aboutsummaryrefslogtreecommitdiffstats
path: root/libavcodec/vvc/mvs.c
blob: b96e750272be17b901a7b7806a34ca7a24f640ee (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
/*
 * VVC motion vector decoder
 *
 * Copyright (C) 2023 Nuo Mi
 * Copyright (C) 2022 Xu Mu
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

#include "ctu.h"
#include "data.h"
#include "refs.h"
#include "mvs.h"

#define IS_SAME_MV(a, b) (AV_RN64A(a) == AV_RN64A(b))

//check if the two luma locations belong to the same motion estimation region
static av_always_inline int is_same_mer(const VVCFrameContext *fc, const int xN, const int yN, const int xP, const int yP)
{
    const uint8_t plevel = fc->ps.sps->log2_parallel_merge_level;

    return xN >> plevel == xP >> plevel &&
           yN >> plevel == yP >> plevel;
}

//return true if we have same mvs and ref_idxs
static av_always_inline int compare_mv_ref_idx(const MvField *n, const MvField *o)
{
    if (!o || n->pred_flag != o->pred_flag)
        return 0;
    for (int i = 0; i < 2; i++) {
        PredFlag mask = i + 1;
        if (n->pred_flag & mask) {
            const int same_ref_idx = n->ref_idx[i] == o->ref_idx[i];
            const int same_mv = IS_SAME_MV(n->mv + i, o->mv + i);
            if (!same_ref_idx || !same_mv)
                return 0;
        }
    }
    return 1;
}

// 8.5.2.15 Temporal motion buffer compression process for collocated motion vectors
static av_always_inline void mv_compression(Mv *motion)
{
    int mv[2] = {motion->x, motion->y};
    for (int i = 0; i < 2; i++) {
        const int s = mv[i] >> 17;
        const int f = av_log2((mv[i] ^ s) | 31) - 4;
        const int mask  = (-1 * (1 << f)) >> 1;
        const int round = (1 << f) >> 2;
        mv[i] = (mv[i] + round) & mask;
    }
    motion->x = mv[0];
    motion->y = mv[1];
}

void ff_vvc_mv_scale(Mv *dst, const Mv *src, int td, int tb)
{
    int tx, scale_factor;

    td = av_clip_int8(td);
    tb = av_clip_int8(tb);
    tx = (0x4000 + (abs(td) >> 1)) / td;
    scale_factor = av_clip_intp2((tb * tx + 32) >> 6, 12);
    dst->x = av_clip_intp2((scale_factor * src->x + 127 +
                           (scale_factor * src->x < 0)) >> 8, 17);
    dst->y = av_clip_intp2((scale_factor * src->y + 127 +
                           (scale_factor * src->y < 0)) >> 8, 17);
}

//part of 8.5.2.12 Derivation process for collocated motion vectors
static int check_mvset(Mv *mvLXCol, Mv *mvCol,
                       int colPic, int poc,
                       const RefPicList *refPicList, int X, int refIdxLx,
                       const RefPicList *refPicList_col, int listCol, int refidxCol)
{
    int cur_lt = refPicList[X].refs[refIdxLx].is_lt;
    int col_lt = refPicList_col[listCol].refs[refidxCol].is_lt;
    int col_poc_diff, cur_poc_diff;

    if (cur_lt != col_lt) {
        mvLXCol->x = 0;
        mvLXCol->y = 0;
        return 0;
    }

    col_poc_diff = colPic - refPicList_col[listCol].refs[refidxCol].poc;
    cur_poc_diff = poc    - refPicList[X].refs[refIdxLx].poc;

    mv_compression(mvCol);
    if (cur_lt || col_poc_diff == cur_poc_diff) {
        mvLXCol->x = av_clip_intp2(mvCol->x, 17);
        mvLXCol->y = av_clip_intp2(mvCol->y, 17);
    } else {
        ff_vvc_mv_scale(mvLXCol, mvCol, col_poc_diff, cur_poc_diff);
    }
    return 1;
}

#define CHECK_MVSET(l)                                          \
    check_mvset(mvLXCol, temp_col.mv + l,                       \
                colPic, fc->ps.ph.poc,                          \
                refPicList, X, refIdxLx,                        \
                refPicList_col, L ## l, temp_col.ref_idx[l])

//derive NoBackwardPredFlag
int ff_vvc_no_backward_pred_flag(const VVCLocalContext *lc)
{
    int check_diffpicount = 0;
    int i, j;
    const RefPicList *rpl = lc->sc->rpl;

    for (j = 0; j < 2; j++) {
        for (i = 0; i < lc->sc->sh.r->num_ref_idx_active[j]; i++) {
            if (rpl[j].refs[i].poc > lc->fc->ps.ph.poc) {
                check_diffpicount++;
                break;
            }
        }
    }
    return !check_diffpicount;
}

//8.5.2.12 Derivation process for collocated motion vectors
static int derive_temporal_colocated_mvs(const VVCLocalContext *lc, MvField temp_col,
                                         int refIdxLx, Mv *mvLXCol, int X,
                                         int colPic, const RefPicList *refPicList_col, int sb_flag)
{
    const VVCFrameContext *fc   = lc->fc;
    const SliceContext *sc      = lc->sc;
    RefPicList* refPicList      = sc->rpl;

    if (temp_col.pred_flag == PF_INTRA)
        return 0;

    if (sb_flag){
        if (X == 0) {
            if (temp_col.pred_flag & PF_L0)
                return CHECK_MVSET(0);
            else if (ff_vvc_no_backward_pred_flag(lc) && (temp_col.pred_flag & PF_L1))
                return CHECK_MVSET(1);
        } else {
            if (temp_col.pred_flag & PF_L1)
                return CHECK_MVSET(1);
            else if (ff_vvc_no_backward_pred_flag(lc) && (temp_col.pred_flag & PF_L0))
                return CHECK_MVSET(0);
        }
    } else {
        if (!(temp_col.pred_flag & PF_L0))
            return CHECK_MVSET(1);
        else if (temp_col.pred_flag == PF_L0)
            return CHECK_MVSET(0);
        else if (temp_col.pred_flag == PF_BI) {
            if (ff_vvc_no_backward_pred_flag(lc)) {
                if (X == 0)
                    return CHECK_MVSET(0);
                else
                    return CHECK_MVSET(1);
            } else {
                if (!lc->sc->sh.r->sh_collocated_from_l0_flag)
                    return CHECK_MVSET(0);
                else
                    return CHECK_MVSET(1);
            }
        }
    }
    return 0;
}

#define TAB_MVF(x, y)                                                   \
    tab_mvf[((y) >> MIN_PU_LOG2) * min_pu_width + ((x) >> MIN_PU_LOG2)]

#define TAB_MVF_PU(v)                                                   \
    TAB_MVF(x ## v, y ## v)

#define TAB_CP_MV(lx, x, y)                                              \
    fc->tab.cp_mv[lx][((((y) >> min_cb_log2_size) * min_cb_width + ((x) >> min_cb_log2_size)) ) * MAX_CONTROL_POINTS]


#define DERIVE_TEMPORAL_COLOCATED_MVS(sb_flag)                          \
    derive_temporal_colocated_mvs(lc, temp_col,                          \
                                  refIdxLx, mvLXCol, X, colPic,         \
                                  ff_vvc_get_ref_list(fc, ref, x, y), sb_flag)

//8.5.2.11 Derivation process for temporal luma motion vector prediction
static int temporal_luma_motion_vector(const VVCLocalContext *lc,
    const int refIdxLx, Mv *mvLXCol, const int X, int check_center, int sb_flag)
{
    const VVCFrameContext *fc = lc->fc;
    const VVCSPS *sps         = fc->ps.sps;
    const VVCPPS *pps         = fc->ps.pps;
    const CodingUnit *cu      = lc->cu;
    const int subpic_idx      = lc->sc->sh.r->curr_subpic_idx;
    int x, y, x_end, y_end, colPic, availableFlagLXCol = 0;
    int min_pu_width = fc->ps.pps->min_pu_width;
    VVCFrame *ref = fc->ref->collocated_ref;
    MvField *tab_mvf;
    MvField temp_col;

    if (!ref) {
        memset(mvLXCol, 0, sizeof(*mvLXCol));
        return 0;
    }

    if (!fc->ps.ph.r->ph_temporal_mvp_enabled_flag || (cu->cb_width * cu->cb_height <= 32))
        return 0;

    tab_mvf = ref->tab_dmvr_mvf;
    colPic  = ref->poc;

    //bottom right collocated motion vector
    x = cu->x0 + cu->cb_width;
    y = cu->y0 + cu->cb_height;

    x_end = pps->subpic_x[subpic_idx] + pps->subpic_width[subpic_idx];
    y_end = pps->subpic_y[subpic_idx] + pps->subpic_height[subpic_idx];

    if (tab_mvf &&
        (cu->y0 >> sps->ctb_log2_size_y) == (y >> sps->ctb_log2_size_y) &&
        x < x_end && y < y_end) {
        x                 &= ~7;
        y                 &= ~7;
        temp_col           = TAB_MVF(x, y);
        availableFlagLXCol = DERIVE_TEMPORAL_COLOCATED_MVS(sb_flag);
    }
    if (check_center) {
        // derive center collocated motion vector
        if (tab_mvf && !availableFlagLXCol) {
            x                  = cu->x0 + (cu->cb_width >> 1);
            y                  = cu->y0 + (cu->cb_height >> 1);
            x                 &= ~7;
            y                 &= ~7;
            temp_col           = TAB_MVF(x, y);
            availableFlagLXCol = DERIVE_TEMPORAL_COLOCATED_MVS(sb_flag);
        }
    }
    return availableFlagLXCol;
}

void ff_vvc_set_mvf(const VVCLocalContext *lc, const int x0, const int y0, const int w, const int h, const MvField *mvf)
{
    const VVCFrameContext *fc   = lc->fc;
    MvField *tab_mvf            = fc->tab.mvf;
    const int min_pu_width      = fc->ps.pps->min_pu_width;
    const int min_pu_size       = 1 << MIN_PU_LOG2;
    for (int dy = 0; dy < h; dy += min_pu_size) {
        for (int dx = 0; dx < w; dx += min_pu_size) {
            const int x = x0 + dx;
            const int y = y0 + dy;
            TAB_MVF(x, y) = *mvf;
        }
    }
}

void ff_vvc_set_intra_mvf(const VVCLocalContext *lc, const int dmvr)
{
    const VVCFrameContext *fc   = lc->fc;
    const CodingUnit *cu        = lc->cu;
    MvField *tab_mvf            = dmvr ? fc->ref->tab_dmvr_mvf : fc->tab.mvf;
    const int min_pu_width      = fc->ps.pps->min_pu_width;
    const int min_pu_size       = 1 << MIN_PU_LOG2;
    for (int dy = 0; dy < cu->cb_height; dy += min_pu_size) {
        for (int dx = 0; dx < cu->cb_width; dx += min_pu_size) {
            const int x = cu->x0 + dx;
            const int y = cu->y0 + dy;
            TAB_MVF(x, y).pred_flag = PF_INTRA;
        }
    }
}

//cbProfFlagLX from 8.5.5.9 Derivation process for motion vector arrays from affine control point motion vectors
static int derive_cb_prof_flag_lx(const VVCLocalContext *lc, const PredictionUnit* pu, int lx, int is_fallback)
{
    const MotionInfo* mi    = &pu->mi;
    const Mv* cp_mv         = &mi->mv[lx][0];
    if (lc->fc->ps.ph.r->ph_prof_disabled_flag || is_fallback)
        return 0;
    if (mi->motion_model_idc == MOTION_4_PARAMS_AFFINE) {
        if (IS_SAME_MV(cp_mv, cp_mv + 1))
            return 0;
    }
    if (mi->motion_model_idc == MOTION_6_PARAMS_AFFINE) {
        if (IS_SAME_MV(cp_mv, cp_mv + 1) && IS_SAME_MV(cp_mv, cp_mv + 2))
            return 0;
    }
    if (lc->sc->rpl[lx].refs[mi->ref_idx[lx]].is_scaled)
        return 0;
    return 1;
}

typedef struct SubblockParams {
    int d_hor_x;
    int d_ver_x;
    int d_hor_y;
    int d_ver_y;
    int mv_scale_hor;
    int mv_scale_ver;
    int is_fallback;

    int cb_width;
    int cb_height;
} SubblockParams;

static int is_fallback_mode(const SubblockParams *sp, const PredFlag pred_flag)
{
    const int a = 4 * (2048 + sp->d_hor_x);
    const int b = 4 * sp->d_hor_y;
    const int c = 4 * (2048 + sp->d_ver_y);
    const int d = 4 * sp->d_ver_x;
    if (pred_flag == PF_BI) {
        const int max_w4 = FFMAX(0, FFMAX(a, FFMAX(b, a + b)));
        const int min_w4 = FFMIN(0, FFMIN(a, FFMIN(b, a + b)));
        const int max_h4 = FFMAX(0, FFMAX(c, FFMAX(d, c + d)));
        const int min_h4 = FFMIN(0, FFMIN(c, FFMIN(d, c + d)));
        const int bx_wx4 = ((max_w4 - min_w4) >> 11) + 9;
        const int bx_hx4 = ((max_h4 - min_h4) >> 11) + 9;
        return bx_wx4 * bx_hx4 > 225;
    } else {
        const int bx_wxh = (FFABS(a) >> 11) + 9;
        const int bx_hxh = (FFABS(d) >> 11) + 9;
        const int bx_wxv = (FFABS(b) >> 11) + 9;
        const int bx_hxv = (FFABS(c) >> 11) + 9;
        if (bx_wxh * bx_hxh <= 165 && bx_wxv * bx_hxv <= 165)
            return 0;
    }
    return 1;
}

static void init_subblock_params(SubblockParams *sp, const MotionInfo* mi,
    const int cb_width, const int cb_height, const int lx)
{
    const int log2_cbw  = av_log2(cb_width);
    const int log2_cbh  = av_log2(cb_height);
    const Mv* cp_mv     = mi->mv[lx];
    const int num_cp_mv = mi->motion_model_idc + 1;
    sp->d_hor_x = (cp_mv[1].x - cp_mv[0].x) * (1 << (MAX_CU_DEPTH - log2_cbw));
    sp->d_ver_x = (cp_mv[1].y - cp_mv[0].y) * (1 << (MAX_CU_DEPTH - log2_cbw));
    if (num_cp_mv == 3) {
        sp->d_hor_y = (cp_mv[2].x - cp_mv[0].x) * (1 << (MAX_CU_DEPTH - log2_cbh));
        sp->d_ver_y = (cp_mv[2].y - cp_mv[0].y) * (1 << (MAX_CU_DEPTH - log2_cbh));
    } else {
        sp->d_hor_y = -sp->d_ver_x;
        sp->d_ver_y = sp->d_hor_x;
    }
    sp->mv_scale_hor = (cp_mv[0].x) * (1 << MAX_CU_DEPTH);
    sp->mv_scale_ver = (cp_mv[0].y) * (1 << MAX_CU_DEPTH);
    sp->cb_width  = cb_width;
    sp->cb_height = cb_height;
    sp->is_fallback = is_fallback_mode(sp, mi->pred_flag);
}

static void derive_subblock_diff_mvs(const VVCLocalContext *lc, PredictionUnit* pu, const SubblockParams* sp, const int lx)
{
    pu->cb_prof_flag[lx] = derive_cb_prof_flag_lx(lc, pu, lx, sp->is_fallback);
    if (pu->cb_prof_flag[lx]) {
        const int dmv_limit = 1 << 5;
        const int pos_offset_x = 6 * (sp->d_hor_x + sp->d_hor_y);
        const int pos_offset_y = 6 * (sp->d_ver_x + sp->d_ver_y);
        for (int x = 0; x < AFFINE_MIN_BLOCK_SIZE; x++) {
            for (int y = 0; y < AFFINE_MIN_BLOCK_SIZE; y++) {
                LOCAL_ALIGNED_8(Mv, diff, [1]);
                diff->x = x * (sp->d_hor_x * (1 << 2)) + y * (sp->d_hor_y * (1 << 2)) - pos_offset_x;
                diff->y = x * (sp->d_ver_x * (1 << 2)) + y * (sp->d_ver_y * (1 << 2)) - pos_offset_y;
                ff_vvc_round_mv(diff, 0, 8);
                pu->diff_mv_x[lx][AFFINE_MIN_BLOCK_SIZE * y + x] = av_clip(diff->x, -dmv_limit + 1, dmv_limit - 1);
                pu->diff_mv_y[lx][AFFINE_MIN_BLOCK_SIZE * y + x] = av_clip(diff->y, -dmv_limit + 1, dmv_limit - 1);
            }
        }
    }
}

static void store_cp_mv(const VVCLocalContext *lc, const MotionInfo *mi, const int lx)
{
    VVCFrameContext *fc = lc->fc;
    const CodingUnit *cu = lc->cu;
    const int log2_min_cb_size = fc->ps.sps->min_cb_log2_size_y;
    const int min_cb_size = fc->ps.sps->min_cb_size_y;
    const int min_cb_width = fc->ps.pps->min_cb_width;
    const int num_cp_mv = mi->motion_model_idc + 1;

    for (int dy = 0; dy < cu->cb_height; dy += min_cb_size) {
        for (int dx = 0; dx < cu->cb_width; dx += min_cb_size) {
            const int x_cb = (cu->x0 + dx) >> log2_min_cb_size;
            const int y_cb = (cu->y0 + dy) >> log2_min_cb_size;
            const int offset = (y_cb * min_cb_width + x_cb) * MAX_CONTROL_POINTS;

            memcpy(&fc->tab.cp_mv[lx][offset], mi->mv[lx], sizeof(Mv) * num_cp_mv);
            SAMPLE_CTB(fc->tab.mmi, x_cb, y_cb) = mi->motion_model_idc;
        }
    }
}

//8.5.5.9 Derivation process for motion vector arrays from affine control point motion vectors
void ff_vvc_store_sb_mvs(const VVCLocalContext *lc, PredictionUnit *pu)
{
    const CodingUnit *cu = lc->cu;
    const MotionInfo *mi = &pu->mi;
    const int sbw = cu->cb_width / mi->num_sb_x;
    const int sbh = cu->cb_height / mi->num_sb_y;
    SubblockParams params[2];
    MvField mvf = {0};

    mvf.pred_flag = mi->pred_flag;
    mvf.bcw_idx = mi->bcw_idx;
    mvf.hpel_if_idx = mi->hpel_if_idx;
    for (int i = 0; i < 2; i++) {
        const PredFlag mask = i + 1;
        if (mi->pred_flag & mask) {
            store_cp_mv(lc, mi, i);
            init_subblock_params(params + i, mi, cu->cb_width, cu->cb_height, i);
            derive_subblock_diff_mvs(lc, pu, params + i, i);
            mvf.ref_idx[i] = mi->ref_idx[i];
        }
    }

    for (int sby = 0; sby < mi->num_sb_y; sby++) {
        for (int sbx = 0; sbx < mi->num_sb_x; sbx++) {
            const int x0 = cu->x0 + sbx * sbw;
            const int y0 = cu->y0 + sby * sbh;
            for (int i = 0; i < 2; i++) {
                const PredFlag mask = i + 1;
                if (mi->pred_flag & mask) {
                    const SubblockParams* sp = params + i;
                    const int x_pos_cb = sp->is_fallback ? (cu->cb_width >> 1) : (2 + (sbx << MIN_CU_LOG2));
                    const int y_pos_cb = sp->is_fallback ? (cu->cb_height >> 1) : (2 + (sby << MIN_CU_LOG2));
                    Mv *mv = mvf.mv + i;

                    mv->x = sp->mv_scale_hor + sp->d_hor_x * x_pos_cb + sp->d_hor_y * y_pos_cb;
                    mv->y = sp->mv_scale_ver + sp->d_ver_x * x_pos_cb + sp->d_ver_y * y_pos_cb;
                    ff_vvc_round_mv(mv, 0, MAX_CU_DEPTH);
                    ff_vvc_clip_mv(mv);
                }
            }
            ff_vvc_set_mvf(lc, x0, y0, sbw, sbh, &mvf);
        }
    }
}

void ff_vvc_store_gpm_mvf(const VVCLocalContext *lc, const PredictionUnit *pu)
{
    const CodingUnit *cu     = lc->cu;
    const int angle_idx      = ff_vvc_gpm_angle_idx[pu->gpm_partition_idx];
    const int distance_idx   = ff_vvc_gpm_distance_idx[pu->gpm_partition_idx];
    const int displacement_x = ff_vvc_gpm_distance_lut[angle_idx];
    const int displacement_y = ff_vvc_gpm_distance_lut[(angle_idx + 8) % 32];
    const int is_flip        = angle_idx >= 13 &&angle_idx <= 27;
    const int shift_hor      = (angle_idx % 16 == 8 || (angle_idx % 16 && cu->cb_height >= cu->cb_width)) ? 0 : 1;
    const int sign           = angle_idx < 16 ? 1 : -1;
    const int block_size     = 4;
    int offset_x = (-cu->cb_width) >> 1;
    int offset_y = (-cu->cb_height) >> 1;

    if (!shift_hor)
        offset_y += sign * ((distance_idx * cu->cb_height) >> 3);
    else
        offset_x += sign * ((distance_idx * cu->cb_width) >> 3);

    for (int y = 0; y < cu->cb_height; y += block_size) {
        for (int x = 0; x < cu->cb_width; x += block_size) {
            const int motion_idx = (((x + offset_x) * (1 << 1)) + 5) * displacement_x +
                (((y + offset_y) * (1 << 1)) + 5) * displacement_y;
            const int s_type = FFABS(motion_idx) < 32 ? 2 : (motion_idx <= 0 ? (1 - is_flip) : is_flip);
            const int pred_flag = pu->gpm_mv[0].pred_flag | pu->gpm_mv[1].pred_flag;
            const int x0 = cu->x0 + x;
            const int y0 = cu->y0 + y;

            if (!s_type)
                ff_vvc_set_mvf(lc, x0, y0, block_size, block_size, pu->gpm_mv + 0);
            else if (s_type == 1 || (s_type == 2 && pred_flag != PF_BI))
                ff_vvc_set_mvf(lc, x0, y0, block_size, block_size, pu->gpm_mv + 1);
            else {
                MvField mvf  = pu->gpm_mv[0];
                const MvField *mv1 = &pu->gpm_mv[1];
                const int lx =  mv1->pred_flag - PF_L0;
                mvf.pred_flag = PF_BI;
                mvf.ref_idx[lx] = mv1->ref_idx[lx];
                mvf.mv[lx] = mv1->mv[lx];
                ff_vvc_set_mvf(lc, x0, y0, block_size, block_size, &mvf);
            }
        }
    }
}

void ff_vvc_store_mvf(const VVCLocalContext *lc, const MvField *mvf)
{
    const CodingUnit *cu = lc->cu;
    ff_vvc_set_mvf(lc, cu->x0, cu->y0, cu->cb_width, cu->cb_height, mvf);
}

void ff_vvc_store_mv(const VVCLocalContext *lc, const MotionInfo *mi)
{
    const CodingUnit *cu = lc->cu;
    MvField mvf = {0};

    mvf.hpel_if_idx = mi->hpel_if_idx;
    mvf.bcw_idx = mi->bcw_idx;
    mvf.pred_flag = mi->pred_flag;

    for (int i = 0; i < 2; i++) {
        const PredFlag mask = i + 1;
        if (mvf.pred_flag & mask) {
            mvf.mv[i] = mi->mv[i][0];
            mvf.ref_idx[i] = mi->ref_idx[i];
        }
    }
    ff_vvc_set_mvf(lc, cu->x0, cu->y0, cu->cb_width, cu->cb_height, &mvf);
}

typedef enum NeighbourIdx {
    A0,
    A1,
    A2,
    B0,
    B1,
    B2,
    B3,
    NUM_NBS,
    NB_IDX_NONE = NUM_NBS,
} NeighbourIdx;

typedef struct Neighbour {
    int x;
    int y;

    int checked;
    int available;
} Neighbour;

typedef struct NeighbourContext {
    Neighbour neighbours[NUM_NBS];
    const VVCLocalContext *lc;
} NeighbourContext;

static int is_a0_available(const VVCLocalContext *lc, const CodingUnit *cu)
{
    const VVCFrameContext *fc   = lc->fc;
    const VVCSPS *sps           = fc->ps.sps;
    const int x0b               = av_mod_uintp2(cu->x0, sps->ctb_log2_size_y);
    int cand_bottom_left;

    if (!x0b && !lc->ctb_left_flag) {
        cand_bottom_left = 0;
    } else {
        const int log2_min_cb_size  = sps->min_cb_log2_size_y;
        const int min_cb_width      = fc->ps.pps->min_cb_width;
        const int x                 = (cu->x0 - 1) >> log2_min_cb_size;
        const int y                 = (cu->y0 + cu->cb_height) >> log2_min_cb_size;
        const int max_y             = FFMIN(fc->ps.pps->height, ((cu->y0 >> sps->ctb_log2_size_y) + 1) << sps->ctb_log2_size_y);
        if (cu->y0 + cu->cb_height >= max_y)
            cand_bottom_left = 0;
        else
            cand_bottom_left = SAMPLE_CTB(fc->tab.cb_width[0], x, y) != 0;
    }
    return cand_bottom_left;
}

static void init_neighbour_context(NeighbourContext *ctx, const VVCLocalContext *lc)
{
    const CodingUnit *cu            = lc->cu;
    const NeighbourAvailable *na    = &lc->na;
    const int x0                    = cu->x0;
    const int y0                    = cu->y0;
    const int cb_width              = cu->cb_width;
    const int cb_height             = cu->cb_height;
    const int a0_available          = is_a0_available(lc, cu);

    Neighbour neighbours[NUM_NBS] = {
        { x0 - 1,               y0 + cb_height,         !a0_available           }, //A0
        { x0 - 1,               y0 + cb_height - 1,     !na->cand_left          }, //A1
        { x0 - 1,               y0,                     !na->cand_left          }, //A2
        { x0 + cb_width,        y0 - 1,                 !na->cand_up_right      }, //B0
        { x0 + cb_width - 1,    y0 - 1,                 !na->cand_up            }, //B1
        { x0 - 1,               y0 - 1,                 !na->cand_up_left       }, //B2
        { x0,                   y0 - 1,                 !na->cand_up            }, //B3
    };

    memcpy(ctx->neighbours, neighbours, sizeof(neighbours));
    ctx->lc = lc;
}

static av_always_inline PredMode pred_flag_to_mode(PredFlag pred)
{
    return pred == PF_IBC ? MODE_IBC : (pred == PF_INTRA ? MODE_INTRA : MODE_INTER);
}

static int check_available(Neighbour *n, const VVCLocalContext *lc, const int check_mer)
{
    const VVCFrameContext *fc   = lc->fc;
    const VVCSPS *sps           = fc->ps.sps;
    const CodingUnit *cu        = lc->cu;
    const MvField *tab_mvf      = fc->tab.mvf;
    const int min_pu_width      = fc->ps.pps->min_pu_width;

    if (!n->checked) {
        n->checked = 1;
        n->available = !sps->r->sps_entropy_coding_sync_enabled_flag || ((n->x >> sps->ctb_log2_size_y) <= (cu->x0 >> sps->ctb_log2_size_y));
        n->available &= cu->pred_mode == pred_flag_to_mode(TAB_MVF(n->x, n->y).pred_flag);
        if (check_mer)
            n->available &= !is_same_mer(fc, n->x, n->y, cu->x0, cu->y0);
    }
    return n->available;
}

static const MvField *mv_merge_candidate(const VVCLocalContext *lc, const int x_cand, const int y_cand)
{
    const VVCFrameContext *fc   = lc->fc;
    const int min_pu_width      = fc->ps.pps->min_pu_width;
    const MvField* tab_mvf      = fc->tab.mvf;
    const MvField *mvf          = &TAB_MVF(x_cand, y_cand);

    return mvf;
}

static const MvField* mv_merge_from_nb(NeighbourContext *ctx, const NeighbourIdx nb)
{
    const VVCLocalContext *lc   = ctx->lc;
    Neighbour *n                = &ctx->neighbours[nb];

    if (check_available(n, lc, 1))
        return mv_merge_candidate(lc, n->x, n->y);
    return 0;
}
#define MV_MERGE_FROM_NB(nb) mv_merge_from_nb(&nctx, nb)

//8.5.2.3 Derivation process for spatial merging candidates
static int mv_merge_spatial_candidates(const VVCLocalContext *lc, const int merge_idx,
    const MvField **nb_list, MvField *cand_list, int *nb_merge_cand)
{
    const MvField *cand;
    int num_cands = 0;
    NeighbourContext nctx;

    static NeighbourIdx nbs[][2] = {
        {B1, NB_IDX_NONE },
        {A1, B1 },
        {B0, B1 },
        {A0, A1 },
    };

    init_neighbour_context(&nctx, lc);
    for (int i = 0; i < FF_ARRAY_ELEMS(nbs); i++) {
        NeighbourIdx nb    = nbs[i][0];
        NeighbourIdx old   = nbs[i][1];
        cand = nb_list[nb] = MV_MERGE_FROM_NB(nb);
        if (cand && !compare_mv_ref_idx(cand, nb_list[old])) {
            cand_list[num_cands] = *cand;
            if (merge_idx == num_cands)
                return 1;
            num_cands++;
        }
    }
    if (num_cands != 4) {
        cand = MV_MERGE_FROM_NB(B2);
        if (cand && !compare_mv_ref_idx(cand, nb_list[A1])
            && !compare_mv_ref_idx(cand, nb_list[B1])) {
            cand_list[num_cands] = *cand;
            if (merge_idx == num_cands)
                return 1;
            num_cands++;
        }
    }
    *nb_merge_cand = num_cands;
    return 0;
}

static int mv_merge_temporal_candidate(const VVCLocalContext *lc, MvField *cand)
{
    const VVCFrameContext *fc   = lc->fc;
    const CodingUnit *cu        = lc->cu;

    memset(cand, 0, sizeof(*cand));
    if (fc->ps.ph.r->ph_temporal_mvp_enabled_flag && (cu->cb_width * cu->cb_height > 32)) {
        int available_l0 = temporal_luma_motion_vector(lc, 0, cand->mv + 0, 0, 1, 0);
        int available_l1 = IS_B(lc->sc->sh.r) ?
            temporal_luma_motion_vector(lc, 0, cand->mv + 1, 1, 1, 0) : 0;
        cand->pred_flag = available_l0 + (available_l1 << 1);
    }
    return cand->pred_flag;
}

//8.5.2.6 Derivation process for history-based merging candidates
static int mv_merge_history_candidates(const VVCLocalContext *lc, const int merge_idx,
    const MvField **nb_list, MvField *cand_list, int *num_cands)
{
    const VVCSPS *sps       = lc->fc->ps.sps;
    const EntryPoint* ep    = lc->ep;
    for (int i = 1; i <= ep->num_hmvp && (*num_cands < sps->max_num_merge_cand - 1); i++) {
        const MvField *h = &ep->hmvp[ep->num_hmvp - i];
        const int same_motion = i <= 2 && (compare_mv_ref_idx(h, nb_list[A1]) || compare_mv_ref_idx(h, nb_list[B1]));
        if (!same_motion) {
            cand_list[*num_cands] = *h;
            if (merge_idx == *num_cands)
                return 1;
            (*num_cands)++;
        }
    }
    return 0;
}

//8.5.2.4 Derivation process for pairwise average merging candidate
static int mv_merge_pairwise_candidate(MvField *cand_list, const int num_cands, const int is_b)
{
    if (num_cands > 1) {
        const int num_ref_rists = is_b ? 2 : 1;
        const MvField* p0       = cand_list + 0;
        const MvField* p1       = cand_list + 1;
        MvField* cand           = cand_list + num_cands;

        cand->pred_flag = 0;
        for (int i = 0; i < num_ref_rists; i++) {
            PredFlag mask = i + 1;
            if (p0->pred_flag & mask) {
                cand->pred_flag |= mask;
                cand->ref_idx[i] = p0->ref_idx[i];
                if (p1->pred_flag & mask) {
                    Mv *mv = cand->mv + i;
                    mv->x = p0->mv[i].x + p1->mv[i].x;
                    mv->y = p0->mv[i].y + p1->mv[i].y;
                    ff_vvc_round_mv(mv, 0, 1);
                } else {
                    cand->mv[i] = p0->mv[i];
                }
            } else if (p1->pred_flag & mask) {
                cand->pred_flag |= mask;
                cand->mv[i] = p1->mv[i];
                cand->ref_idx[i] = p1->ref_idx[i];
            }
        }
        if (cand->pred_flag) {
            cand->hpel_if_idx = p0->hpel_if_idx == p1->hpel_if_idx ? p0->hpel_if_idx : 0;
            cand->bcw_idx = 0;
            cand->ciip_flag = 0;
            return 1;
        }
    }
    return 0;
}

//8.5.2.5 Derivation process for zero motion vector merging candidates
static void mv_merge_zero_motion_candidate(const VVCLocalContext *lc, const int merge_idx,
    MvField *cand_list, int num_cands)
{
    const VVCSPS *sps             = lc->fc->ps.sps;
    const H266RawSliceHeader *rsh = lc->sc->sh.r;
    const int num_ref_idx         = IS_P(rsh) ?
        rsh->num_ref_idx_active[L0] : FFMIN(rsh->num_ref_idx_active[L0], rsh->num_ref_idx_active[L1]);
    int zero_idx                  = 0;

    while (num_cands < sps->max_num_merge_cand) {
        MvField *cand = cand_list + num_cands;

        cand->pred_flag    = PF_L0 + (IS_B(rsh) << 1);
        AV_ZERO64(cand->mv + 0);
        AV_ZERO64(cand->mv + 1);
        cand->ref_idx[0]   = zero_idx < num_ref_idx ? zero_idx : 0;
        cand->ref_idx[1]   = zero_idx < num_ref_idx ? zero_idx : 0;
        cand->bcw_idx      = 0;
        cand->hpel_if_idx  = 0;
        if (merge_idx == num_cands)
            return;
        num_cands++;
        zero_idx++;
    }
}

static void mv_merge_mode(const VVCLocalContext *lc,  const int merge_idx, MvField *cand_list)
{
    int num_cands    = 0;
    const MvField *nb_list[NUM_NBS + 1] = { NULL };

    if (mv_merge_spatial_candidates(lc, merge_idx, nb_list, cand_list, &num_cands))
        return;

    if (mv_merge_temporal_candidate(lc, &cand_list[num_cands])) {
        if (merge_idx == num_cands)
            return;
        num_cands++;
    }

    if (mv_merge_history_candidates(lc, merge_idx, nb_list, cand_list, &num_cands))
        return;

    if (mv_merge_pairwise_candidate(cand_list, num_cands, IS_B(lc->sc->sh.r))) {
        if (merge_idx == num_cands)
            return;
        num_cands++;
    }

    mv_merge_zero_motion_candidate(lc, merge_idx, cand_list, num_cands);
}

//8.5.2.2 Derivation process for luma motion vectors for merge mode
void ff_vvc_luma_mv_merge_mode(VVCLocalContext *lc, const int merge_idx, const int ciip_flag, MvField *mv)
{
    const CodingUnit *cu = lc->cu;
    MvField cand_list[MRG_MAX_NUM_CANDS];

    ff_vvc_set_neighbour_available(lc, cu->x0, cu->y0, cu->cb_width, cu->cb_height);
    mv_merge_mode(lc, merge_idx, cand_list);
    *mv = cand_list[merge_idx];
    //ciip flag in not inhritable
    mv->ciip_flag = ciip_flag;
}

//8.5.4.2 Derivation process for luma motion vectors for geometric partitioning merge mode
void ff_vvc_luma_mv_merge_gpm(VVCLocalContext *lc, const int merge_gpm_idx[2], MvField *mv)
{
    const CodingUnit *cu = lc->cu;
    MvField cand_list[MRG_MAX_NUM_CANDS];

    const int idx[] = { merge_gpm_idx[0], merge_gpm_idx[1] + (merge_gpm_idx[1] >= merge_gpm_idx[0]) };

    ff_vvc_set_neighbour_available(lc, cu->x0, cu->y0, cu->cb_width, cu->cb_height);
    mv_merge_mode(lc, FFMAX(idx[0], idx[1]), cand_list);
    memset(mv, 0, 2 * sizeof(*mv));
    for (int i = 0; i < 2; i++) {
        int lx   = idx[i] & 1;
        int mask = lx + PF_L0;
        MvField *cand = cand_list + idx[i];
        if (!(cand->pred_flag & mask)) {
            lx   = !lx;
            mask = lx + PF_L0;
        }
        mv[i].pred_flag   = mask;
        mv[i].ref_idx[lx] = cand->ref_idx[lx];
        mv[i].mv[lx]      = cand->mv[lx];
    }

}

//8.5.5.5 Derivation process for luma affine control point motion vectors from a neighbouring block
static void affine_cps_from_nb(const VVCLocalContext *lc,
    const int x_nb, int y_nb, const int nbw, const int nbh, const int lx,
    Mv *cps, int num_cps)
{
    const VVCFrameContext *fc   = lc->fc;
    const CodingUnit *cu        = lc->cu;
    const int x0                = cu->x0;
    const int y0                = cu->y0;
    const int cb_width          = cu->cb_width;
    const int cb_height         = cu->cb_height;
    const MvField* tab_mvf      = fc->tab.mvf;
    const int min_cb_log2_size  = fc->ps.sps->min_cb_log2_size_y;
    const int min_cb_width      = fc->ps.pps->min_cb_width;

    const int log2_nbw          = ff_log2(nbw);
    const int log2_nbh          = ff_log2(nbh);
    const int is_ctb_boundary   = !((y_nb + nbh) % fc->ps.sps->ctb_size_y) && (y_nb + nbh == y0);
    const Mv *l, *r;
    int mv_scale_hor, mv_scale_ver, d_hor_x, d_ver_x, d_hor_y, d_ver_y, motion_model_idc_nb;
    if (is_ctb_boundary) {
        const int min_pu_width = fc->ps.pps->min_pu_width;
        l = &TAB_MVF(x_nb, y_nb + nbh - 1).mv[lx];
        r = &TAB_MVF(x_nb + nbw - 1, y_nb + nbh - 1).mv[lx];
    } else {
        const int x = x_nb >> min_cb_log2_size;
        const int y = y_nb >> min_cb_log2_size;
        motion_model_idc_nb  = SAMPLE_CTB(fc->tab.mmi, x, y);

        l = &TAB_CP_MV(lx, x_nb, y_nb);
        r = &TAB_CP_MV(lx, x_nb + nbw - 1, y_nb) + 1;
    }
    mv_scale_hor = l->x * (1 << 7);
    mv_scale_ver = l->y * (1 << 7);
    d_hor_x = (r->x - l->x) * (1 << (7 - log2_nbw));
    d_ver_x = (r->y - l->y) * (1 << (7 - log2_nbw));
    if (!is_ctb_boundary && motion_model_idc_nb == MOTION_6_PARAMS_AFFINE) {
        const Mv* lb = &TAB_CP_MV(lx, x_nb, y_nb + nbh - 1) + 2;
        d_hor_y = (lb->x - l->x) * (1 << (7 - log2_nbh));
        d_ver_y = (lb->y - l->y) * (1 << (7 - log2_nbh));
    } else {
        d_hor_y = -d_ver_x;
        d_ver_y = d_hor_x;
    }

    if (is_ctb_boundary) {
        y_nb = y0;
    }
    cps[0].x = mv_scale_hor + d_hor_x * (x0 - x_nb)  + d_hor_y * (y0 - y_nb);
    cps[0].y = mv_scale_ver + d_ver_x * (x0 - x_nb)  + d_ver_y * (y0 - y_nb);
    cps[1].x = mv_scale_hor + d_hor_x * (x0 + cb_width - x_nb)  + d_hor_y * (y0 - y_nb);
    cps[1].y = mv_scale_ver + d_ver_x * (x0 + cb_width - x_nb)  + d_ver_y * (y0 - y_nb);
    if (num_cps == 3) {
        cps[2].x = mv_scale_hor + d_hor_x * (x0 - x_nb)  + d_hor_y * (y0 + cb_height - y_nb);
        cps[2].y = mv_scale_ver + d_ver_x * (x0 - x_nb)  + d_ver_y * (y0 + cb_height - y_nb);
    }
    for (int i = 0; i < num_cps; i++) {
        ff_vvc_round_mv(cps + i, 0, 7);
        ff_vvc_clip_mv(cps + i);
    }
}

//derive affine neighbour's postion, width and height,
static int affine_neighbour_cb(const VVCFrameContext *fc, const int x_nb, const int y_nb, int *x_cb, int *y_cb, int *cbw, int *cbh)
{
    const int log2_min_cb_size  = fc->ps.sps->min_cb_log2_size_y;
    const int min_cb_width      = fc->ps.pps->min_cb_width;
    const int x                 = x_nb >> log2_min_cb_size;
    const int y                 = y_nb >> log2_min_cb_size;
    const int motion_model_idc  = SAMPLE_CTB(fc->tab.mmi, x, y);
    if (motion_model_idc) {
        *x_cb = SAMPLE_CTB(fc->tab.cb_pos_x[0],  x, y);
        *y_cb = SAMPLE_CTB(fc->tab.cb_pos_y[0],  x, y);
        *cbw  = SAMPLE_CTB(fc->tab.cb_width[0],  x, y);
        *cbh  = SAMPLE_CTB(fc->tab.cb_height[0], x, y);
    }
    return motion_model_idc;
}

//part of 8.5.5.2 Derivation process for motion vectors and reference indices in subblock merge mode
static int affine_merge_candidate(const VVCLocalContext *lc, const int x_cand, const int y_cand, MotionInfo* mi)
{
    const VVCFrameContext *fc = lc->fc;
    int x, y, w, h, motion_model_idc;

    motion_model_idc = affine_neighbour_cb(fc, x_cand, y_cand, &x, &y, &w, &h);
    if (motion_model_idc) {
        const int min_pu_width = fc->ps.pps->min_pu_width;
        const MvField* tab_mvf = fc->tab.mvf;
        const MvField *mvf = &TAB_MVF(x, y);

        mi->bcw_idx   = mvf->bcw_idx;
        mi->pred_flag = mvf->pred_flag;
        for (int i = 0; i < 2; i++) {
            PredFlag mask = i + 1;
            if (mi->pred_flag & mask) {
                affine_cps_from_nb(lc, x, y, w, h, i, &mi->mv[i][0], motion_model_idc + 1);
            }
            mi->ref_idx[i] = mvf->ref_idx[i];
        }
        mi->motion_model_idc = motion_model_idc;
    }
    return motion_model_idc;
}

static int affine_merge_from_nbs(NeighbourContext *ctx, const NeighbourIdx *nbs, const int num_nbs, MotionInfo* cand)
{
    const VVCLocalContext *lc = ctx->lc;
    for (int i = 0; i < num_nbs; i++) {
        Neighbour *n = &ctx->neighbours[nbs[i]];
        if (check_available(n, lc, 1) && affine_merge_candidate(lc, n->x, n->y, cand))
            return 1;
    }
    return 0;
}
#define AFFINE_MERGE_FROM_NBS(nbs) affine_merge_from_nbs(&nctx, nbs, FF_ARRAY_ELEMS(nbs), mi)


static const MvField* derive_corner_mvf(NeighbourContext *ctx, const NeighbourIdx *neighbour, const int num_neighbour)
{
    const VVCFrameContext *fc   = ctx->lc->fc;
    const MvField *tab_mvf      = fc->tab.mvf;
    const int min_pu_width      = fc->ps.pps->min_pu_width;
    for (int i = 0; i < num_neighbour; i++) {
        Neighbour *n = &ctx->neighbours[neighbour[i]];
        if (check_available(n, ctx->lc, 1)) {
            return &TAB_MVF(n->x, n->y);
        }
    }
    return NULL;
}

#define DERIVE_CORNER_MV(nbs) derive_corner_mvf(nctx, nbs, FF_ARRAY_ELEMS(nbs))

// check if the mv's and refidx are the same between A and B
static av_always_inline int compare_pf_ref_idx(const MvField *A, const struct MvField *B, const struct MvField *C, const int lx)
{

    const PredFlag mask = (lx + 1) & A->pred_flag;
    if (!(B->pred_flag & mask))
        return 0;
    if (A->ref_idx[lx] != B->ref_idx[lx])
        return 0;
    if (C) {
        if (!(C->pred_flag & mask))
            return 0;
        if (A->ref_idx[lx] != C->ref_idx[lx])
            return 0;
    }
    return 1;
}

static av_always_inline void sb_clip_location(const VVCLocalContext *lc,
    const int x_ctb, const int y_ctb, const Mv* temp_mv, int *x, int *y)
{
    const VVCFrameContext *fc = lc->fc;
    const VVCPPS *pps         = fc->ps.pps;
    const int ctb_log2_size   = fc->ps.sps->ctb_log2_size_y;
    const int subpic_idx      = lc->sc->sh.r->curr_subpic_idx;
    const int x_end           = pps->subpic_x[subpic_idx] + pps->subpic_width[subpic_idx];
    const int y_end           = pps->subpic_y[subpic_idx] + pps->subpic_height[subpic_idx];

    *x = av_clip(*x + temp_mv->x, x_ctb, FFMIN(x_end - 1, x_ctb + (1 << ctb_log2_size) + 3)) & ~7;
    *y = av_clip(*y + temp_mv->y, y_ctb, FFMIN(y_end - 1, y_ctb + (1 << ctb_log2_size) - 1)) & ~7;
}

static void sb_temproal_luma_motion(const VVCLocalContext *lc,
    const int x_ctb, const int y_ctb, const Mv *temp_mv,
    int x, int y, uint8_t *pred_flag, Mv *mv)
{
    MvField temp_col;
    Mv* mvLXCol;
    const int refIdxLx          = 0;
    const VVCFrameContext *fc   = lc->fc;
    const VVCSH *sh             = &lc->sc->sh;
    const int min_pu_width      = fc->ps.pps->min_pu_width;
    VVCFrame *ref               = fc->ref->collocated_ref;
    MvField *tab_mvf            = ref->tab_dmvr_mvf;
    int colPic                  = ref->poc;
    int X                       = 0;

    sb_clip_location(lc, x_ctb, y_ctb, temp_mv, &x, &y);

    temp_col    = TAB_MVF(x, y);
    mvLXCol     = mv + 0;
    *pred_flag = DERIVE_TEMPORAL_COLOCATED_MVS(1);
    if (IS_B(sh->r)) {
        X = 1;
        mvLXCol = mv + 1;
        *pred_flag |= (DERIVE_TEMPORAL_COLOCATED_MVS(1)) << 1;
    }
}

//8.5.5.4 Derivation process for subblock-based temporal merging base motion data
static int sb_temporal_luma_motion_data(const VVCLocalContext *lc, const MvField *a1,
    const int x_ctb, const int y_ctb, MvField *ctr_mvf, Mv *temp_mv)
{
    const VVCFrameContext *fc   = lc->fc;
    const RefPicList *rpl       = lc->sc->rpl;
    const CodingUnit *cu        = lc->cu;
    const int x                 = cu->x0  + cu->cb_width / 2;
    const int y                 = cu->y0  + cu->cb_height / 2;
    const VVCFrame *ref         = fc->ref->collocated_ref;

    int colPic;

    memset(temp_mv, 0, sizeof(*temp_mv));

    if (!ref) {
        memset(ctr_mvf, 0, sizeof(*ctr_mvf));
        return 0;
    }

    colPic  = ref->poc;

    if (a1) {
        if ((a1->pred_flag & PF_L0) && colPic == rpl[L0].refs[a1->ref_idx[L0]].poc)
            *temp_mv = a1->mv[0];
        else if ((a1->pred_flag & PF_L1) && colPic == rpl[L1].refs[a1->ref_idx[L1]].poc)
            *temp_mv = a1->mv[1];
        ff_vvc_round_mv(temp_mv, 0, 4);
    }
    sb_temproal_luma_motion(lc, x_ctb, y_ctb, temp_mv, x, y, &ctr_mvf->pred_flag , ctr_mvf->mv);

    return ctr_mvf->pred_flag;
}


//8.5.5.3 Derivation process for subblock-based temporal merging candidates
static int sb_temporal_merge_candidate(const VVCLocalContext* lc, NeighbourContext *nctx, PredictionUnit *pu)
{
    const VVCFrameContext *fc   = lc->fc;
    const CodingUnit *cu        = lc->cu;
    const VVCSPS *sps           = fc->ps.sps;
    const VVCPH *ph             = &fc->ps.ph;
    MotionInfo *mi              = &pu->mi;
    const int ctb_log2_size     = sps->ctb_log2_size_y;
    const int x0                = cu->x0;
    const int y0                = cu->y0;
    const NeighbourIdx n        = A1;
    const MvField *a1;
    MvField ctr_mvf;
    LOCAL_ALIGNED_8(Mv, temp_mv, [1]);
    const int x_ctb = (x0 >> ctb_log2_size) << ctb_log2_size;
    const int y_ctb = (y0 >> ctb_log2_size) << ctb_log2_size;


    if (!ph->r->ph_temporal_mvp_enabled_flag ||
        !sps->r->sps_sbtmvp_enabled_flag ||
        (cu->cb_width < 8 && cu->cb_height < 8))
        return 0;

    mi->num_sb_x = cu->cb_width >> 3;
    mi->num_sb_y = cu->cb_height >> 3;

    a1 = derive_corner_mvf(nctx, &n, 1);
    if (sb_temporal_luma_motion_data(lc, a1, x_ctb, y_ctb, &ctr_mvf, temp_mv)) {
        const int sbw = cu->cb_width / mi->num_sb_x;
        const int sbh = cu->cb_height / mi->num_sb_y;
        MvField mvf = {0};
        for (int sby = 0; sby < mi->num_sb_y; sby++) {
            for (int sbx = 0; sbx < mi->num_sb_x; sbx++) {
                int x = x0 + sbx * sbw;
                int y = y0 + sby * sbh;
                sb_temproal_luma_motion(lc, x_ctb, y_ctb, temp_mv, x + sbw / 2, y +  sbh / 2, &mvf.pred_flag, mvf.mv);
                if (!mvf.pred_flag) {
                    mvf.pred_flag = ctr_mvf.pred_flag;
                    memcpy(mvf.mv, ctr_mvf.mv, sizeof(mvf.mv));
                }
                ff_vvc_set_mvf(lc, x, y, sbw, sbh, &mvf);
            }
        }
        return 1;
    }
    return 0;
}

static int affine_merge_const1(const MvField *c0, const MvField *c1, const MvField *c2, MotionInfo *mi)
{
    if (c0 && c1 && c2) {
        mi->pred_flag = 0;
        for (int i = 0; i < 2; i++) {
            PredFlag mask = i + 1;
            if (compare_pf_ref_idx(c0, c1, c2, i)) {
                mi->pred_flag |= mask;
                mi->ref_idx[i] = c0->ref_idx[i];
                mi->mv[i][0] = c0->mv[i];
                mi->mv[i][1] = c1->mv[i];
                mi->mv[i][2] = c2->mv[i];
            }
        }
        if (mi->pred_flag) {
            if (mi->pred_flag == PF_BI)
                mi->bcw_idx = c0->bcw_idx;
            mi->motion_model_idc = MOTION_6_PARAMS_AFFINE;
            return 1;
        }
    }
    return 0;
}

static int affine_merge_const2(const MvField *c0, const MvField *c1, const MvField *c3, MotionInfo *mi)
{
    if (c0 && c1 && c3) {
        mi->pred_flag = 0;
        for (int i = 0; i < 2; i++) {
            PredFlag mask = i + 1;
            if (compare_pf_ref_idx(c0, c1, c3, i)) {
                mi->pred_flag |= mask;
                mi->ref_idx[i] = c0->ref_idx[i];
                mi->mv[i][0] = c0->mv[i];
                mi->mv[i][1] = c1->mv[i];
                mi->mv[i][2].x = c3->mv[i].x + c0->mv[i].x - c1->mv[i].x;
                mi->mv[i][2].y = c3->mv[i].y + c0->mv[i].y - c1->mv[i].y;
                ff_vvc_clip_mv(&mi->mv[i][2]);
            }
        }
        if (mi->pred_flag) {
            mi->bcw_idx = mi->pred_flag == PF_BI ? c0->bcw_idx : 0;
            mi->motion_model_idc = MOTION_6_PARAMS_AFFINE;
            return 1;
        }
    }
    return 0;
}

static int affine_merge_const3(const MvField *c0, const MvField *c2, const MvField *c3, MotionInfo *mi)
{
    if (c0 && c2 && c3) {
        mi->pred_flag = 0;
        for (int i = 0; i < 2; i++) {
            PredFlag mask = i + 1;
            if (compare_pf_ref_idx(c0, c2, c3, i)) {
                mi->pred_flag |= mask;
                mi->ref_idx[i] = c0->ref_idx[i];
                mi->mv[i][0] = c0->mv[i];
                mi->mv[i][1].x = c3->mv[i].x + c0->mv[i].x - c2->mv[i].x;
                mi->mv[i][1].y = c3->mv[i].y + c0->mv[i].y - c2->mv[i].y;
                ff_vvc_clip_mv(&mi->mv[i][1]);
                mi->mv[i][2] = c2->mv[i];
            }
        }
        if (mi->pred_flag) {
            mi->bcw_idx = mi->pred_flag == PF_BI ? c0->bcw_idx : 0;
            mi->motion_model_idc = MOTION_6_PARAMS_AFFINE;
            return 1;
        }
    }
    return 0;
}

static int affine_merge_const4(const MvField *c1, const MvField *c2, const MvField *c3, MotionInfo *mi)
{
    if (c1 && c2 && c3) {
        mi->pred_flag = 0;
        for (int i = 0; i < 2; i++) {
            PredFlag mask = i + 1;
            if (compare_pf_ref_idx(c1, c2, c3, i)) {
                mi->pred_flag |= mask;
                mi->ref_idx[i] = c1->ref_idx[i];
                mi->mv[i][0].x = c1->mv[i].x + c2->mv[i].x - c3->mv[i].x;
                mi->mv[i][0].y = c1->mv[i].y + c2->mv[i].y - c3->mv[i].y;
                ff_vvc_clip_mv(&mi->mv[i][0]);
                mi->mv[i][1] = c1->mv[i];
                mi->mv[i][2] = c2->mv[i];
            }
        }
        if (mi->pred_flag) {
            mi->bcw_idx = mi->pred_flag == PF_BI ? c1->bcw_idx : 0;
            mi->motion_model_idc = MOTION_6_PARAMS_AFFINE;
            return 1;
        }
    }
    return 0;
}

static int affine_merge_const5(const MvField *c0, const MvField *c1, MotionInfo *mi)
{
    if (c0 && c1) {
        mi->pred_flag = 0;
        for (int i = 0; i < 2; i++) {
            PredFlag mask = i + 1;
            if (compare_pf_ref_idx(c0, c1, NULL, i)) {
                mi->pred_flag |= mask;
                mi->ref_idx[i] = c0->ref_idx[i];
                mi->mv[i][0] = c0->mv[i];
                mi->mv[i][1] = c1->mv[i];
            }
        }
        if (mi->pred_flag) {
            if (mi->pred_flag == PF_BI)
                mi->bcw_idx = c0->bcw_idx;
            mi->motion_model_idc = MOTION_4_PARAMS_AFFINE;
            return 1;
        }
    }
    return 0;
}

static int affine_merge_const6(const MvField* c0, const MvField* c2, const int cb_width, const int cb_height, MotionInfo *mi)
{
    if (c0 && c2) {
        const int shift = 7 + av_log2(cb_width) - av_log2(cb_height);
        mi->pred_flag = 0;
        for (int i = 0; i < 2; i++) {
            PredFlag mask = i + 1;
            if (compare_pf_ref_idx(c0, c2, NULL, i)) {
                mi->pred_flag |= mask;
                mi->ref_idx[i] = c0->ref_idx[i];
                mi->mv[i][0] = c0->mv[i];
                mi->mv[i][1].x = (c0->mv[i].x * (1 << 7)) + ((c2->mv[i].y - c0->mv[i].y) * (1 << shift));
                mi->mv[i][1].y = (c0->mv[i].y * (1 << 7)) - ((c2->mv[i].x - c0->mv[i].x) * (1 << shift));
                ff_vvc_round_mv(&mi->mv[i][1], 0, 7);
                ff_vvc_clip_mv(&mi->mv[i][1]);
            }
        }
        if (mi->pred_flag) {
            if (mi->pred_flag == PF_BI)
                mi->bcw_idx = c0->bcw_idx;
            mi->motion_model_idc = MOTION_4_PARAMS_AFFINE;
            return 1;
        }
    }
    return 0;
}

static void affine_merge_zero_motion(const VVCLocalContext *lc, MotionInfo *mi)
{
    const CodingUnit *cu = lc->cu;

    memset(mi, 0, sizeof(*mi));
    mi->pred_flag    = PF_L0 + (IS_B(lc->sc->sh.r) << 1);
    mi->motion_model_idc = MOTION_4_PARAMS_AFFINE;
    mi->num_sb_x = cu->cb_width >> MIN_PU_LOG2;
    mi->num_sb_y = cu->cb_height >> MIN_PU_LOG2;
}

//8.5.5.6 Derivation process for constructed affine control point motion vector merging candidates
static int affine_merge_const_candidates(const VVCLocalContext *lc, MotionInfo *mi,
    NeighbourContext *nctx, const int merge_subblock_idx, int num_cands)
{
    const VVCFrameContext *fc   = lc->fc;
    const CodingUnit *cu        = lc->cu;
    const NeighbourIdx tl[]     = { B2, B3, A2 };
    const NeighbourIdx tr[]     = { B1, B0};
    const NeighbourIdx bl[]     = { A1, A0};
    const MvField *c0, *c1, *c2;

    c0 = DERIVE_CORNER_MV(tl);
    c1 = DERIVE_CORNER_MV(tr);
    c2 = DERIVE_CORNER_MV(bl);

    if (fc->ps.sps->r->sps_6param_affine_enabled_flag) {
        MvField corner3, *c3 = NULL;
        //Const1
        if (affine_merge_const1(c0, c1, c2, mi)) {
            if (merge_subblock_idx == num_cands)
                return 1;
            num_cands++;
        }

        memset(&corner3, 0, sizeof(corner3));
        if (fc->ps.ph.r->ph_temporal_mvp_enabled_flag){
            const int available_l0 = temporal_luma_motion_vector(lc, 0, corner3.mv + 0, 0, 0, 0);
            const int available_l1 = (lc->sc->sh.r->sh_slice_type == VVC_SLICE_TYPE_B) ?
                temporal_luma_motion_vector(lc, 0, corner3.mv + 1, 1, 0, 0) : 0;

            corner3.pred_flag = available_l0 + (available_l1 << 1);
            if (corner3.pred_flag)
                c3 = &corner3;
        }

        //Const2
        if (affine_merge_const2(c0, c1, c3, mi)) {
            if (merge_subblock_idx == num_cands)
                return 1;
            num_cands++;
        }

        //Const3
        if (affine_merge_const3(c0, c2, c3, mi)) {
           if (merge_subblock_idx == num_cands)
               return 1;
           num_cands++;
        }

        //Const4
        if (affine_merge_const4(c1, c2, c3, mi)) {
           if (merge_subblock_idx == num_cands)
               return 1;
           num_cands++;
        }
    }

    //Const5
    if (affine_merge_const5(c0, c1, mi)) {
        if (merge_subblock_idx == num_cands)
            return 1;
        num_cands++;
    }

    if (affine_merge_const6(c0, c2, cu->cb_width, cu->cb_height, mi)) {
        if (merge_subblock_idx == num_cands)
            return 1;
    }
    return 0;
}

//8.5.5.2 Derivation process for motion vectors and reference indices in subblock merge mode
//return 1 if candidate is SbCol
static int sb_mv_merge_mode(const VVCLocalContext *lc, const int merge_subblock_idx, PredictionUnit *pu)
{
    const VVCSPS *sps       = lc->fc->ps.sps;
    const CodingUnit *cu    = lc->cu;
    MotionInfo *mi          = &pu->mi;
    int num_cands           = 0;
    NeighbourContext nctx;

    init_neighbour_context(&nctx, lc);

    //SbCol
    if (sb_temporal_merge_candidate(lc, &nctx, pu)) {
        if (merge_subblock_idx == num_cands)
            return 1;
        num_cands++;
    }

    pu->inter_affine_flag = 1;
    mi->num_sb_x  = cu->cb_width >> MIN_PU_LOG2;
    mi->num_sb_y  = cu->cb_height >> MIN_PU_LOG2;

    if (sps->r->sps_affine_enabled_flag) {
        const NeighbourIdx ak[] = { A0, A1 };
        const NeighbourIdx bk[] = { B0, B1, B2 };
        //A
        if (AFFINE_MERGE_FROM_NBS(ak)) {
            if (merge_subblock_idx == num_cands)
                return 0;
            num_cands++;
        }

        //B
        if (AFFINE_MERGE_FROM_NBS(bk)) {
            if (merge_subblock_idx == num_cands)
                return 0;
            num_cands++;
        }

        //Const1 to Const6
        if (affine_merge_const_candidates(lc, mi, &nctx, merge_subblock_idx, num_cands))
            return 0;
    }
    //Zero
    affine_merge_zero_motion(lc, mi);
    return 0;
}

void ff_vvc_sb_mv_merge_mode(VVCLocalContext *lc, const int merge_subblock_idx, PredictionUnit *pu)
{
    const CodingUnit *cu = lc->cu;
    ff_vvc_set_neighbour_available(lc, cu->x0, cu->y0, cu->cb_width, cu->cb_height);
    if (!sb_mv_merge_mode(lc, merge_subblock_idx, pu)) {
        ff_vvc_store_sb_mvs(lc, pu);
    }
}

static int mvp_candidate(const VVCLocalContext *lc, const int x_cand, const int y_cand,
    const int lx, const int8_t *ref_idx, Mv *mv)
{
    const VVCFrameContext *fc       = lc->fc;
    const RefPicList *rpl           = lc->sc->rpl;
    const int min_pu_width          = fc->ps.pps->min_pu_width;
    const MvField* tab_mvf          = fc->tab.mvf;
    const MvField *mvf              = &TAB_MVF(x_cand, y_cand);
    const PredFlag maskx = lx + 1;
    const int poc = rpl[lx].refs[ref_idx[lx]].poc;
    int available = 0;

    if ((mvf->pred_flag & maskx) && rpl[lx].refs[mvf->ref_idx[lx]].poc == poc) {
        available = 1;
        *mv = mvf->mv[lx];
    } else {
        const int ly = !lx;
        const PredFlag masky = ly + 1;
        if ((mvf->pred_flag & masky) && rpl[ly].refs[mvf->ref_idx[ly]].poc == poc) {
            available = 1;
            *mv = mvf->mv[ly];
        }
    }

    return available;
}

static int affine_mvp_candidate(const VVCLocalContext *lc,
    const int x_cand, const int y_cand, const int lx, const int8_t *ref_idx,
    Mv *cps, const int num_cp)
{
    const VVCFrameContext *fc = lc->fc;
    int x_nb, y_nb, nbw, nbh, motion_model_idc, available = 0;

    motion_model_idc = affine_neighbour_cb(fc, x_cand, y_cand, &x_nb, &y_nb, &nbw, &nbh);
    if (motion_model_idc) {
        const int min_pu_width = fc->ps.pps->min_pu_width;
        const MvField* tab_mvf = fc->tab.mvf;
        const MvField *mvf = &TAB_MVF(x_nb, y_nb);
        RefPicList* rpl = lc->sc->rpl;
        const PredFlag maskx = lx + 1;
        const int poc = rpl[lx].refs[ref_idx[lx]].poc;

        if ((mvf->pred_flag & maskx) && rpl[lx].refs[mvf->ref_idx[lx]].poc == poc) {
            available = 1;
            affine_cps_from_nb(lc, x_nb, y_nb, nbw, nbh, lx, cps, num_cp);
        } else {
            const int ly = !lx;
            const PredFlag masky = ly + 1;
            if ((mvf->pred_flag & masky) && rpl[ly].refs[mvf->ref_idx[ly]].poc == poc) {
                available = 1;
                affine_cps_from_nb(lc, x_nb, y_nb, nbw, nbh, ly, cps, num_cp);
            }
        }

    }
    return available;
}

static int mvp_from_nbs(NeighbourContext *ctx,
    const NeighbourIdx *nbs, const int num_nbs, const int lx, const int8_t *ref_idx, const int amvr_shift,
    Mv *cps, const int num_cps)
{
    const VVCLocalContext *lc   = ctx->lc;
    int available               = 0;

    for (int i = 0; i < num_nbs; i++) {
        Neighbour *n = &ctx->neighbours[nbs[i]];
        if (check_available(n, lc, 0)) {
            if (num_cps > 1)
                available = affine_mvp_candidate(lc, n->x, n->y, lx, ref_idx, cps, num_cps);
            else
                available = mvp_candidate(lc, n->x, n->y, lx, ref_idx, cps);
            if (available) {
                for (int c = 0; c < num_cps; c++)
                    ff_vvc_round_mv(cps + c, amvr_shift, amvr_shift);
                return 1;
            }
        }
    }
    return 0;
}

//get mvp from neighbours
#define AFFINE_MVP_FROM_NBS(nbs)                                                         \
    mvp_from_nbs(&nctx, nbs, FF_ARRAY_ELEMS(nbs), lx, ref_idx, amvr_shift, cps, num_cp)  \

#define MVP_FROM_NBS(nbs)                                                                \
    mvp_from_nbs(&nctx, nbs, FF_ARRAY_ELEMS(nbs), lx, ref_idx, amvr_shift, mv, 1)        \

static int mvp_spatial_candidates(const VVCLocalContext *lc,
    const int mvp_lx_flag, const int lx, const int8_t* ref_idx, const int amvr_shift,
    Mv* mv, int *nb_merge_cand)
{
    const NeighbourIdx ak[] = { A0, A1 };
    const NeighbourIdx bk[] = { B0, B1, B2 };
    NeighbourContext nctx;
    int available_a, num_cands = 0;
    LOCAL_ALIGNED_8(Mv, mv_a, [1]);

    init_neighbour_context(&nctx, lc);

    available_a = MVP_FROM_NBS(ak);
    if (available_a) {
        if (mvp_lx_flag == num_cands)
            return 1;
        num_cands++;
        *mv_a = *mv;
    }
    if (MVP_FROM_NBS(bk)) {
        if (!available_a || !IS_SAME_MV(mv_a, mv)) {
            if (mvp_lx_flag == num_cands)
                return 1;
            num_cands++;
        }
    }
    *nb_merge_cand = num_cands;
    return 0;
}

static int mvp_temporal_candidates(const VVCLocalContext* lc,
    const int mvp_lx_flag, const int lx, const int8_t *ref_idx, const int amvr_shift,
    Mv* mv, int *num_cands)
{
    if (temporal_luma_motion_vector(lc, ref_idx[lx], mv, lx, 1, 0)) {
        if (mvp_lx_flag == *num_cands) {
            ff_vvc_round_mv(mv, amvr_shift, amvr_shift);
            return 1;
        }
        (*num_cands)++;
    }
    return 0;

}

static int mvp_history_candidates(const VVCLocalContext *lc,
    const int mvp_lx_flag, const int lx, const int8_t ref_idx, const int amvr_shift,
    Mv *mv, int num_cands)
{
    const EntryPoint* ep            = lc->ep;
    const RefPicList* rpl           = lc->sc->rpl;
    const int poc                   = rpl[lx].refs[ref_idx].poc;

    if (ep->num_hmvp == 0)
        return 0;
    for (int i = 1; i <= FFMIN(4, ep->num_hmvp); i++) {
        const MvField* h = &ep->hmvp[i - 1];
        for (int j = 0; j < 2; j++) {
            const int ly = (j ? !lx : lx);
            PredFlag mask = PF_L0 + ly;
            if ((h->pred_flag & mask) && poc == rpl[ly].refs[h->ref_idx[ly]].poc) {
                if (mvp_lx_flag == num_cands) {
                    *mv = h->mv[ly];
                    ff_vvc_round_mv(mv, amvr_shift, amvr_shift);
                    return 1;
                }
                num_cands++;
            }
        }
    }
    return 0;
}

//8.5.2.8 Derivation process for luma motion vector prediction
static void mvp(const VVCLocalContext *lc, const int mvp_lx_flag, const int lx,
    const int8_t *ref_idx, const int amvr_shift, Mv *mv)
{
    int num_cands;

    if (mvp_spatial_candidates(lc, mvp_lx_flag, lx, ref_idx, amvr_shift, mv, &num_cands))
        return;

    if (mvp_temporal_candidates(lc, mvp_lx_flag, lx, ref_idx, amvr_shift, mv, &num_cands))
        return;

    if (mvp_history_candidates(lc, mvp_lx_flag, lx, ref_idx[lx], amvr_shift, mv, num_cands))
        return;

    memset(mv, 0, sizeof(*mv));
}

void ff_vvc_mvp(VVCLocalContext *lc, const int *mvp_lx_flag, const int amvr_shift,  MotionInfo *mi)
{
    const CodingUnit *cu    = lc->cu;
    mi->num_sb_x            = 1;
    mi->num_sb_y            = 1;

    ff_vvc_set_neighbour_available(lc, cu->x0, cu->y0, cu->cb_width, cu->cb_height);
    if (mi->pred_flag != PF_L1)
        mvp(lc, mvp_lx_flag[L0], L0, mi->ref_idx, amvr_shift, &mi->mv[L0][0]);
    if (mi->pred_flag != PF_L0)
        mvp(lc, mvp_lx_flag[L1], L1, mi->ref_idx, amvr_shift, &mi->mv[L1][0]);
}

static int ibc_spatial_candidates(const VVCLocalContext *lc, const int merge_idx, Mv *const cand_list, int *nb_merge_cand)
{
    const CodingUnit *cu      = lc->cu;
    const VVCFrameContext *fc = lc->fc;
    const int min_pu_width    = fc->ps.pps->min_pu_width;
    const MvField *tab_mvf    = fc->tab.mvf;
    const int is_gt4by4       = (cu->cb_width * cu->cb_height) > 16;
    int num_cands             = 0;

    NeighbourContext nctx;
    Neighbour *a1 = &nctx.neighbours[A1];
    Neighbour *b1 = &nctx.neighbours[B1];

    if (!is_gt4by4) {
        *nb_merge_cand = 0;
        return 0;
    }

    init_neighbour_context(&nctx, lc);

    if (check_available(a1, lc, 1)) {
        cand_list[num_cands++] = TAB_MVF(a1->x, a1->y).mv[L0];
        if (num_cands > merge_idx)
            return 1;
    }
    if (check_available(b1, lc, 1)) {
        const MvField *mvf = &TAB_MVF(b1->x, b1->y);
        if (!num_cands || !IS_SAME_MV(&cand_list[0], mvf->mv)) {
            cand_list[num_cands++] = mvf->mv[L0];
            if (num_cands > merge_idx)
                return 1;
        }
    }

    *nb_merge_cand = num_cands;
    return 0;
}

static int ibc_history_candidates(const VVCLocalContext *lc,
    const int merge_idx, Mv *cand_list, int *nb_merge_cand)
{
    const CodingUnit *cu = lc->cu;
    const EntryPoint *ep = lc->ep;
    const int is_gt4by4  = (cu->cb_width * cu->cb_height) > 16;
    int num_cands        = *nb_merge_cand;

    for (int i = 1; i <= ep->num_hmvp_ibc; i++) {
        int same_motion = 0;
        const MvField *mvf = &ep->hmvp_ibc[ep->num_hmvp_ibc - i];
        for (int j = 0; j < *nb_merge_cand; j++) {
            same_motion = is_gt4by4 && i == 1 && IS_SAME_MV(&mvf->mv[L0], &cand_list[j]);
            if (same_motion)
                break;
        }
        if (!same_motion) {
            cand_list[num_cands++] = mvf->mv[L0];
            if (num_cands > merge_idx)
                return 1;
        }
    }

    *nb_merge_cand = num_cands;
    return 0;
}

#define MV_BITS 18
#define IBC_SHIFT(v) ((v) >= (1 << (MV_BITS - 1)) ? ((v) - (1 << MV_BITS)) : (v))

static inline void ibc_add_mvp(Mv *mv, Mv *mvp, const int amvr_shift)
{
    ff_vvc_round_mv(mv, amvr_shift, 0);
    ff_vvc_round_mv(mvp, amvr_shift, amvr_shift);
    mv->x = IBC_SHIFT(mv->x + mvp->x);
    mv->y = IBC_SHIFT(mv->y + mvp->y);
}

static void ibc_merge_candidates(VVCLocalContext *lc, const int merge_idx, Mv *mv)
{
    const CodingUnit *cu = lc->cu;
    LOCAL_ALIGNED_8(Mv, cand_list, [MRG_MAX_NUM_CANDS]);
    int nb_cands;

    ff_vvc_set_neighbour_available(lc, cu->x0, cu->y0, cu->cb_width, cu->cb_height);
    if (ibc_spatial_candidates(lc, merge_idx, cand_list, &nb_cands) ||
        ibc_history_candidates(lc, merge_idx, cand_list, &nb_cands)) {
        *mv = cand_list[merge_idx];
        return;
    }

    //zero mv
    memset(mv, 0, sizeof(*mv));
}

void ff_vvc_mvp_ibc(VVCLocalContext *lc, const int mvp_l0_flag, const int amvr_shift, Mv *mv)
{
    LOCAL_ALIGNED_8(Mv, mvp, [1]);

    ibc_merge_candidates(lc, mvp_l0_flag, mvp);
    ibc_add_mvp(mv, mvp, amvr_shift);
}

void ff_vvc_luma_mv_merge_ibc(VVCLocalContext *lc, const int merge_idx, Mv *mv)
{
    ibc_merge_candidates(lc, merge_idx, mv);
}

static int affine_mvp_constructed_cp(NeighbourContext *ctx,
    const NeighbourIdx *neighbour, const int num_neighbour,
    const int lx, const int8_t ref_idx, const int amvr_shift, Mv *cp)
{
    const VVCLocalContext *lc       = ctx->lc;
    const VVCFrameContext *fc       = lc->fc;
    const MvField *tab_mvf          = fc->tab.mvf;
    const int min_pu_width          = fc->ps.pps->min_pu_width;
    const RefPicList* rpl           = lc->sc->rpl;
    int available                   = 0;

    for (int i = 0; i < num_neighbour; i++) {
        Neighbour *n = &ctx->neighbours[neighbour[i]];
        if (check_available(n, ctx->lc, 0)) {
            const PredFlag maskx = lx + 1;
            const MvField* mvf = &TAB_MVF(n->x, n->y);
            const int poc = rpl[lx].refs[ref_idx].poc;
            if ((mvf->pred_flag & maskx) && rpl[lx].refs[mvf->ref_idx[lx]].poc == poc) {
                available = 1;
                *cp = mvf->mv[lx];
            } else {
                const int ly = !lx;
                const PredFlag masky = ly + 1;
                if ((mvf->pred_flag & masky) && rpl[ly].refs[mvf->ref_idx[ly]].poc == poc) {
                    available = 1;
                    *cp = mvf->mv[ly];
                }
            }
            if (available) {
                ff_vvc_round_mv(cp, amvr_shift, amvr_shift);
                return 1;
            }
        }
    }
    return 0;
}

#define AFFINE_MVP_CONSTRUCTED_CP(cands, cp)                                    \
    affine_mvp_constructed_cp(nctx, cands, FF_ARRAY_ELEMS(cands), lx, ref_idx,  \
        amvr_shift, cp)

//8.5.5.8 Derivation process for constructed affine control point motion vector prediction candidates
static int affine_mvp_const1(NeighbourContext* nctx,
    const int lx, const int8_t ref_idx, const int amvr_shift,
    Mv *cps, int *available)
{
    const NeighbourIdx tl[] = { B2, B3, A2 };
    const NeighbourIdx tr[] = { B1, B0 };
    const NeighbourIdx bl[] = { A1, A0 };

    available[0] = AFFINE_MVP_CONSTRUCTED_CP(tl, cps + 0);
    available[1] = AFFINE_MVP_CONSTRUCTED_CP(tr, cps + 1);
    available[2] = AFFINE_MVP_CONSTRUCTED_CP(bl, cps + 2);
    return available[0] && available[1];
}

//8.5.5.7 item 7
static void affine_mvp_const2(const int idx, Mv *cps, const int num_cp)
{
    const Mv mv = cps[idx];
    for (int j = 0; j < num_cp; j++)
        cps[j] = mv;
}

//8.5.5.7 Derivation process for luma affine control point motion vector predictors
static void affine_mvp(const VVCLocalContext *lc,
    const int mvp_lx_flag, const int lx, const int8_t *ref_idx, const int amvr_shift,
    MotionModelIdc motion_model_idc, Mv *cps)
{
    const NeighbourIdx ak[] = { A0, A1 };
    const NeighbourIdx bk[] = { B0, B1, B2 };
    const int num_cp = motion_model_idc + 1;
    NeighbourContext nctx;
    int available[MAX_CONTROL_POINTS];
    int num_cands    = 0;

    init_neighbour_context(&nctx, lc);
    //Ak
    if (AFFINE_MVP_FROM_NBS(ak)) {
        if (mvp_lx_flag == num_cands)
            return;
        num_cands++;
    }
    //Bk
    if (AFFINE_MVP_FROM_NBS(bk)) {
        if (mvp_lx_flag == num_cands)
            return;
        num_cands++;
    }

    //Const1
    if (affine_mvp_const1(&nctx, lx, ref_idx[lx], amvr_shift, cps, available)) {
        if (available[2] || motion_model_idc == MOTION_4_PARAMS_AFFINE) {
            if (mvp_lx_flag == num_cands)
                return;
            num_cands++;
        }
    }

    //Const2
    for (int i = 2; i >= 0; i--) {
        if (available[i]) {
            if (mvp_lx_flag == num_cands) {
                affine_mvp_const2(i, cps, num_cp);
                return;
            }
            num_cands++;
        }
    }
    if (temporal_luma_motion_vector(lc, ref_idx[lx], cps, lx, 1, 0)) {
        if (mvp_lx_flag == num_cands) {
            ff_vvc_round_mv(cps, amvr_shift, amvr_shift);
            for (int i = 1; i < num_cp; i++)
                cps[i] = cps[0];
            return;
        }
        num_cands++;
    }

    //Zero Mv
    memset(cps, 0, num_cp * sizeof(Mv));
}

void ff_vvc_affine_mvp(VVCLocalContext *lc, const int *mvp_lx_flag, const int amvr_shift,  MotionInfo *mi)
{
    const CodingUnit *cu = lc->cu;

    mi->num_sb_x = cu->cb_width >> MIN_PU_LOG2;
    mi->num_sb_y = cu->cb_height >> MIN_PU_LOG2;

    ff_vvc_set_neighbour_available(lc, cu->x0, cu->y0, cu->cb_width, cu->cb_height);
    if (mi->pred_flag != PF_L1)
        affine_mvp(lc, mvp_lx_flag[L0], L0, mi->ref_idx, amvr_shift, mi->motion_model_idc, &mi->mv[L0][0]);
    if (mi->pred_flag != PF_L0)
        affine_mvp(lc, mvp_lx_flag[L1], L1, mi->ref_idx, amvr_shift, mi->motion_model_idc, &mi->mv[L1][0]);
}

//8.5.2.14 Rounding process for motion vectors
void ff_vvc_round_mv(Mv *mv, const int lshift, const int rshift)
{
    if (rshift) {
        const int offset = 1 << (rshift - 1);
        mv->x = ((mv->x + offset - (mv->x >= 0)) >> rshift) * (1 << lshift);
        mv->y = ((mv->y + offset - (mv->y >= 0)) >> rshift) * (1 << lshift);
    } else {
        mv->x = mv->x * (1 << lshift);
        mv->y = mv->y * (1 << lshift);
    }
}

void ff_vvc_clip_mv(Mv *mv)
{
    mv->x = av_clip(mv->x, -(1 << 17), (1 << 17) - 1);
    mv->y = av_clip(mv->y, -(1 << 17), (1 << 17) - 1);
}

//8.5.2.1 Derivation process for motion vector components and reference indices
static av_always_inline int is_greater_mer(const VVCFrameContext *fc, const int x0, const int y0, const int x0_br, const int y0_br)
{
    const uint8_t plevel = fc->ps.sps->log2_parallel_merge_level;

    return x0_br >> plevel > x0 >> plevel &&
           y0_br >> plevel > y0 >> plevel;
}

static void update_hmvp(MvField *hmvp, int *num_hmvp, const MvField *mvf,
    int (*compare)(const MvField *n, const MvField *o))
{
    int i;
    for (i = 0; i < *num_hmvp; i++) {
        if (compare(mvf, hmvp + i)) {
            (*num_hmvp)--;
            break;
        }
    }
    if (i == MAX_NUM_HMVP_CANDS) {
        (*num_hmvp)--;
        i = 0;
    }

    memmove(hmvp + i, hmvp + i + 1, (*num_hmvp - i) * sizeof(MvField));
    hmvp[(*num_hmvp)++] = *mvf;
}

static int compare_l0_mv(const MvField *n, const MvField *o)
{
    return IS_SAME_MV(&n->mv[L0], &o->mv[L0]);
}

//8.6.2.4 Derivation process for IBC history-based block vector candidates
//8.5.2.16 Updating process for the history-based motion vector predictor candidate list
void ff_vvc_update_hmvp(VVCLocalContext *lc, const MotionInfo *mi)
{
    const VVCFrameContext *fc   = lc->fc;
    const CodingUnit *cu        = lc->cu;
    const int min_pu_width      = fc->ps.pps->min_pu_width;
    const MvField *tab_mvf      = fc->tab.mvf;
    EntryPoint *ep              = lc->ep;

    if (cu->pred_mode == MODE_IBC) {
        if (cu->cb_width * cu->cb_height <= 16)
            return;
        update_hmvp(ep->hmvp_ibc, &ep->num_hmvp_ibc, &TAB_MVF(cu->x0, cu->y0), compare_l0_mv);
    } else {
        if (!is_greater_mer(fc, cu->x0, cu->y0, cu->x0 + cu->cb_width, cu->y0 + cu->cb_height))
            return;
        update_hmvp(ep->hmvp, &ep->num_hmvp, &TAB_MVF(cu->x0, cu->y0), compare_mv_ref_idx);
    }
}

MvField* ff_vvc_get_mvf(const VVCFrameContext *fc, const int x0, const int y0)
{
    const int min_pu_width  = fc->ps.pps->min_pu_width;
    MvField* tab_mvf        = fc->tab.mvf;

    return &TAB_MVF(x0, y0);
}