1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
|
;******************************************************************************
;* SIMD optimized Opus encoder DSP function
;*
;* Copyright (C) 2017 Ivan Kalvachev <ikalvachev@gmail.com>
;*
;* This file is part of FFmpeg.
;*
;* FFmpeg is free software; you can redistribute it and/or
;* modify it under the terms of the GNU Lesser General Public
;* License as published by the Free Software Foundation; either
;* version 2.1 of the License, or (at your option) any later version.
;*
;* FFmpeg is distributed in the hope that it will be useful,
;* but WITHOUT ANY WARRANTY; without even the implied warranty of
;* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;* Lesser General Public License for more details.
;*
;* You should have received a copy of the GNU Lesser General Public
;* License along with FFmpeg; if not, write to the Free Software
;* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
;******************************************************************************
%include "config.asm"
%include "libavutil/x86/x86util.asm"
%ifdef __NASM_VER__
%use "smartalign"
ALIGNMODE p6
%endif
SECTION_RODATA 64
const_float_abs_mask: times 8 dd 0x7fffffff
const_align_abs_edge: times 8 dd 0
const_float_0_5: times 8 dd 0.5
const_float_1: times 8 dd 1.0
const_float_sign_mask: times 8 dd 0x80000000
const_int32_offsets:
%rep 8
dd $-const_int32_offsets
%endrep
SECTION .text
;
; Setup High Register to be used
; for holding memory constants
;
; %1 - the register to be used, assmues it is >= mm8
; %2 - name of the constant.
;
; Subsequent opcodes are going to use the constant in the form
; "addps m0, mm_const_name" and it would be turned into:
; "addps m0, [const_name]" on 32 bit arch or
; "addps m0, m8" on 64 bit arch
%macro SET_HI_REG_MM_CONSTANT 3 ; movop, reg, const_name
%if num_mmregs > 8
%define mm_%3 %2
%{1} %2, [%3] ; movaps m8, [const_name]
%else
%define mm_%3 [%3]
%endif
%endmacro
;
; Set Position Independent Code
; Base address of a constant
; %1 - the register to be used, if PIC is set
; %2 - name of the constant.
;
; Subsequent opcode are going to use the base address in the form
; "movaps m0, [pic_base_constant_name+r4]" and it would be turned into
; "movaps m0, [r5 + r4]" if PIC is enabled
; "movaps m0, [constant_name + r4]" if texrel are used
%macro SET_PIC_BASE 3; reg, const_label
%if PIC
%{1} %2, [%3] ; lea r5, [rip+const]
%define pic_base_%3 %2
%else
%define pic_base_%3 %3
%endif
%endmacro
%macro PULSES_SEARCH 1
; m6 Syy_norm
; m7 Sxy_norm
addps m6, mm_const_float_0_5 ; Syy_norm += 1.0/2
pxor m1, m1 ; max_idx
xorps m3, m3 ; p_max
xor r4d, r4d
align 16
%%distortion_search:
movd xm2, dword r4d ; movd zero extends
%ifidn %1,add
movaps m4, [tmpY + r4] ; y[i]
movaps m5, [tmpX + r4] ; X[i]
%if USE_APPROXIMATION == 1
xorps m0, m0
cmpps m0, m0, m5, 4 ; m0 = (X[i] != 0.0)
%endif
addps m4, m6 ; m4 = Syy_new = y[i] + Syy_norm
addps m5, m7 ; m5 = Sxy_new = X[i] + Sxy_norm
%if USE_APPROXIMATION == 1
andps m5, m0 ; if(X[i] == 0) Sxy_new = 0; Prevent aproximation error from setting pulses in array padding.
%endif
%else
movaps m5, [tmpY + r4] ; m5 = y[i]
xorps m0, m0 ; m0 = 0;
cmpps m0, m0, m5, 1 ; m0 = (0<y)
subps m4, m6, m5 ; m4 = Syy_new = Syy_norm - y[i]
subps m5, m7, [tmpX + r4] ; m5 = Sxy_new = Sxy_norm - X[i]
andps m5, m0 ; (0<y)?m5:0
%endif
%if USE_APPROXIMATION == 1
rsqrtps m4, m4
mulps m5, m4 ; m5 = p = Sxy_new*approx(1/sqrt(Syy) )
%else
mulps m5, m5
divps m5, m4 ; m5 = p = Sxy_new*Sxy_new/Syy
%endif
VPBROADCASTD m2, xm2 ; m2=i (all lanes get same values, we add the offset-per-lane, later)
cmpps m0, m3, m5, 1 ; m0 = (m3 < m5) ; (p_max < p) ; (p > p_max)
maxps m3, m5 ; m3=max(p_max,p)
; maxps here is faster than blendvps, despite blend having lower latency.
pand m2, m0 ; This version seems faster than sse41 pblendvb
pmaxsw m1, m2 ; SSE2 signed word, so it would work for N < 32768/4
add r4d, mmsize
cmp r4d, Nd
jb %%distortion_search
por m1, mm_const_int32_offsets ; max_idx offsets per individual lane (skipped in the inner loop)
movdqa m4, m1 ; needed for the aligned y[max_idx]+=1; processing
%if mmsize >= 32
; Merge parallel maximums round 8 (4 vs 4)
vextractf128 xm5, ym3, 1 ; xmm5 = ymm3[1x128] = ymm3[255..128b]
cmpps xm0, xm3, xm5, 1 ; m0 = (m3 < m5) = ( p[0x128] < p[1x128] )
vextracti128 xm2, ym1, 1 ; xmm2 = ymm1[1x128] = ymm1[255..128b]
BLENDVPS xm3, xm5, xm0 ; max_idx = m0 ? max_idx[1x128] : max_idx[0x128]
PBLENDVB xm1, xm2, xm0 ; p = m0 ? p[1x128] : p[0x128]
%endif
; Merge parallel maximums round 4 (2 vs 2)
; m3=p[3210]
movhlps xm5, xm3 ; m5=p[xx32]
cmpps xm0, xm3, xm5, 1 ; m0 = (m3 < m5) = ( p[1,0] < p[3,2] )
pshufd xm2, xm1, q3232
BLENDVPS xm3, xm5, xm0 ; max_idx = m0 ? max_idx[3,2] : max_idx[1,0]
PBLENDVB xm1, xm2, xm0 ; p = m0 ? p[3,2] : p[1,0]
; Merge parallel maximums final round (1 vs 1)
shufps xm0, xm3, xm3, q1111 ; m0 = m3[1] = p[1]
cmpss xm0, xm3, 5 ; m0 = !(m0 >= m3) = !( p[1] >= p[0] )
pshufd xm2, xm1, q1111
PBLENDVB xm1, xm2, xm0
movd dword r4d, xm1 ; zero extends to the rest of r4q
VBROADCASTSS m3, [tmpX + r4]
%{1}ps m7, m3 ; Sxy += X[max_idx]
VBROADCASTSS m5, [tmpY + r4]
%{1}ps m6, m5 ; Syy += Y[max_idx]
; We have to update a single element in Y[i]
; However writing 4 bytes and then doing 16 byte load in the inner loop
; could cause a stall due to breaking write forwarding.
VPBROADCASTD m1, xm1
pcmpeqd m1, m1, m4 ; exactly 1 element matches max_idx and this finds it
and r4d, ~(mmsize-1) ; align address down, so the value pointed by max_idx is inside a mmsize load
movaps m5, [tmpY + r4] ; m5 = Y[y3...ym...y0]
andps m1, mm_const_float_1 ; m1 = [ 0...1.0...0]
%{1}ps m5, m1 ; m5 = Y[y3...ym...y0] +/- [0...1.0...0]
movaps [tmpY + r4], m5 ; Y[max_idx] +-= 1.0;
%endmacro
;
; We need one more register for
; PIC relative addressing. Use this
; to count it in cglobal
;
%if PIC
%define num_pic_regs 1
%else
%define num_pic_regs 0
%endif
;
; Pyramid Vector Quantization Search implementation
;
; float * inX - Unaligned (SIMD) access, it will be overread,
; but extra data is masked away.
; int32 * outY - Should be aligned and padded buffer.
; It is used as temp buffer.
; uint32 K - Number of pulses to have after quantizations.
; uint32 N - Number of vector elements. Must be 0 < N < 256
;
%macro PVQ_FAST_SEARCH 1
cglobal pvq_search%1, 4, 5+num_pic_regs, 11, 256*4, inX, outY, K, N
%define tmpX rsp
%define tmpY outYq
movaps m0, [const_float_abs_mask]
shl Nd, 2 ; N *= sizeof(float); also 32 bit operation zeroes the high 32 bits in 64 bit mode.
mov r4d, Nd
neg r4d
and r4d, mmsize-1
SET_PIC_BASE lea, r5, const_align_abs_edge ; rip+const
movups m2, [pic_base_const_align_abs_edge + r4 - mmsize]
add Nd, r4d ; N = align(N, mmsize)
lea r4d, [Nd - mmsize] ; N is rounded up (aligned up) to mmsize, so r4 can't become negative here, unless N=0.
movups m1, [inXq + r4]
andps m1, m2
movaps [tmpX + r4], m1 ; Sx = abs( X[N-1] )
align 16
%%loop_abs_sum:
sub r4d, mmsize
jc %%end_loop_abs_sum
movups m2, [inXq + r4]
andps m2, m0
movaps [tmpX + r4], m2 ; tmpX[i]=abs(X[i])
addps m1, m2 ; Sx += abs(X[i])
jmp %%loop_abs_sum
align 16
%%end_loop_abs_sum:
HSUMPS m1, m2 ; m1 = Sx
xorps m0, m0
comiss xm0, xm1 ;
jz %%zero_input ; if (Sx==0) goto zero_input
cvtsi2ss xm0, dword Kd ; m0 = K
%if USE_APPROXIMATION == 1
rcpss xm1, xm1 ; m1 = approx(1/Sx)
mulss xm0, xm1 ; m0 = K*(1/Sx)
%else
divss xm0, xm1 ; b = K/Sx
; b = K/max_x
%endif
VBROADCASTSS m0, xm0
lea r4d, [Nd - mmsize]
pxor m5, m5 ; Sy ( Sum of abs( y[i]) )
xorps m6, m6 ; Syy ( Sum of y[i]*y[i] )
xorps m7, m7 ; Sxy ( Sum of X[i]*y[i] )
align 16
%%loop_guess:
movaps m1, [tmpX + r4] ; m1 = X[i]
mulps m2, m0, m1 ; m2 = res*X[i]
cvtps2dq m2, m2 ; yt = (int)lrintf( res*X[i] )
paddd m5, m2 ; Sy += yt
cvtdq2ps m2, m2 ; yt = (float)yt
mulps m1, m2 ; m1 = X[i]*yt
movaps [tmpY + r4], m2 ; y[i] = m2
addps m7, m1 ; Sxy += m1;
mulps m2, m2 ; m2 = yt*yt
addps m6, m2 ; Syy += m2
sub r4d, mmsize
jnc %%loop_guess
HSUMPS m6, m1 ; Syy_norm
HADDD m5, m4 ; pulses
movd dword r4d, xm5 ; zero extends to the rest of r4q
sub Kd, r4d ; K -= pulses , also 32 bit operation zeroes high 32 bit in 64 bit mode.
jz %%finish ; K - pulses == 0
SET_HI_REG_MM_CONSTANT movaps, m8, const_float_0_5
SET_HI_REG_MM_CONSTANT movaps, m9, const_float_1
SET_HI_REG_MM_CONSTANT movdqa, m10, const_int32_offsets
; Use Syy/2 in distortion parameter calculations.
; Saves pre and post-caclulation to correct Y[] values.
; Same precision, since float mantisa is normalized.
; The SQRT approximation does differ.
HSUMPS m7, m0 ; Sxy_norm
mulps m6, mm_const_float_0_5
jc %%remove_pulses_loop ; K - pulses < 0
align 16 ; K - pulses > 0
%%add_pulses_loop:
PULSES_SEARCH add ; m6 Syy_norm ; m7 Sxy_norm
sub Kd, 1
jnz %%add_pulses_loop
addps m6, m6 ; Syy*=2
jmp %%finish
align 16
%%remove_pulses_loop:
PULSES_SEARCH sub ; m6 Syy_norm ; m7 Sxy_norm
add Kd, 1
jnz %%remove_pulses_loop
addps m6, m6 ; Syy*=2
align 16
%%finish:
lea r4d, [Nd - mmsize]
movaps m2, [const_float_sign_mask]
align 16
%%restore_sign_loop:
movaps m0, [tmpY + r4] ; m0 = Y[i]
movups m1, [inXq + r4] ; m1 = X[i]
andps m1, m2 ; m1 = sign(X[i])
orps m0, m1 ; m0 = Y[i]*sign
cvtps2dq m3, m0 ; m3 = (int)m0
movaps [outYq + r4], m3
sub r4d, mmsize
jnc %%restore_sign_loop
%%return:
%if ARCH_X86_64 == 0 ; sbrdsp
movss r0m, xm6 ; return (float)Syy_norm
fld dword r0m
%else
movaps m0, m6 ; return (float)Syy_norm
%endif
RET
align 16
%%zero_input:
lea r4d, [Nd - mmsize]
xorps m0, m0
%%zero_loop:
movaps [outYq + r4], m0
sub r4d, mmsize
jnc %%zero_loop
movaps m6, [const_float_1]
jmp %%return
%endmacro
; if 1, use a float op that give half precision but execute for around 3 cycles.
; On Skylake & Ryzen the division is much faster (around 11c/3),
; that makes the full precision code about 2% slower.
; Opus also does use rsqrt approximation in their intrinsics code.
%define USE_APPROXIMATION 1
INIT_XMM sse2
PVQ_FAST_SEARCH _approx
INIT_XMM sse4
PVQ_FAST_SEARCH _approx
%define USE_APPROXIMATION 0
INIT_XMM avx
PVQ_FAST_SEARCH _exact
|