aboutsummaryrefslogtreecommitdiffstats
path: root/libavcodec/vvc/vvc_intra.c
blob: 214ad38c8c1103e74f579d8c47d71ce734918ed5 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
/*
 * VVC intra prediction
 *
 * Copyright (C) 2021 Nuo Mi
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */
#include "libavutil/frame.h"

#include "vvc_data.h"
#include "vvc_inter.h"
#include "vvc_intra.h"
#include "vvc_itx_1d.h"

static int is_cclm(enum IntraPredMode mode)
{
    return mode == INTRA_LT_CCLM || mode == INTRA_L_CCLM || mode == INTRA_T_CCLM;
}

static int derive_ilfnst_pred_mode_intra(const VVCLocalContext *lc, const TransformBlock *tb)
{
    const VVCFrameContext *fc = lc->fc;
    const VVCSPS *sps = fc->ps.sps;
    const CodingUnit *cu          = lc->cu;
    const int x_tb                = tb->x0 >> fc->ps.sps->min_cb_log2_size_y;
    const int y_tb                = tb->y0 >> fc->ps.sps->min_cb_log2_size_y;
    const int x_c                 = (tb->x0 + (tb->tb_width << sps->hshift[1] >> 1) ) >> fc->ps.sps->min_cb_log2_size_y;
    const int y_c                 = (tb->y0 + (tb->tb_height << sps->vshift[1] >> 1)) >> fc->ps.sps->min_cb_log2_size_y;
    const int min_cb_width        = fc->ps.pps->min_cb_width;
    const int intra_mip_flag      = SAMPLE_CTB(fc->tab.imf, x_tb, y_tb);
    int pred_mode_intra = tb->c_idx == 0 ? cu->intra_pred_mode_y : cu->intra_pred_mode_c;
    if (intra_mip_flag && !tb->c_idx) {
        pred_mode_intra = INTRA_PLANAR;
    } else if (is_cclm(pred_mode_intra)) {
        int intra_mip_flag_c = SAMPLE_CTB(fc->tab.imf, x_c, y_c);
        int cu_pred_mode = SAMPLE_CTB(fc->tab.cpm[0], x_c, y_c);
        if (intra_mip_flag_c) {
            pred_mode_intra = INTRA_PLANAR;
        } else if (cu_pred_mode == MODE_IBC || cu_pred_mode == MODE_PLT) {
            pred_mode_intra = INTRA_DC;
        } else {
            pred_mode_intra = SAMPLE_CTB(fc->tab.ipm, x_c, y_c);
        }
    }
    pred_mode_intra = ff_vvc_wide_angle_mode_mapping(cu, tb->tb_width, tb->tb_height, tb->c_idx, pred_mode_intra);

    return pred_mode_intra;
}

//8.7.4 Transformation process for scaled transform coefficients
static void ilfnst_transform(const VVCLocalContext *lc, TransformBlock *tb)
{
    const VVCSPS *sps           = lc->fc->ps.sps;
    const CodingUnit *cu        = lc->cu;
    const int w                 = tb->tb_width;
    const int h                 = tb->tb_height;
    const int n_lfnst_out_size  = (w >= 8 && h >= 8) ? 48 : 16;                         ///< nLfnstOutSize
    const int log2_lfnst_size   = (w >= 8 && h >= 8) ? 3 : 2;                           ///< log2LfnstSize
    const int n_lfnst_size      = 1 << log2_lfnst_size;                                 ///< nLfnstSize
    const int non_zero_size     = ((w == 8 && h == 8) || (w == 4 && h == 4)) ? 8 : 16;  ///< nonZeroSize
    const int pred_mode_intra   = derive_ilfnst_pred_mode_intra(lc, tb);
    const int transpose         = pred_mode_intra > 34;
    int u[16], v[48];

    for (int x = 0; x < non_zero_size; x++) {
        int xc = ff_vvc_diag_scan_x[2][2][x];
        int yc = ff_vvc_diag_scan_y[2][2][x];
        u[x] = tb->coeffs[w * yc + xc];
    }
    ff_vvc_inv_lfnst_1d(v, u, non_zero_size, n_lfnst_out_size, pred_mode_intra,
                        cu->lfnst_idx, sps->log2_transform_range);
    if (transpose) {
        int *dst = tb->coeffs;
        const int *src = v;
        if (n_lfnst_size == 4) {
            for (int y = 0; y < 4; y++) {
                dst[0] = src[0];
                dst[1] = src[4];
                dst[2] = src[8];
                dst[3] = src[12];
                src++;
                dst += w;
            }
        } else {
            for (int y = 0; y < 8; y++) {
                dst[0] = src[0];
                dst[1] = src[8];
                dst[2] = src[16];
                dst[3] = src[24];
                if (y < 4) {
                    dst[4] = src[32];
                    dst[5] = src[36];
                    dst[6] = src[40];
                    dst[7] = src[44];
                }
                src++;
                dst += w;
            }
        }

    } else {
        int *dst = tb->coeffs;
        const int *src = v;
        for (int y = 0; y < n_lfnst_size; y++) {
            int size = (y < 4) ? n_lfnst_size : 4;
            memcpy(dst, src, size * sizeof(int));
            src += size;
            dst += w;
        }
    }
    tb->max_scan_x = n_lfnst_size - 1;
    tb->max_scan_y = n_lfnst_size - 1;
}

//part of 8.7.4 Transformation process for scaled transform coefficients
static void derive_transform_type(const VVCFrameContext *fc, const VVCLocalContext *lc, const TransformBlock *tb, enum TxType *trh, enum TxType *trv)
{
    const CodingUnit *cu = lc->cu;
    static const enum TxType mts_to_trh[] = {DCT2, DST7, DCT8, DST7, DCT8};
    static const enum TxType mts_to_trv[] = {DCT2, DST7, DST7, DCT8, DCT8};
    const VVCSPS *sps       = fc->ps.sps;
    int implicit_mts_enabled = 0;
    if (tb->c_idx || (cu->isp_split_type != ISP_NO_SPLIT && cu->lfnst_idx)) {
        *trh = *trv = DCT2;
        return;
    }

    if (sps->r->sps_mts_enabled_flag) {
        if (cu->isp_split_type != ISP_NO_SPLIT ||
            (cu->sbt_flag && FFMAX(tb->tb_width, tb->tb_height) <= 32) ||
            (!sps->r->sps_explicit_mts_intra_enabled_flag && cu->pred_mode == MODE_INTRA &&
            !cu->lfnst_idx && !cu->intra_mip_flag)) {
            implicit_mts_enabled = 1;
        }
    }
    if (implicit_mts_enabled) {
        const int w = tb->tb_width;
        const int h = tb->tb_height;
        if (cu->sbt_flag) {
            *trh = (cu->sbt_horizontal_flag  || cu->sbt_pos_flag) ? DST7 : DCT8;
            *trv = (!cu->sbt_horizontal_flag || cu->sbt_pos_flag) ? DST7 : DCT8;
        } else {
            *trh = (w >= 4 && w <= 16) ? DST7 : DCT2;
            *trv = (h >= 4 && h <= 16) ? DST7 : DCT2;
        }
        return;
    }
    *trh = mts_to_trh[cu->mts_idx];
    *trv = mts_to_trv[cu->mts_idx];
}

static void add_residual_for_joint_coding_chroma(VVCLocalContext *lc,
    const TransformUnit *tu, TransformBlock *tb, const int chroma_scale)
{
    const VVCFrameContext *fc  = lc->fc;
    const CodingUnit *cu = lc->cu;
    const int c_sign = 1 - 2 * fc->ps.ph.r->ph_joint_cbcr_sign_flag;
    const int shift  = tu->coded_flag[1] ^ tu->coded_flag[2];
    const int c_idx  = 1 + tu->coded_flag[1];
    const ptrdiff_t stride = fc->frame->linesize[c_idx];
    const int hs = fc->ps.sps->hshift[c_idx];
    const int vs = fc->ps.sps->vshift[c_idx];
    uint8_t *dst = &fc->frame->data[c_idx][(tb->y0 >> vs) * stride +
                                          ((tb->x0 >> hs) << fc->ps.sps->pixel_shift)];
    if (chroma_scale) {
        fc->vvcdsp.itx.pred_residual_joint(tb->coeffs, tb->tb_width, tb->tb_height, c_sign, shift);
        fc->vvcdsp.intra.lmcs_scale_chroma(lc, tb->coeffs, tb->coeffs, tb->tb_width, tb->tb_height, cu->x0, cu->y0);
        fc->vvcdsp.itx.add_residual(dst, tb->coeffs, tb->tb_width, tb->tb_height, stride);
    } else {
        fc->vvcdsp.itx.add_residual_joint(dst, tb->coeffs, tb->tb_width, tb->tb_height, stride, c_sign, shift);
    }
}

static int add_reconstructed_area(VVCLocalContext *lc, const int ch_type, const int x0, const int y0, const int w, const int h)
{
    const VVCSPS *sps       = lc->fc->ps.sps;
    const int hs = sps->hshift[ch_type];
    const int vs = sps->vshift[ch_type];
    ReconstructedArea *a;

    if (lc->num_ras[ch_type] >= FF_ARRAY_ELEMS(lc->ras[ch_type]))
        return AVERROR_INVALIDDATA;

    a = &lc->ras[ch_type][lc->num_ras[ch_type]];
    a->x = x0 >> hs;
    a->y = y0 >> vs;
    a->w = w >> hs;
    a->h = h >> vs;
    lc->num_ras[ch_type]++;

    return 0;
}

static void add_tu_area(const TransformUnit *tu, int *x0, int *y0, int *w, int *h)
{
    *x0 = tu->x0;
    *y0 = tu->y0;
    *w = tu->width;
    *h = tu->height;
}

#define MIN_ISP_PRED_WIDTH 4
static int get_luma_predict_unit(const CodingUnit *cu, const TransformUnit *tu, const int idx, int *x0, int *y0, int *w, int *h)
{
    int has_luma = 1;
    add_tu_area(tu, x0, y0, w, h);
    if (cu->isp_split_type == ISP_VER_SPLIT && tu->width < MIN_ISP_PRED_WIDTH) {
        *w = MIN_ISP_PRED_WIDTH;
        has_luma = !(idx % (MIN_ISP_PRED_WIDTH / tu->width));
    }
    return has_luma;
}

static int get_chroma_predict_unit(const CodingUnit *cu, const TransformUnit *tu, const int idx, int *x0, int *y0, int *w, int *h)
{
    if (cu->isp_split_type == ISP_NO_SPLIT) {
        add_tu_area(tu, x0, y0, w, h);
        return 1;
    }
    if (idx == cu->num_intra_subpartitions - 1) {
        *x0 = cu->x0;
        *y0 = cu->y0;
        *w = cu->cb_width;
        *h = cu->cb_height;
        return 1;
    }
    return 0;
}

//8.4.5.1 General decoding process for intra blocks
static void predict_intra(VVCLocalContext *lc, const TransformUnit *tu, const int idx, const int target_ch_type)
{
    const VVCFrameContext *fc         = lc->fc;
    const CodingUnit *cu        = lc->cu;
    const VVCTreeType tree_type = cu->tree_type;
    int x0, y0, w, h;
    if (cu->pred_mode != MODE_INTRA) {
        add_reconstructed_area(lc, target_ch_type, tu->x0, tu->y0, tu->width, tu->height);
        return;
    }
    if (!target_ch_type && tree_type != DUAL_TREE_CHROMA) {
        if (get_luma_predict_unit(cu, tu, idx, &x0, &y0, &w, &h)) {
            ff_vvc_set_neighbour_available(lc, x0, y0, w, h);
            fc->vvcdsp.intra.intra_pred(lc, x0, y0, w, h, 0);
            add_reconstructed_area(lc, 0, x0, y0, w, h);
        }
    }
    if (target_ch_type && tree_type != DUAL_TREE_LUMA) {
        if (get_chroma_predict_unit(cu, tu, idx, &x0, &y0, &w, &h)){
            ff_vvc_set_neighbour_available(lc, x0, y0, w, h);
            if (is_cclm(cu->intra_pred_mode_c)) {
                fc->vvcdsp.intra.intra_cclm_pred(lc, x0, y0, w, h);
            } else {
                fc->vvcdsp.intra.intra_pred(lc, x0, y0, w, h, 1);
                fc->vvcdsp.intra.intra_pred(lc, x0, y0, w, h, 2);
            }
            add_reconstructed_area(lc, 1, x0, y0, w, h);
        }
    }
}

static void scale_clip(int *coeff, const int nzw, const int w, const int h,
    const int shift, const int log2_transform_range)
{
    const int add = 1 << (shift - 1);
    for (int y = 0; y < h; y++) {
        int *p = coeff + y * w;
        for (int x = 0; x < nzw; x++) {
            *p = av_clip_intp2((*p + add) >> shift, log2_transform_range);
            p++;
        }
        memset(p, 0, sizeof(*p) * (w - nzw));
    }
}

static void scale(int *out, const int *in, const int w, const int h, const int shift)
{
    const int add = 1 << (shift - 1);
    for (int y = 0; y < h; y++) {
        for (int x = 0; x < w; x++) {
            int *o = out + y * w + x;
            const int *i = in + y * w + x;
            *o = (*i + add) >> shift;
        }
    }
}

// part of 8.7.3 Scaling process for transform coefficients
static void derive_qp(const VVCLocalContext *lc, const TransformUnit *tu, TransformBlock *tb)
{
    const VVCSPS *sps               = lc->fc->ps.sps;
    const H266RawSliceHeader *rsh   = lc->sc->sh.r;
    const CodingUnit *cu            = lc->cu;
    int qp, qp_act_offset;

    if (tb->c_idx == 0) {
        //fix me
        qp = cu->qp[LUMA] + sps->qp_bd_offset;
        qp_act_offset = cu->act_enabled_flag ? -5 : 0;
    } else {
        const int is_jcbcr = tu->joint_cbcr_residual_flag && tu->coded_flag[CB] && tu->coded_flag[CR];
        const int idx = is_jcbcr ? JCBCR : tb->c_idx;
        qp = cu->qp[idx];
        qp_act_offset = cu->act_enabled_flag ? 1 : 0;
    }
    if (tb->ts) {
        const int qp_prime_ts_min = 4 + 6 * sps->r->sps_min_qp_prime_ts;

        tb->qp = av_clip(qp + qp_act_offset, qp_prime_ts_min, 63 + sps->qp_bd_offset);
        tb->rect_non_ts_flag = 0;
        tb->bd_shift = 10;
    } else {
        const int log_sum = tb->log2_tb_width + tb->log2_tb_height;
        const int rect_non_ts_flag = log_sum & 1;

        tb->qp = av_clip(qp + qp_act_offset, 0, 63 + sps->qp_bd_offset);
        tb->rect_non_ts_flag = rect_non_ts_flag;
        tb->bd_shift = sps->bit_depth + rect_non_ts_flag + (log_sum / 2)
                     + 10 - sps->log2_transform_range + rsh->sh_dep_quant_used_flag;
    }
    tb->bd_offset = (1 << tb->bd_shift) >> 1;
}

//8.7.3 Scaling process for transform coefficients
static av_always_inline int derive_scale(const TransformBlock *tb, const int sh_dep_quant_used_flag)
{
    static const uint8_t rem6[63 + 2 * 6 + 1] = {
        0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2,
        3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5,
        0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3,
        4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3
    };

    static const uint8_t div6[63 + 2 * 6 + 1] = {
        0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3,  3,  3,
        3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6,  6,  6,
        7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10,
        10, 10, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12
    };

    const static int level_scale[2][6] = {
        { 40, 45, 51, 57, 64, 72 },
        { 57, 64, 72, 80, 90, 102 }
    };
    const int addin = sh_dep_quant_used_flag && !tb->ts;
    const int qp    = tb->qp + addin;

    return level_scale[tb->rect_non_ts_flag][rem6[qp]] << div6[qp];
}

//8.7.3 Scaling process for transform coefficients
static const uint8_t* derive_scale_m(const VVCLocalContext *lc, const TransformBlock *tb, uint8_t *scale_m)
{
    //Table 38 – Specification of the scaling matrix identifier variable id according to predMode, cIdx, nTbW, and nTbH
    const int ids[2][3][6] = {
        {
            {  0,  2,  8, 14, 20, 26 },
            {  0,  3,  9, 15, 21, 21 },
            {  0,  4, 10, 16, 22, 22 }
        },
        {
            {  0,  5, 11, 17, 23, 27 },
            {  0,  6, 12, 18, 24, 24 },
            {  1,  7, 13, 19, 25, 25 },
        }
    };
    const VVCFrameParamSets *ps     = &lc->fc->ps;
    const VVCSPS *sps               = ps->sps;
    const H266RawSliceHeader *rsh   = lc->sc->sh.r;
    const CodingUnit *cu            = lc->cu;
    const VVCScalingList *sl        = ps->sl;
    const int id = ids[cu->pred_mode != MODE_INTRA][tb->c_idx][FFMAX(tb->log2_tb_height, tb->log2_tb_width) - 1];
    const int log2_matrix_size = (id < 2) ? 1 : (id < 8) ? 2 : 3;
    uint8_t *p = scale_m;

    av_assert0(!sps->r->sps_scaling_matrix_for_alternative_colour_space_disabled_flag);

    if (!rsh->sh_explicit_scaling_list_used_flag || tb->ts ||
        sps->r->sps_scaling_matrix_for_lfnst_disabled_flag && cu->apply_lfnst_flag[tb->c_idx])
        return ff_vvc_default_scale_m;

    if (!sl) {
        av_log(lc->fc->log_ctx, AV_LOG_WARNING, "bug: no scaling list aps, id = %d", ps->ph.r->ph_scaling_list_aps_id);
        return ff_vvc_default_scale_m;
    }

    for (int y = tb->min_scan_y; y <= tb->max_scan_y; y++) {
        const int off = y << log2_matrix_size >> tb->log2_tb_height << log2_matrix_size;
        const uint8_t *m = &sl->scaling_matrix_rec[id][off];

        for (int x = tb->min_scan_x; x <= tb->max_scan_x; x++)
            *p++ = m[x << log2_matrix_size >> tb->log2_tb_width];
    }
    if (id >= SL_START_16x16 && !tb->min_scan_x && !tb->min_scan_y)
        *scale_m = sl->scaling_matrix_dc_rec[id - SL_START_16x16];

    return scale_m;
}

//8.7.3 Scaling process for transform coefficients
static av_always_inline int scale_coeff(const TransformBlock *tb, int coeff,
    const int scale, const int scale_m, const int log2_transform_range)
{
    coeff = (coeff * scale * scale_m + tb->bd_offset) >> tb->bd_shift;
    coeff = av_clip_intp2(coeff, log2_transform_range);
    return coeff;
}

static void dequant(const VVCLocalContext *lc, const TransformUnit *tu, TransformBlock *tb)
{
    uint8_t tmp[MAX_TB_SIZE * MAX_TB_SIZE];
    const H266RawSliceHeader *rsh   = lc->sc->sh.r;
    const VVCSPS *sps               = lc->fc->ps.sps;
    const uint8_t *scale_m          = derive_scale_m(lc, tb, tmp);
    int scale;

    derive_qp(lc, tu, tb);
    scale = derive_scale(tb, rsh->sh_dep_quant_used_flag);

    for (int y = tb->min_scan_y; y <= tb->max_scan_y; y++) {
        for (int x = tb->min_scan_x; x <= tb->max_scan_x; x++) {
            int *coeff = tb->coeffs + y * tb->tb_width + x;

            if (*coeff)
                *coeff = scale_coeff(tb, *coeff, scale, *scale_m, sps->log2_transform_range);
            scale_m++;
        }
    }
}

//transmatrix[0][0]
#define DCT_A 64
static void itx_2d(const VVCFrameContext *fc, TransformBlock *tb, const enum TxType trh, const enum TxType trv)
{
    const VVCSPS *sps   = fc->ps.sps;
    const int w         = tb->tb_width;
    const int h         = tb->tb_height;
    const size_t nzw    = tb->max_scan_x + 1;
    const size_t nzh    = tb->max_scan_y + 1;
    const int shift[]   = { 7, 5 + sps->log2_transform_range - sps->bit_depth };

    if (w == h && nzw == 1 && nzh == 1 && trh == DCT2 && trv == DCT2) {
        const int add[] = { 1 << (shift[0] - 1), 1 << (shift[1] - 1) };
        const int t     = (tb->coeffs[0] * DCT_A + add[0]) >> shift[0];
        const int dc    = (t * DCT_A + add[1]) >> shift[1];

        for (int i = 0; i < w * h; i++)
            tb->coeffs[i] = dc;

        return;
    }

    for (int x = 0; x < nzw; x++)
        fc->vvcdsp.itx.itx[trv][tb->log2_tb_height - 1](tb->coeffs + x, w, nzh);
    scale_clip(tb->coeffs, nzw, w, h, shift[0], sps->log2_transform_range);

    for (int y = 0; y < h; y++)
        fc->vvcdsp.itx.itx[trh][tb->log2_tb_width - 1](tb->coeffs + y * w, 1, nzw);
    scale(tb->coeffs, tb->coeffs, w, h, shift[1]);
}

static void itx_1d(const VVCFrameContext *fc, TransformBlock *tb, const enum TxType trh, const enum TxType trv)
{
    const VVCSPS *sps   = fc->ps.sps;
    const int w         = tb->tb_width;
    const int h         = tb->tb_height;
    const size_t nzw    = tb->max_scan_x + 1;
    const size_t nzh    = tb->max_scan_y + 1;

    if ((w > 1 && nzw == 1 && trh == DCT2) || (h > 1 && nzh == 1 && trv == DCT2)) {
        const int shift = 6 + sps->log2_transform_range - sps->bit_depth;
        const int add   = 1 << (shift - 1);
        const int dc    = (tb->coeffs[0] * DCT_A + add) >> shift;

        for (int i = 0; i < w * h; i++)
            tb->coeffs[i] = dc;

        return;
    }

    if (w > 1)
        fc->vvcdsp.itx.itx[trh][tb->log2_tb_width - 1](tb->coeffs, 1, nzw);
    else
        fc->vvcdsp.itx.itx[trv][tb->log2_tb_height - 1](tb->coeffs, 1, nzh);
    scale(tb->coeffs, tb->coeffs, w, h, 6 + sps->log2_transform_range - sps->bit_depth);
}

static void transform_bdpcm(TransformBlock *tb, const VVCLocalContext *lc, const CodingUnit *cu)
{
    const VVCSPS *sps        = lc->fc->ps.sps;
    const IntraPredMode mode = tb->c_idx ? cu->intra_pred_mode_c : cu->intra_pred_mode_y;
    const int vertical       = mode == INTRA_VERT;
    lc->fc->vvcdsp.itx.transform_bdpcm(tb->coeffs, tb->tb_width, tb->tb_height,
                                       vertical, sps->log2_transform_range);
    if (vertical)
        tb->max_scan_y = tb->tb_height - 1;
    else
        tb->max_scan_x = tb->tb_width - 1;
}

static void itransform(VVCLocalContext *lc, TransformUnit *tu, const int tu_idx, const int target_ch_type)
{
    const VVCFrameContext *fc   = lc->fc;
    const VVCSPS *sps           = fc->ps.sps;
    const VVCSH *sh             = &lc->sc->sh;
    const CodingUnit *cu        = lc->cu;
    const int ps                = fc->ps.sps->pixel_shift;
    DECLARE_ALIGNED(32, int, temp)[MAX_TB_SIZE * MAX_TB_SIZE];

    for (int i = 0; i < tu->nb_tbs; i++) {
        TransformBlock *tb  = &tu->tbs[i];
        const int c_idx     = tb->c_idx;
        const int ch_type   = c_idx > 0;

        if (ch_type == target_ch_type && tb->has_coeffs) {
            const int w             = tb->tb_width;
            const int h             = tb->tb_height;
            const int chroma_scale  = ch_type && sh->r->sh_lmcs_used_flag && fc->ps.ph.r->ph_chroma_residual_scale_flag && (w * h > 4);
            const ptrdiff_t stride  = fc->frame->linesize[c_idx];
            const int hs            = sps->hshift[c_idx];
            const int vs            = sps->vshift[c_idx];
            uint8_t *dst            = &fc->frame->data[c_idx][(tb->y0 >> vs) * stride + ((tb->x0 >> hs) << ps)];

            if (cu->bdpcm_flag[tb->c_idx])
                transform_bdpcm(tb, lc, cu);
            dequant(lc, tu, tb);
            if (!tb->ts) {
                enum TxType trh, trv;

                if (cu->apply_lfnst_flag[c_idx])
                    ilfnst_transform(lc, tb);
                derive_transform_type(fc, lc, tb, &trh, &trv);
                if (w > 1 && h > 1)
                    itx_2d(fc, tb, trh, trv);
                else
                    itx_1d(fc, tb, trh, trv);
            }

            if (chroma_scale)
                fc->vvcdsp.intra.lmcs_scale_chroma(lc, temp, tb->coeffs, w, h, cu->x0, cu->y0);
            // TODO: Address performance issue here by combining transform, lmcs_scale_chroma, and add_residual into one function.
            // Complete this task before implementing ASM code.
            fc->vvcdsp.itx.add_residual(dst, chroma_scale ? temp : tb->coeffs, w, h, stride);

            if (tu->joint_cbcr_residual_flag && tb->c_idx)
                add_residual_for_joint_coding_chroma(lc, tu, tb, chroma_scale);
        }
    }
}

static int reconstruct(VVCLocalContext *lc)
{
    VVCFrameContext *fc = lc->fc;
    CodingUnit *cu      = lc->cu;
    const int start     = cu->tree_type == DUAL_TREE_CHROMA;
    const int end       = fc->ps.sps->r->sps_chroma_format_idc && (cu->tree_type != DUAL_TREE_LUMA);

    for (int ch_type = start; ch_type <= end; ch_type++) {
        TransformUnit *tu = cu->tus.head;
        for (int i = 0; tu; i++) {
            predict_intra(lc, tu, i, ch_type);
            itransform(lc, tu, i, ch_type);
            tu = tu->next;
        }
    }
    return 0;
}

int ff_vvc_reconstruct(VVCLocalContext *lc, const int rs, const int rx, const int ry)
{
    const VVCFrameContext *fc   = lc->fc;
    const VVCSPS *sps           = fc->ps.sps;
    const int x_ctb             = rx << sps->ctb_log2_size_y;
    const int y_ctb             = ry << sps->ctb_log2_size_y;
    CTU *ctu                    = fc->tab.ctus + rs;
    CodingUnit *cu              = ctu->cus;
    int ret                     = 0;

    lc->num_ras[0] = lc->num_ras[1] = 0;
    lc->lmcs.x_vpdu = -1;
    lc->lmcs.y_vpdu = -1;
    ff_vvc_decode_neighbour(lc, x_ctb, y_ctb, rx, ry, rs);
    while (cu) {
        lc->cu = cu;

        if (cu->ciip_flag)
            ff_vvc_predict_ciip(lc);
        if (cu->coded_flag) {
            ret = reconstruct(lc);
        } else {
            add_reconstructed_area(lc, LUMA, cu->x0, cu->y0, cu->cb_width, cu->cb_height);
            add_reconstructed_area(lc, CHROMA, cu->x0, cu->y0, cu->cb_width, cu->cb_height);
        }
        cu = cu->next;
    }
    ff_vvc_ctu_free_cus(ctu);
    return ret;
}

int ff_vvc_get_mip_size_id(const int w, const int h)
{
    if (w == 4 && h == 4)
        return 0;
    if ((w == 4 || h == 4) || (w == 8 && h == 8))
        return 1;
    return 2;
}

int ff_vvc_nscale_derive(const int w, const int h, const int mode)
{
    int side_size, nscale;
    av_assert0(mode < INTRA_LT_CCLM && !(mode > INTRA_HORZ && mode < INTRA_VERT));
    if (mode == INTRA_PLANAR || mode == INTRA_DC ||
        mode == INTRA_HORZ || mode == INTRA_VERT) {
        nscale = (av_log2(w) + av_log2(h) - 2) >> 2;
    } else {
        const int intra_pred_angle = ff_vvc_intra_pred_angle_derive(mode);
        const int inv_angle        = ff_vvc_intra_inv_angle_derive(intra_pred_angle);
        if (mode >= INTRA_VERT)
            side_size = h;
        if (mode <= INTRA_HORZ)
            side_size = w;
        nscale = FFMIN(2, av_log2(side_size) - av_log2(3 * inv_angle - 2) + 8);
    }
    return nscale;
}

int ff_vvc_need_pdpc(const int w, const int h, const uint8_t bdpcm_flag, const int mode, const int ref_idx)
{
    av_assert0(mode < INTRA_LT_CCLM);
    if ((w >= 4 && h >= 4) && !ref_idx && !bdpcm_flag) {
        int nscale;
        if (mode == INTRA_PLANAR || mode == INTRA_DC ||
            mode == INTRA_HORZ || mode == INTRA_VERT)
            return 1;
        if (mode > INTRA_HORZ && mode < INTRA_VERT)
            return 0;
        nscale = ff_vvc_nscale_derive(w, h, mode);
        return nscale >= 0;

    }
    return 0;
}

static const ReconstructedArea* get_reconstructed_area(const VVCLocalContext *lc, const int x, const int y, const int c_idx)
{
    const int ch_type = c_idx > 0;
    for (int i = lc->num_ras[ch_type] - 1; i >= 0; i--) {
        const ReconstructedArea* a = &lc->ras[ch_type][i];
        const int r = (a->x + a->w);
        const int b = (a->y + a->h);
        if (a->x <= x && x < r && a->y <= y && y < b)
            return a;

        //it's too far away, no need check it;
        if (x >= r && y >= b)
            break;
    }
    return NULL;
}

int ff_vvc_get_top_available(const VVCLocalContext *lc, const int x, const int y, int target_size, const int c_idx)
{
    const VVCFrameContext *fc = lc->fc;
    const VVCSPS *sps = fc->ps.sps;
    const int hs = sps->hshift[c_idx];
    const int vs = sps->vshift[c_idx];
    const int log2_ctb_size_v   = sps->ctb_log2_size_y - vs;
    const int end_of_ctb_x      = ((lc->cu->x0 >> sps->ctb_log2_size_y) + 1) << sps->ctb_log2_size_y;
    const int y0b               = av_mod_uintp2(y, log2_ctb_size_v);
    const int max_x             = FFMIN(fc->ps.pps->width, end_of_ctb_x) >> hs;
    const ReconstructedArea *a;
    int px = x;

    if (!y0b) {
        if (!lc->ctb_up_flag)
            return 0;
        target_size = FFMIN(target_size, (lc->end_of_tiles_x >> hs) - x);
        if (sps->r->sps_entropy_coding_sync_enabled_flag)
            target_size = FFMIN(target_size, (end_of_ctb_x >> hs) - x);
        return target_size;
    }

    target_size = FFMAX(0, FFMIN(target_size, max_x - x));
    while (target_size > 0 && (a = get_reconstructed_area(lc, px, y - 1, c_idx))) {
        const int sz = FFMIN(target_size, a->x + a->w - px);
        px += sz;
        target_size -= sz;
    }
    return px - x;
}

int ff_vvc_get_left_available(const VVCLocalContext *lc, const int x, const int y, int target_size, const int c_idx)
{
    const VVCFrameContext *fc = lc->fc;
    const VVCSPS *sps = fc->ps.sps;
    const int hs = sps->hshift[c_idx];
    const int vs = sps->vshift[c_idx];
    const int log2_ctb_size_h   =  sps->ctb_log2_size_y - hs;
    const int x0b               = av_mod_uintp2(x, log2_ctb_size_h);
    const int end_of_ctb_y      = ((lc->cu->y0 >> sps->ctb_log2_size_y) + 1) << sps->ctb_log2_size_y;
    const int max_y             = FFMIN(fc->ps.pps->height, end_of_ctb_y) >> vs;
    const ReconstructedArea *a;
    int  py = y;

    if (!x0b && !lc->ctb_left_flag)
        return 0;

    target_size = FFMAX(0, FFMIN(target_size, max_y - y));
    if (!x0b)
        return target_size;

    while (target_size > 0 && (a = get_reconstructed_area(lc, x - 1, py, c_idx))) {
        const int sz = FFMIN(target_size, a->y + a->h - py);
        py += sz;
        target_size -= sz;
    }
    return py - y;
}

static int less(const void *a, const void *b)
{
    return *(const int*)a - *(const int*)b;
}

int ff_vvc_ref_filter_flag_derive(const int mode)
{
    static const int modes[] = { -14, -12, -10, -6, INTRA_PLANAR, 2, 34, 66, 72, 76, 78, 80};
    return bsearch(&mode, modes, FF_ARRAY_ELEMS(modes), sizeof(int), less) != NULL;
}

int ff_vvc_intra_pred_angle_derive(const int pred_mode)
{
    static const int angles[] = {
          0,   1,   2,   3,   4,   6,   8,  10,  12,  14,  16,  18,  20,  23,  26, 29,
         32,  35,  39,  45,  51,  57,  64,  73,  86, 102, 128, 171, 256, 341, 512
    };
    int sign = 1, idx, intra_pred_angle;
    if (pred_mode > INTRA_DIAG) {
        idx = pred_mode - INTRA_VERT;
    } else if (pred_mode > 0) {
        idx = INTRA_HORZ - pred_mode;
    } else {
        idx = INTRA_HORZ - 2 - pred_mode;
    }
    if (idx < 0) {
        idx = -idx;
        sign = -1;
    }
    intra_pred_angle = sign * angles[idx];
    return intra_pred_angle;
}

#define ROUND(f) (int)(f < 0 ? -(-f + 0.5) : (f + 0.5))
int ff_vvc_intra_inv_angle_derive(const int intra_pred_angle)
{
    float inv_angle;
    av_assert0(intra_pred_angle);
    inv_angle = 32 * 512.0 / intra_pred_angle;
    return ROUND(inv_angle);
}

//8.4.5.2.7 Wide angle intra prediction mode mapping proces
int ff_vvc_wide_angle_mode_mapping(const CodingUnit *cu,
    const int tb_width, const int tb_height, const int c_idx, int pred_mode_intra)
{
    int nw, nh, wh_ratio, min, max;

    if (cu->isp_split_type == ISP_NO_SPLIT || c_idx) {
        nw = tb_width;
        nh = tb_height;
    } else {
        nw = cu->cb_width;
        nh = cu->cb_height;
    }
    wh_ratio    = FFABS(ff_log2(nw) - ff_log2(nh));
    max         = (wh_ratio > 1) ? (8  + 2 * wh_ratio) : 8;
    min         = (wh_ratio > 1) ? (60 - 2 * wh_ratio) : 60;

    if (nw > nh && pred_mode_intra >=2 && pred_mode_intra < max)
        pred_mode_intra += 65;
    else if (nh > nw && pred_mode_intra <= 66 && pred_mode_intra > min)
        pred_mode_intra -= 67;
    return pred_mode_intra;
}