAGS, "type" },
{ "in", "fade-in", 0, AV_OPT_TYPE_CONST, {.i64 = 0 }, 0, 0, TFLAGS, "type" },
{ "out", "fade-out", 0, AV_OPT_TYPE_CONST, {.i64 = 1 }, 0, 0, TFLAGS, "type" },
{ "start_sample", "set number of first sample to start fading", OFFSET(start_sample), AV_OPT_TYPE_INT64, {.i64 = 0 }, 0, INT64_MAX, TFLAGS },
{ "ss", "set number of first sample to start fading", OFFSET(start_sample), AV_OPT_TYPE_INT64, {.i64 = 0 }, 0, INT64_MAX, TFLAGS },
{ "nb_samples", "set number of samples for fade duration", OFFSET(nb_samples), AV_OPT_TYPE_INT64, {.i64 = 44100}, 1, INT64_MAX, TFLAGS },
{ "ns", "set number of samples for fade duration", OFFSET(nb_samples), AV_OPT_TYPE_INT64, {.i64 = 44100}, 1, INT64_MAX, TFLAGS },
{ "start_time", "set time to start fading", OFFSET(start_time), AV_OPT_TYPE_DURATION, {.i64 = 0 }, 0, INT64_MAX, TFLAGS },
{ "st", "set time to start fading", OFFSET(start_time), AV_OPT_TYPE_DURATION, {.i64 = 0 }, 0, INT64_MAX, TFLAGS },
{ "duration", "set fade duration", OFFSET(duration), AV_OPT_TYPE_DURATION, {.i64 = 0 }, 0, INT64_MAX, TFLAGS },
{ "d", "set fade duration", OFFSET(duration), AV_OPT_TYPE_DURATION, {.i64 = 0 }, 0, INT64_MAX, TFLAGS },
{ "curve", "set fade curve type", OFFSET(curve), AV_OPT_TYPE_INT, {.i64 = TRI }, NONE, NB_CURVES - 1, TFLAGS, "curve" },
{ "c", "set fade curve type", OFFSET(curve), AV_OPT_TYPE_INT, {.i64 = TRI }, NONE, NB_CURVES - 1, TFLAGS, "curve" },
{ "nofade", "no fade; keep audio as-is", 0, AV_OPT_TYPE_CONST, {.i64 = NONE }, 0, 0, TFLAGS, "curve" },
{ "tri", "linear slope", 0, AV_OPT_TYPE_CONST, {.i64 = TRI }, 0, 0, TFLAGS, "curve" },
{ "qsin", "quarter of sine wave", 0, AV_OPT_TYPE_CONST, {.i64 = QSIN }, 0, 0, TFLAGS, "curve" },
{ "esin", "exponential sine wave", 0, AV_OPT_TYPE_CONST, {.i64 = ESIN }, 0, 0, TFLAGS, "curve" },
{ "hsin", "half of sine wave", 0, AV_OPT_TYPE_CONST, {.i64 = HSIN }, 0, 0, TFLAGS, "curve" },
{ "log", "logarithmic", 0, AV_OPT_TYPE_CONST, {.i64 = LOG }, 0, 0, TFLAGS, "curve" },
{ "ipar", "inverted parabola", 0, AV_OPT_TYPE_CONST, {.i64 = IPAR }, 0, 0, TFLAGS, "curve" },
{ "qua", "quadratic", 0, AV_OPT_TYPE_CONST, {.i64 = QUA }, 0, 0, TFLAGS, "curve" },
{ "cub", "cubic", 0, AV_OPT_TYPE_CONST, {.i64 = CUB }, 0, 0, TFLAGS, "curve" },
{ "squ", "square root", 0, AV_OPT_TYPE_CONST, {.i64 = SQU }, 0, 0, TFLAGS, "curve" },
{ "cbr", "cubic root", 0, AV_OPT_TYPE_CONST, {.i64 = CBR }, 0, 0, TFLAGS, "curve" },
{ "par", "parabola", 0, AV_OPT_TYPE_CONST, {.i64 = PAR }, 0, 0, TFLAGS, "curve" },
{ "exp", "exponential", 0, AV_OPT_TYPE_CONST, {.i64 = EXP }, 0, 0, TFLAGS, "curve" },
{ "iqsin", "inverted quarter of sine wave", 0, AV_OPT_TYPE_CONST, {.i64 = IQSIN}, 0, 0, TFLAGS, "curve" },
{ "ihsin", "inverted half of sine wave", 0, AV_OPT_TYPE_CONST, {.i64 = IHSIN}, 0, 0, TFLAGS, "curve" },
{ "dese", "double-exponential seat", 0, AV_OPT_TYPE_CONST, {.i64 = DESE }, 0, 0, TFLAGS, "curve" },
{ "desi", "double-exponential sigmoid", 0, AV_OPT_TYPE_CONST, {.i64 = DESI }, 0, 0, TFLAGS, "curve" },
{ "losi", "logistic sigmoid", 0, AV_OPT_TYPE_CONST, {.i64 = LOSI }, 0, 0, TFLAGS, "curve" },
{ "sinc", "sine cardinal function", 0, AV_OPT_TYPE_CONST, {.i64 = SINC }, 0, 0, TFLAGS, "curve" },
{ "isinc", "inverted sine cardinal function", 0, AV_OPT_TYPE_CONST, {.i64 = ISINC}, 0, 0, TFLAGS, "curve" },
{ "silence", "set the silence gain", OFFSET(silence), AV_OPT_TYPE_DOUBLE, {.dbl = 0 }, 0, 1, TFLAGS },
{ "unity", "set the unity gain", OFFSET(unity), AV_OPT_TYPE_DOUBLE, {.dbl = 1 }, 0, 1, TFLAGS },
{ NULL }
};
AVFILTER_DEFINE_CLASS(afade);
static av_cold int init(AVFilterContext *ctx)
{
AudioFadeContext *s = ctx->priv;
if (INT64_MAX - s->nb_samples < s->start_sample)
return AVERROR(EINVAL);
return 0;
}
static int filter_frame(AVFilterLink *inlink, AVFrame *buf)
{
AudioFadeContext *s = inlink->dst->priv;
AVFilterLink *outlink = inlink->dst->outputs[0];
int nb_samples = buf->nb_samples;
AVFrame *out_buf;
int64_t cur_sample = av_rescale_q(buf->pts, inlink->time_base, (AVRational){1, inlink->sample_rate});
if (s->unity == 1.0 &&
((!s->type && (s->start_sample + s->nb_samples < cur_sample)) ||
( s->type && (cur_sample + nb_samples < s->start_sample))))
return ff_filter_frame(outlink, buf);
if (av_frame_is_writable(buf)) {
out_buf = buf;
} else {
out_buf = ff_get_audio_buffer(outlink, nb_samples);
if (!out_buf)
return AVERROR(ENOMEM);
av_frame_copy_props(out_buf, buf);
}
if ((!s->type && (cur_sample + nb_samples < s->start_sample)) ||
( s->type && (s->start_sample + s->nb_samples < cur_sample))) {
if (s->silence == 0.) {
av_samples_set_silence(out_buf->extended_data, 0, nb_samples,
out_buf->ch_layout.nb_channels, out_buf->format);
} else {
s->scale_samples(out_buf->extended_data, buf->extended_data,
nb_samples, buf->ch_layout.nb_channels,
s->silence);
}
} else if (( s->type && (cur_sample + nb_samples < s->start_sample)) ||
(!s->type && (s->start_sample + s->nb_samples < cur_sample))) {
s->scale_samples(out_buf->extended_data, buf->extended_data,
nb_samples, buf->ch_layout.nb_channels,
s->unity);
} else {
int64_t start;
if (!s->type)
start = cur_sample - s->start_sample;
else
start = s->start_sample + s->nb_samples - cur_sample;
s->fade_samples(out_buf->extended_data, buf->extended_data,
nb_samples, buf->ch_layout.nb_channels,
s->type ? -1 : 1, start,
s->nb_samples, s->curve, s->silence, s->unity);
}
if (buf != out_buf)
av_frame_free(&buf);
return ff_filter_frame(outlink, out_buf);
}
static int process_command(AVFilterContext *ctx, const char *cmd, const char *args,
char *res, int res_len, int flags)
{
int ret;
ret = ff_filter_process_command(ctx, cmd, args, res, res_len, flags);
if (ret < 0)
return ret;
return config_output(ctx->outputs[0]);
}
static const AVFilterPad avfilter_af_afade_inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_AUDIO,
.filter_frame = filter_frame,
},
};
static const AVFilterPad avfilter_af_afade_outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_AUDIO,
.config_props = config_output,
},
};
const AVFilter ff_af_afade = {
.name = "afade",
.description = NULL_IF_CONFIG_SMALL("Fade in/out input audio."),
.priv_size = sizeof(AudioFadeContext),
.init = init,
FILTER_INPUTS(avfilter_af_afade_inputs),
FILTER_OUTPUTS(avfilter_af_afade_outputs),
FILTER_SAMPLEFMTS_ARRAY(sample_fmts),
.priv_class = &afade_class,
.process_command = process_command,
.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC,
};
#endif /* CONFIG_AFADE_FILTER */
#if CONFIG_ACROSSFADE_FILTER
static const AVOption acrossfade_options[] = {
{ "nb_samples", "set number of samples for cross fade duration", OFFSET(nb_samples), AV_OPT_TYPE_INT, {.i64 = 44100}, 1, INT32_MAX/10, FLAGS },
{ "ns", "set number of samples for cross fade duration", OFFSET(nb_samples), AV_OPT_TYPE_INT, {.i64 = 44100}, 1, INT32_MAX/10, FLAGS },
{ "duration", "set cross fade duration", OFFSET(duration), AV_OPT_TYPE_DURATION, {.i64 = 0 }, 0, 60000000, FLAGS },
{ "d", "set cross fade duration", OFFSET(duration), AV_OPT_TYPE_DURATION, {.i64 = 0 }, 0, 60000000, FLAGS },
{ "overlap", "overlap 1st stream end with 2nd stream start", OFFSET(overlap), AV_OPT_TYPE_BOOL, {.i64 = 1 }, 0, 1, FLAGS },
{ "o", "overlap 1st stream end with 2nd stream start", OFFSET(overlap), AV_OPT_TYPE_BOOL, {.i64 = 1 }, 0, 1, FLAGS },
{ "curve1", "set fade curve type for 1st stream", OFFSET(curve), AV_OPT_TYPE_INT, {.i64 = TRI }, NONE, NB_CURVES - 1, FLAGS, "curve" },
{ "c1", "set fade curve type for 1st stream", OFFSET(curve), AV_OPT_TYPE_INT, {.i64 = TRI }, NONE, NB_CURVES - 1, FLAGS, "curve" },
{ "nofade", "no fade; keep audio as-is", 0, AV_OPT_TYPE_CONST, {.i64 = NONE }, 0, 0, FLAGS, "curve" },
{ "tri", "linear slope", 0, AV_OPT_TYPE_CONST, {.i64 = TRI }, 0, 0, FLAGS, "curve" },
{ "qsin", "quarter of sine wave", 0, AV_OPT_TYPE_CONST, {.i64 = QSIN }, 0, 0, FLAGS, "curve" },
{ "esin", "exponential sine wave", 0, AV_OPT_TYPE_CONST, {.i64 = ESIN }, 0, 0, FLAGS, "curve" },
{ "hsin", "half of sine wave", 0, AV_OPT_TYPE_CONST, {.i64 = HSIN }, 0, 0, FLAGS, "curve" },
{ "log", "logarithmic", 0, AV_OPT_TYPE_CONST, {.i64 = LOG }, 0, 0, FLAGS, "curve" },
{ "ipar", "inverted parabola", 0, AV_OPT_TYPE_CONST, {.i64 = IPAR }, 0, 0, FLAGS, "curve" },
{ "qua", "quadratic", 0, AV_OPT_TYPE_CONST, {.i64 = QUA }, 0, 0, FLAGS, "curve" },
{ "cub", "cubic", 0, AV_OPT_TYPE_CONST, {.i64 = CUB }, 0, 0, FLAGS, "curve" },
{ "squ", "square root", 0, AV_OPT_TYPE_CONST, {.i64 = SQU }, 0, 0, FLAGS, "curve" },
{ "cbr", "cubic root", 0, AV_OPT_TYPE_CONST, {.i64 = CBR }, 0, 0, FLAGS, "curve" },
{ "par", "parabola", 0, AV_OPT_TYPE_CONST, {.i64 = PAR }, 0, 0, FLAGS, "curve" },
{ "exp", "exponential", 0, AV_OPT_TYPE_CONST, {.i64 = EXP }, 0, 0, FLAGS, "curve" },
{ "iqsin", "inverted quarter of sine wave", 0, AV_OPT_TYPE_CONST, {.i64 = IQSIN}, 0, 0, FLAGS, "curve" },
{ "ihsin", "inverted half of sine wave", 0, AV_OPT_TYPE_CONST, {.i64 = IHSIN}, 0, 0, FLAGS, "curve" },
{ "dese", "double-exponential seat", 0, AV_OPT_TYPE_CONST, {.i64 = DESE }, 0, 0, FLAGS, "curve" },
{ "desi", "double-exponential sigmoid", 0, AV_OPT_TYPE_CONST, {.i64 = DESI }, 0, 0, FLAGS, "curve" },
{ "losi", "logistic sigmoid", 0, AV_OPT_TYPE_CONST, {.i64 = LOSI }, 0, 0, FLAGS, "curve" },
{ "sinc", "sine cardinal function", 0, AV_OPT_TYPE_CONST, {.i64 = SINC }, 0, 0, FLAGS, "curve" },
{ "isinc", "inverted sine cardinal function", 0, AV_OPT_TYPE_CONST, {.i64 = ISINC}, 0, 0, FLAGS, "curve" },
{ "curve2", "set fade curve type for 2nd stream", OFFSET(curve2), AV_OPT_TYPE_INT, {.i64 = TRI }, NONE, NB_CURVES - 1, FLAGS, "curve" },
{ "c2", "set fade curve type for 2nd stream", OFFSET(curve2), AV_OPT_TYPE_INT, {.i64 = TRI }, NONE, NB_CURVES - 1, FLAGS, "curve" },
{ NULL }
};
AVFILTER_DEFINE_CLASS(acrossfade);
#define CROSSFADE_PLANAR(name, type) \
static void crossfade_samples_## name ##p(uint8_t **dst, uint8_t * const *cf0, \
uint8_t * const *cf1, \
int nb_samples, int channels, \
int curve0, int curve1) \
{ \
int i, c; \
\
for (i = 0; i < nb_samples; i++) { \
double gain0 = fade_gain(curve0, nb_samples - 1 - i, nb_samples,0.,1.);\
double gain1 = fade_gain(curve1, i, nb_samples, 0., 1.); \
for (c = 0; c < channels; c++) { \
type *d = (type *)dst[c]; \
const type *s0 = (type *)cf0[c]; \
const type *s1 = (type *)cf1[c]; \
\
d[i] = s0[i] * gain0 + s1[i] * gain1; \
} \
} \
}
#define CROSSFADE(name, type) \
static void crossfade_samples_## name (uint8_t **dst, uint8_t * const *cf0, \
uint8_t * const *cf1, \
int nb_samples, int channels, \
int curve0, int curve1) \
{ \
type *d = (type *)dst[0]; \
const type *s0 = (type *)cf0[0]; \
const type *s1 = (type *)cf1[0]; \
int i, c, k = 0; \
\
for (i = 0; i < nb_samples; i++) { \
double gain0 = fade_gain(curve0, nb_samples - 1-i,nb_samples,0.,1.);\
double gain1 = fade_gain(curve1, i, nb_samples, 0., 1.); \
for (c = 0; c < channels; c++, k++) \
d[k] = s0[k] * gain0 + s1[k] * gain1; \
} \
}
CROSSFADE_PLANAR(dbl, double)
CROSSFADE_PLANAR(flt, float)
CROSSFADE_PLANAR(s16, int16_t)
CROSSFADE_PLANAR(s32, int32_t)
CROSSFADE(dbl, double)
CROSSFADE(flt, float)
CROSSFADE(s16, int16_t)
CROSSFADE(s32, int32_t)
static int activate(AVFilterContext *ctx)
{
AudioFadeContext *s = ctx->priv;
AVFilterLink *outlink = ctx->outputs[0];
AVFrame *in = NULL, *out, *cf[2] = { NULL };
int ret = 0, nb_samples, status;
int64_t pts;
FF_FILTER_FORWARD_STATUS_BACK_ALL(outlink, ctx);
if (s->crossfade_is_over) {
ret = ff_inlink_consume_frame(ctx->inputs[1], &in);
if (ret > 0) {
in->pts = s->pts;
s->pts += av_rescale_q(in->nb_samples,
(AVRational){ 1, outlink->sample_rate }, outlink->time_base);
return ff_filter_frame(outlink, in);
} else if (ret < 0) {
return ret;
} else if (ff_inlink_acknowledge_status(ctx->inputs[1], &status, &pts)) {
ff_outlink_set_status(ctx->outputs[0], status, pts);
return 0;
} else if (!ret) {
if (ff_outlink_frame_wanted(ctx->outputs[0])) {
ff_inlink_request_frame(ctx->inputs[1]);
return 0;
}
}
}
nb_samples = ff_inlink_queued_samples(ctx->inputs[0]);
if (nb_samples > s->nb_samples) {
nb_samples -= s->nb_samples;
ret = ff_inlink_consume_samples(ctx->inputs[0], nb_samples, nb_samples, &in);
if (ret < 0)
return ret;
in->pts = s->pts;
s->pts += av_rescale_q(in->nb_samples,
(AVRational){ 1, outlink->sample_rate }, outlink->time_base);
return ff_filter_frame(outlink, in);
} else if (s->cf0_eof && nb_samples >= s->nb_samples &&
ff_inlink_queued_samples(ctx->inputs[1]) >= s->nb_samples) {
if (s->overlap) {
out = ff_get_audio_buffer(outlink, s->nb_samples);
if (!out)
return AVERROR(ENOMEM);
ret = ff_inlink_consume_samples(ctx->inputs[0], s->nb_samples, s->nb_samples, &cf[0]);
if (ret < 0) {
av_frame_free(&out);
return ret;
}
ret = ff_inlink_consume_samples(ctx->inputs[1], s->nb_samples, s->nb_samples, &cf[1]);
if (ret < 0) {
av_frame_free(&out);
return ret;
}
s->crossfade_samples(out->extended_data, cf[0]->extended_data,
cf[1]->extended_data,
s->nb_samples, out->ch_layout.nb_channels,
s->curve, s->curve2);
out->pts = s->pts;
s->pts += av_rescale_q(s->nb_samples,
(AVRational){ 1, outlink->sample_rate }, outlink->time_base);
s->crossfade_is_over = 1;
av_frame_free(&cf[0]);
av_frame_free(&cf[1]);
return ff_filter_frame(outlink, out);
} else {
out = ff_get_audio_buffer(outlink, s->nb_samples);
if (!out)
return AVERROR(ENOMEM);
ret = ff_inlink_consume_samples(ctx->inputs[0], s->nb_samples, s->nb_samples, &cf[0]);
if (ret < 0) {
av_frame_free(&out);
return ret;
}
s->fade_samples(out->extended_data, cf[0]->extended_data, s->nb_samples,
outlink->ch_layout.nb_channels, -1, s->nb_samples - 1, s->nb_samples, s->curve, 0., 1.);
out->pts = s->pts;
s->pts += av_rescale_q(s->nb_samples,
(AVRational){ 1, outlink->sample_rate }, outlink->time_base);
av_frame_free(&cf[0]);
ret = ff_filter_frame(outlink, out);
if (ret < 0)
return ret;
out = ff_get_audio_buffer(outlink, s->nb_samples);
if (!out)
return AVERROR(ENOMEM);
ret = ff_inlink_consume_samples(ctx->inputs[1], s->nb_samples, s->nb_samples, &cf[1]);
if (ret < 0) {
av_frame_free(&out);
return ret;
}
s->fade_samples(out->extended_data, cf[1]->extended_data, s->nb_samples,
outlink->ch_layout.nb_channels, 1, 0, s->nb_samples, s->curve2, 0., 1.);
out->pts = s->pts;
s->pts += av_rescale_q(s->nb_samples,
(AVRational){ 1, outlink->sample_rate }, outlink->time_base);
s->crossfade_is_over = 1;
av_frame_free(&cf[1]);
return ff_filter_frame(outlink, out);
}
} else if (ff_outlink_frame_wanted(ctx->outputs[0])) {
if (!s->cf0_eof && ff_outlink_get_status(ctx->inputs[0])) {
s->cf0_eof = 1;
}
if (ff_outlink_get_status(ctx->inputs[1])) {
ff_outlink_set_status(ctx->outputs[0], AVERROR_EOF, AV_NOPTS_VALUE);
return 0;
}
if (!s->cf0_eof)
ff_inlink_request_frame(ctx->inputs[0]);
else
ff_inlink_request_frame(ctx->inputs[1]);
return 0;
}
return ret;
}
static int acrossfade_config_output(AVFilterLink *outlink)
{
AVFilterContext *ctx = outlink->src;
AudioFadeContext *s = ctx->priv;
outlink->time_base = ctx->inputs[0]->time_base;
switch (outlink->format) {
case AV_SAMPLE_FMT_DBL: s->crossfade_samples = crossfade_samples_dbl; break;
case AV_SAMPLE_FMT_DBLP: s->crossfade_samples = crossfade_samples_dblp; break;
case AV_SAMPLE_FMT_FLT: s->crossfade_samples = crossfade_samples_flt; break;
case AV_SAMPLE_FMT_FLTP: s->crossfade_samples = crossfade_samples_fltp; break;
case AV_SAMPLE_FMT_S16: s->crossfade_samples = crossfade_samples_s16; break;
case AV_SAMPLE_FMT_S16P: s->crossfade_samples = crossfade_samples_s16p; break;
case AV_SAMPLE_FMT_S32: s->crossfade_samples = crossfade_samples_s32; break;
case AV_SAMPLE_FMT_S32P: s->crossfade_samples = crossfade_samples_s32p; break;
}
config_output(outlink);
return 0;
}
static const AVFilterPad avfilter_af_acrossfade_inputs[] = {
{
.name = "crossfade0",
.type = AVMEDIA_TYPE_AUDIO,
},
{
.name = "crossfade1",
.type = AVMEDIA_TYPE_AUDIO,
},
};
static const AVFilterPad avfilter_af_acrossfade_outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_AUDIO,
.config_props = acrossfade_config_output,
},
};
const AVFilter ff_af_acrossfade = {
.name = "acrossfade",
.description = NULL_IF_CONFIG_SMALL("Cross fade two input audio streams."),
.priv_size = sizeof(AudioFadeContext),
.activate = activate,
.priv_class = &acrossfade_class,
FILTER_INPUTS(avfilter_af_acrossfade_inputs),
FILTER_OUTPUTS(avfilter_af_acrossfade_outputs),
FILTER_SAMPLEFMTS_ARRAY(sample_fmts),
};
#endif /* CONFIG_ACROSSFADE_FILTER */
|