aboutsummaryrefslogtreecommitdiffstats
path: root/libavcodec/vvc/intra_template.c
blob: 62342c8142b079b27684d0ad828f706c42f181c5 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
/*
 * VVC intra prediction DSP
 *
 * Copyright (C) 2021-2023 Nuomi
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

#include "libavcodec/bit_depth_template.c"

#include "intra.h"

#define POS(x, y) src[(x) + stride * (y)]

static av_always_inline void FUNC(cclm_linear_pred)(VVCFrameContext *fc, const int x0, const int y0,
    const int w, const int h, const pixel* pdsy, const int *a, const int *b, const int *k)
{
    const VVCSPS *sps = fc->ps.sps;
    for (int i = 0; i < VVC_MAX_SAMPLE_ARRAYS - 1; i++) {
        const int c_idx = i + 1;
        const int x = x0 >> sps->hshift[c_idx];
        const int y = y0 >> sps->vshift[c_idx];
        const ptrdiff_t stride = fc->frame->linesize[c_idx] / sizeof(pixel);
        pixel *src = (pixel*)fc->frame->data[c_idx] + x + y * stride;
        for (int y = 0; y < h; y++) {
            for (int x = 0; x < w; x++) {
                const int dsy = pdsy[y * w + x];
                const int pred = ((dsy * a[i]) >> k[i]) + b[i];
                POS(x, y) = CLIP(pred);
            }
        }
    }
}

#define MAX_PICK_POS 4
#define TOP  0
#define LEFT 1

static av_always_inline void FUNC(cclm_get_params_default)(int *a, int *b, int *k)
{
    for (int i = 0; i < 2; i++) {
        a[i] = k[i] = 0;
        b[i] = 1 << (BIT_DEPTH - 1);
    }
}

static av_always_inline int FUNC(cclm_get_select_pos)(const VVCLocalContext *lc,
    const int x, const int y, const int w, const int h, const int avail_t, const int avail_l,
    int cnt[2], int pos[2][MAX_PICK_POS])
{
    const enum IntraPredMode mode = lc->cu->intra_pred_mode_c;
    const int num_is4 = !avail_t || !avail_l || mode != INTRA_LT_CCLM;
    int num_samp[2];

    if (mode == INTRA_LT_CCLM) {
        num_samp[TOP]  = avail_t ? w : 0;
        num_samp[LEFT] = avail_l ? h : 0;
    } else {
        num_samp[TOP] = (avail_t && mode == INTRA_T_CCLM) ? ff_vvc_get_top_available(lc,  x, y, w + FFMIN(w, h), 1) : 0;
        num_samp[LEFT] = (avail_l && mode == INTRA_L_CCLM) ? ff_vvc_get_left_available(lc, x, y, h + FFMIN(w, h), 1) : 0;
    }
    if (!num_samp[TOP] && !num_samp[LEFT]) {
        return 0;
    }
    for (int i = TOP; i <= LEFT; i++) {
        const int start = num_samp[i] >> (2 + num_is4);
        const int step  = FFMAX(1, num_samp[i] >> (1 + num_is4)) ;
        cnt[i] = FFMIN(num_samp[i], (1 + num_is4) << 1);
        for (int c = 0; c < cnt[i]; c++)
            pos[i][c] = start + c * step;
    }
    return 1;
}

static av_always_inline void FUNC(cclm_select_luma_444)(const pixel *src, const int step,
    const int cnt, const int pos[MAX_PICK_POS],  pixel *sel_luma)
{
    for (int i = 0; i < cnt; i++)
        sel_luma[i] = src[pos[i] * step];
}

static av_always_inline void FUNC(cclm_select_luma)(const VVCFrameContext *fc,
    const int x0, const int y0, const int avail_t, const int avail_l, const int cnt[2], const int pos[2][MAX_PICK_POS],
    pixel *sel_luma)
{
    const VVCSPS *sps = fc->ps.sps;

    const int b_ctu_boundary = !av_zero_extend(y0, sps->ctb_log2_size_y);
    const int hs = sps->hshift[1];
    const int vs = sps->vshift[1];
    const ptrdiff_t stride = fc->frame->linesize[0] / sizeof(pixel);

    if (!hs && !vs) {
        const pixel* src = (pixel*)fc->frame->data[0] + x0 + y0 * stride;
        FUNC(cclm_select_luma_444)(src - avail_t * stride, 1, cnt[TOP], pos[TOP], sel_luma);
        FUNC(cclm_select_luma_444)(src - avail_l, stride, cnt[LEFT], pos[LEFT], sel_luma + cnt[TOP]);
    } else {
        // top
        if (vs && !b_ctu_boundary) {
            const pixel *source = (pixel *)fc->frame->data[0] + x0 + (y0 - 2) * stride;
            for (int i = 0; i < cnt[TOP]; i++) {
                const int x = pos[TOP][i] << hs;
                const pixel *src = source + x;
                const int has_left = x || avail_l;
                const pixel l = has_left ? POS(-1, 0) : POS(0, 0);
                if (sps->r->sps_chroma_vertical_collocated_flag) {
                    sel_luma[i] = (POS(0, -1) + l + 4 * POS(0, 0) + POS(1, 0) + POS(0, 1) + 4) >> 3;
                } else {
                    const pixel l1 = has_left ? POS(-1, 1) : POS(0, 1);
                    sel_luma[i] = (l + l1 + 2 * (POS(0, 0) + POS(0, 1)) + POS(1, 0) + POS(1, 1) + 4) >> 3;
                }
            }
        } else {
            const pixel *source = (pixel*)fc->frame->data[0] + x0 + (y0 - 1) * stride;
            for (int i = 0; i < cnt[TOP]; i++) {
                const int x = pos[TOP][i] << hs;
                const pixel *src = source + x;
                const int has_left = x || avail_l;
                const pixel l = has_left ? POS(-1, 0) : POS(0, 0);
                sel_luma[i] = (l + 2 * POS(0, 0) + POS(1, 0) + 2) >> 2;
            }
        }

        // left
        {
            const pixel *left;
            const pixel *source = (pixel *)fc->frame->data[0] + x0 + y0 * stride - (1 + hs) * avail_l;
            left = source - avail_l;

            for (int i = 0; i < cnt[LEFT]; i++) {
                const int y = pos[LEFT][i] << vs;
                const int offset = y * stride;
                const pixel *l   = left + offset;
                const pixel *src = source + offset;
                pixel pred;
                if (!vs) {
                    pred = (*l + 2 * POS(0, 0) + POS(1, 0) + 2) >> 2;
                } else {
                    if (sps->r->sps_chroma_vertical_collocated_flag) {
                        const int has_top = y || avail_t;
                        const pixel t = has_top ? POS(0, -1) : POS(0, 0);
                        pred = (*l + t + 4 * POS(0, 0) + POS(1, 0) + POS(0, 1) + 4) >> 3;
                    } else {
                        pred = (*l + *(l + stride) + 2 * POS(0, 0) + 2 * POS(0, 1) + POS(1, 0) + POS(1, 1) + 4) >> 3;
                    }
                }
                sel_luma[i + cnt[TOP]] = pred;
            }
        }
    }
}

static av_always_inline void FUNC(cclm_select_chroma)(const VVCFrameContext *fc,
    const int x, const int y, const int cnt[2], const int pos[2][MAX_PICK_POS],
    pixel sel[][MAX_PICK_POS * 2])
{
    for (int c_idx = 1; c_idx < VVC_MAX_SAMPLE_ARRAYS; c_idx++) {
        const ptrdiff_t stride = fc->frame->linesize[c_idx] / sizeof(pixel);

        //top
        const pixel *src = (pixel*)fc->frame->data[c_idx] + x + (y - 1)* stride;
        for (int i = 0; i < cnt[TOP]; i++) {
            sel[c_idx][i] = src[pos[TOP][i]];
        }

        //left
        src = (pixel*)fc->frame->data[c_idx] + x - 1 + y * stride;
        for (int i = 0; i < cnt[LEFT]; i++) {
            sel[c_idx][i + cnt[TOP]] = src[pos[LEFT][i] * stride];
        }
    }
}

static av_always_inline int FUNC(cclm_select_samples)(const VVCLocalContext *lc,
    const int x0, const int y0, const int w, const int h, const int avail_t, const int avail_l,
    pixel sel[][MAX_PICK_POS * 2])
{
    const VVCFrameContext *fc = lc->fc;
    const VVCSPS *sps   = fc->ps.sps;
    const int x  = x0 >> sps->hshift[1];
    const int y  = y0 >> sps->vshift[1];
    int cnt[2], pos[2][MAX_PICK_POS];

    if (!FUNC(cclm_get_select_pos)(lc, x, y, w, h, avail_t, avail_l, cnt, pos))
        return 0;

    FUNC(cclm_select_luma)(fc, x0, y0, avail_t, avail_l, cnt, pos, sel[LUMA]);
    FUNC(cclm_select_chroma)(fc, x, y, cnt, pos, sel);

    if (cnt[TOP] + cnt[LEFT] == 2) {
        for (int c_idx = 0; c_idx < VVC_MAX_SAMPLE_ARRAYS; c_idx++) {
            sel[c_idx][3] = sel[c_idx][0];
            sel[c_idx][2] = sel[c_idx][1];
            sel[c_idx][0] = sel[c_idx][1];
            sel[c_idx][1] = sel[c_idx][3];
        }
    }
    return 1;
}

static av_always_inline void FUNC(cclm_get_min_max)(
    const pixel sel[][MAX_PICK_POS * 2], int *min, int *max)
{
    int min_grp_idx[] = { 0, 2 };
    int max_grp_idx[] = { 1, 3 };

    if (sel[LUMA][min_grp_idx[0]] > sel[LUMA][min_grp_idx[1]])
        FFSWAP(int, min_grp_idx[0], min_grp_idx[1]);
    if (sel[LUMA][max_grp_idx[0]] > sel[LUMA][max_grp_idx[1]])
        FFSWAP(int, max_grp_idx[0], max_grp_idx[1]);
    if (sel[LUMA][min_grp_idx[0]] > sel[LUMA][max_grp_idx[1]]) {
        FFSWAP(int, min_grp_idx[0], max_grp_idx[0]);
        FFSWAP(int, min_grp_idx[1], max_grp_idx[1]);
    }
    if (sel[LUMA][min_grp_idx[1]] > sel[LUMA][max_grp_idx[0]])
        FFSWAP(int, min_grp_idx[1], max_grp_idx[0]);
    for (int c_idx = 0; c_idx < VVC_MAX_SAMPLE_ARRAYS; c_idx++) {
        max[c_idx] = (sel[c_idx][max_grp_idx[0]] + sel[c_idx][max_grp_idx[1]] + 1) >> 1;
        min[c_idx] = (sel[c_idx][min_grp_idx[0]] + sel[c_idx][min_grp_idx[1]] + 1) >> 1;
    }
}

static av_always_inline void FUNC(cclm_get_params)(const VVCLocalContext *lc,
    const int x0, const int y0, const int w, const int h, const int avail_t, const int avail_l,
    int *a, int *b, int *k)
{
    pixel sel[VVC_MAX_SAMPLE_ARRAYS][MAX_PICK_POS * 2];
    int max[VVC_MAX_SAMPLE_ARRAYS], min[VVC_MAX_SAMPLE_ARRAYS];
    int diff;

    if (!FUNC(cclm_select_samples)(lc, x0, y0, w, h, avail_t, avail_l, sel)) {
        FUNC(cclm_get_params_default)(a, b, k);
        return;
    }

    FUNC(cclm_get_min_max)(sel, min, max);

    diff = max[LUMA] - min[LUMA];
    if (diff == 0) {
        for (int i = 0; i < 2; i++) {
            a[i] = k[i] = 0;
            b[i] = min[i + 1];
        }
        return;
    }
    for (int i = 0; i < 2; i++) {
        const static int div_sig_table[] = {0, 7, 6, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1, 1, 1, 0};
        const int diffc = max[i + 1] - min[i + 1];
        int  x = av_log2(diff);
        int  y, v, sign, add;
        const int norm_diff = ((diff << 4) >> x) & 15;
        x += (norm_diff) ? 1 : 0;
        y = abs(diffc) > 0 ? av_log2(abs(diffc)) + 1 : 0;
        v = div_sig_table[norm_diff] | 8;
        add = (1 << y >> 1);
        a[i] = (diffc * v + add) >> y;
        k[i] = FFMAX(1, 3 + x -y);
        sign = a[i] < 0 ? -1 : (a[i] > 0);
        a[i] = ((3 + x - y) < 1) ?  sign * 15 : a[i];
        b[i] = min[i + 1] - ((a[i] * min[0]) >> k[i]);
    }

}

#undef TOP
#undef LEFT

static av_always_inline void FUNC(cclm_get_luma_rec_pixels)(const VVCFrameContext *fc,
    const int x0, const int y0, const int w, const int h, const int avail_t, const int avail_l,
    pixel *pdsy)
{
    const int hs            = fc->ps.sps->hshift[1];
    const int vs            = fc->ps.sps->vshift[1];
    const ptrdiff_t stride  = fc->frame->linesize[0] / sizeof(pixel);
    const pixel *source     = (pixel*)fc->frame->data[0] + x0 + y0 * stride;
    const pixel *left       = source - avail_l;
    const pixel *top        = source - avail_t * stride;

    const VVCSPS *sps = fc->ps.sps;
    if (!hs && !vs) {
        for (int i = 0; i < h; i++)
            memcpy(pdsy + i * w, source + i * stride, w * sizeof(pixel));
        return;
    }
    for (int i = 0; i < h; i++) {
        const pixel *src  = source;
        const pixel *l = left;
        const pixel *t = top;
        if (!vs) {
            for (int j = 0; j < w; j++) {
                pixel pred  = (*l + 2 * POS(0, 0) + POS(1, 0) + 2) >> 2;
                pdsy[i * w + j] = pred;
                src += 2;
                l = src - 1;
            }

        } else {
            if (sps->r->sps_chroma_vertical_collocated_flag)  {
                for (int j = 0; j < w; j++) {
                    pixel pred  = (*l + *t + 4 * POS(0, 0) + POS(1, 0) + POS(0, 1) + 4) >> 3;
                    pdsy[i * w + j] = pred;
                    src += 2;
                    t += 2;
                    l = src - 1;
                }
            } else {
                for (int j = 0; j < w; j++) {
                    pixel pred  = (*l + *(l + stride) + 2 * POS(0, 0) + 2 * POS(0, 1) + POS(1, 0) + POS(1, 1) + 4) >> 3;

                    pdsy[i * w + j] = pred;
                    src += 2;
                    l = src - 1;
                }
            }
        }
        source += (stride << vs);
        left   += (stride << vs);
        top    = source - stride;
    }
}

static av_always_inline void FUNC(cclm_pred_default)(VVCFrameContext *fc,
    const int x, const int y, const int w, const int h, const int avail_t, const int avail_l)
{
    for (int c_idx = 1; c_idx < VVC_MAX_SAMPLE_ARRAYS; c_idx++) {
        const ptrdiff_t stride = fc->frame->linesize[c_idx] / sizeof(pixel);
        pixel *dst = (pixel*)fc->frame->data[c_idx] + x + y * stride;
        for (int i = 0; i < h; i++) {
            for (int j = 0; j < w; j++) {
                dst[j] = 1 << (BIT_DEPTH - 1);
            }
            dst += stride;
        }
    }
}

//8.4.5.2.14 Specification of INTRA_LT_CCLM, INTRA_L_CCLM and INTRA_T_CCLM intra prediction mode
static void FUNC(intra_cclm_pred)(const VVCLocalContext *lc, const int x0, const int y0,
    const int width, const int height)
{
    VVCFrameContext *fc     = lc->fc;
    const VVCSPS *sps = fc->ps.sps;
    const int avail_t = ff_vvc_get_top_available(lc, x0, y0, 1, 0);
    const int avail_l = ff_vvc_get_left_available(lc, x0, y0, 1, 0);
    const int hs = sps->hshift[1];
    const int vs = sps->vshift[1];
    const int x  = x0 >> hs;
    const int y  = y0 >> vs;
    const int w  = width >> hs;
    const int h  = height >> vs;
    int a[2], b[2], k[2];

    pixel dsy[MAX_TB_SIZE * MAX_TB_SIZE];
    if (!avail_t && !avail_l) {
        FUNC(cclm_pred_default)(fc, x, y, w, h, avail_t, avail_l);
        return;
    }
    FUNC(cclm_get_luma_rec_pixels)(fc, x0, y0, w, h, avail_t, avail_l, dsy);
    FUNC(cclm_get_params) (lc, x0, y0, w, h, avail_t, avail_l, a, b, k);
    FUNC(cclm_linear_pred)(fc, x0, y0, w, h, dsy, a, b, k);
}

static int FUNC(lmcs_sum_samples)(const pixel *start, ptrdiff_t stride, const int avail, const int target_size)
{
    const int size = FFMIN(avail, target_size);
    int sum = 0;
    for (int i = 0; i < size; i++) {
        sum += *start;
        start += stride;
    }
    sum += *(start - stride) * (target_size - size);
    return sum;
}

// 8.7.5.3 Picture reconstruction with luma dependent chroma residual scaling process for chroma samples
static int FUNC(lmcs_derive_chroma_scale)(VVCLocalContext *lc, const int x0, const int y0)
{
    VVCFrameContext *fc = lc->fc;
    const VVCLMCS *lmcs = &fc->ps.lmcs;
    const int size_y    = FFMIN(fc->ps.sps->ctb_size_y, 64);

    const int x = x0 & ~(size_y - 1);
    const int y = y0 & ~(size_y - 1);
    if (lc->lmcs.x_vpdu != x || lc->lmcs.y_vpdu != y) {
        int cnt = 0, luma = 0, i;
        const pixel *src = (const pixel *)(fc->frame->data[LUMA] + y * fc->frame->linesize[LUMA] + (x << fc->ps.sps->pixel_shift));
        const ptrdiff_t stride = fc->frame->linesize[LUMA] / sizeof(pixel);
        const int avail_t = ff_vvc_get_top_available (lc, x, y, 1, 0);
        const int avail_l = ff_vvc_get_left_available(lc, x, y, 1, 0);
        if (avail_l) {
            luma += FUNC(lmcs_sum_samples)(src - 1, stride, fc->ps.pps->height - y, size_y);
            cnt = size_y;
        }
        if (avail_t) {
            luma += FUNC(lmcs_sum_samples)(src - stride, 1, fc->ps.pps->width - x, size_y);
            cnt += size_y;
        }
        if (cnt)
            luma = (luma + (cnt >> 1)) >> av_log2(cnt);
        else
            luma = 1 << (BIT_DEPTH - 1);

        for (i = lmcs->min_bin_idx; i <= lmcs->max_bin_idx; i++) {
            if (luma < lmcs->pivot[i + 1])
                break;
        }
        i = FFMIN(i, LMCS_MAX_BIN_SIZE - 1);

        lc->lmcs.chroma_scale = lmcs->chroma_scale_coeff[i];
        lc->lmcs.x_vpdu = x;
        lc->lmcs.y_vpdu = y;
    }
    return lc->lmcs.chroma_scale;
}

// 8.7.5.3 Picture reconstruction with luma dependent chroma residual scaling process for chroma samples
static void FUNC(lmcs_scale_chroma)(VVCLocalContext *lc, int *dst, const int *coeff,
    const int width, const int height, const int x0_cu, const int y0_cu)
{
    const int chroma_scale = FUNC(lmcs_derive_chroma_scale)(lc, x0_cu, y0_cu);

    for (int y = 0; y < height; y++) {
        for (int x = 0; x < width; x++) {
            const int c = av_clip_intp2(*coeff, BIT_DEPTH);

            if (c > 0)
                *dst = (c * chroma_scale + (1 << 10)) >> 11;
            else
                *dst = -((-c * chroma_scale + (1 << 10)) >> 11);
            coeff++;
            dst++;
        }
    }
}

static av_always_inline void FUNC(ref_filter)(const pixel *left, const pixel *top,
    pixel *filtered_left, pixel *filtered_top, const int left_size, const int top_size,
    const int unfilter_last_one)
{
    filtered_left[-1] = filtered_top[-1] = (left[0] +  2 * left[-1] + top[0] + 2 ) >> 2;
    for (int i = 0; i < left_size - unfilter_last_one; i++) {
        filtered_left[i] = (left[i- 1] + 2 * left[i] + left[i + 1] + 2) >> 2;
    }
    for (int i = 0; i < top_size - unfilter_last_one; i++) {
        filtered_top[i] = (top[i-1] + 2 * top[i] + top[i + 1] + 2) >> 2;
    }
    if (unfilter_last_one) {
        filtered_top[top_size - 1] = top[top_size - 1];
        filtered_left[left_size - 1] = left[left_size - 1];
    }
}

static av_always_inline void FUNC(prepare_intra_edge_params)(const VVCLocalContext *lc,
    IntraEdgeParams* edge, const pixel *src, const ptrdiff_t stride,
    const int x, int y, int w, int h, int c_idx, const int is_intra_mip,
    const int mode, const int ref_idx, const int need_pdpc)
{
#define EXTEND(ptr, val, len)         \
do {                                  \
    for (i = 0; i < (len); i++)       \
        *(ptr + i) = val;             \
} while (0)
    const CodingUnit *cu = lc->cu;
    const int ref_filter_flag = is_intra_mip ? 0 : ff_vvc_ref_filter_flag_derive(mode);
    const int filter_flag = !ref_idx && w * h > 32 && !c_idx &&
        cu->isp_split_type == ISP_NO_SPLIT && ref_filter_flag;
    int cand_up_left      = lc->na.cand_up_left;
    pixel  *left          = (pixel*)edge->left_array + MAX_TB_SIZE + 3;
    pixel  *top           = (pixel*)edge->top_array  + MAX_TB_SIZE + 3;
    pixel  *filtered_left = (pixel*)edge->filtered_left_array + MAX_TB_SIZE + 3;
    pixel  *filtered_top  = (pixel*)edge->filtered_top_array  + MAX_TB_SIZE + 3;
    const int ref_line = ref_idx == 3 ? -4 : (-1 - ref_idx);
    int left_size, top_size, unfilter_left_size, unfilter_top_size;
    int left_available, top_available;
    int refw, refh;
    int intra_pred_angle, inv_angle;
    int i;

    if (is_intra_mip || mode == INTRA_PLANAR) {
        left_size = h + 1;
        top_size  = w + 1;
        unfilter_left_size = left_size + filter_flag;
        unfilter_top_size  = top_size  + filter_flag;
    } else if (mode == INTRA_DC) {
        unfilter_left_size = left_size = h;
        unfilter_top_size = top_size  = w;
    } else if (mode == INTRA_VERT) {
        //we may need 1 pixel to predict the top left.
        unfilter_left_size = left_size = need_pdpc ? h : 1;
        unfilter_top_size = top_size  = w;
    } else if (mode == INTRA_HORZ) {
        unfilter_left_size = left_size = h;
        //even need_pdpc == 0, we may need 1 pixel to predict the top left.
        unfilter_top_size = top_size = need_pdpc ? w : 1;
    } else {
        if (cu->isp_split_type == ISP_NO_SPLIT || c_idx) {
            refw = w * 2;
            refh = h * 2;
        } else {
            refw = cu->cb_width + w;
            refh = cu->cb_height + h;
        }
        intra_pred_angle = ff_vvc_intra_pred_angle_derive(mode);
        inv_angle = ff_vvc_intra_inv_angle_derive(intra_pred_angle);
        unfilter_top_size = top_size  = refw;
        unfilter_left_size = left_size = refh;
    }

    left_available = ff_vvc_get_left_available(lc, x, y, unfilter_left_size, c_idx);
    for (i = 0; i < left_available; i++)
        left[i] = POS(ref_line, i);

    top_available = ff_vvc_get_top_available(lc, x, y, unfilter_top_size, c_idx);
    memcpy(top, src + ref_line * stride, top_available * sizeof(pixel));

    for (int i = -1; i >= ref_line; i--) {
        if (cand_up_left) {
            left[i] = POS(ref_line, i);
            top[i]  = POS(i, ref_line);
        } else if (left_available) {
            left[i] = top[i] = left[0];
        } else if (top_available) {
            left[i] = top[i] = top[0];
        } else {
            left[i] = top[i] = 1 << (BIT_DEPTH - 1);
        }
    }

    EXTEND(top + top_available, top[top_available-1], unfilter_top_size - top_available);
    EXTEND(left + left_available, left[left_available-1], unfilter_left_size - left_available);

    if (ref_filter_flag) {
        if (!ref_idx && w * h > 32 && !c_idx && cu->isp_split_type == ISP_NO_SPLIT ) {
            const int unfilter_last_one = left_size == unfilter_left_size;
            FUNC(ref_filter)(left, top, filtered_left, filtered_top, unfilter_left_size, unfilter_top_size, unfilter_last_one);
            left = filtered_left;
            top  = filtered_top;
        }
    }
    if (!is_intra_mip && mode != INTRA_PLANAR && mode != INTRA_DC) {
        if (ref_filter_flag || ref_idx || cu->isp_split_type != ISP_NO_SPLIT) {
            edge->filter_flag = 0;
        } else {
            const int min_dist_ver_hor = FFMIN(abs(mode - 50), abs(mode - 18));
            const int intra_hor_ver_dist_thres[] = {24, 14, 2, 0, 0};
            const int ntbs = (av_log2(w) + av_log2(h)) >> 1;
            edge->filter_flag = min_dist_ver_hor > intra_hor_ver_dist_thres[ntbs - 2];
        }

        if (mode != INTRA_VERT && mode != INTRA_HORZ) {
            if (mode >= INTRA_DIAG) {
                if (intra_pred_angle < 0) {
                    pixel *p = top - (ref_idx + 1);
                    for (int x = -h; x < 0; x++) {
                        const int idx = -1 - ref_idx + FFMIN((x*inv_angle + 256) >> 9, h);
                        p[x] = left[idx];
                    }
                } else {
                    for (int i = refw; i <= refw + FFMAX(1, w/h) * ref_idx + 1; i++)
                        top[i] = top[refw - 1];
                }
            } else {
                if (intra_pred_angle < 0) {
                    pixel *p = left - (ref_idx + 1);
                    for (int x = -w; x < 0; x++) {
                        const int idx = -1 - ref_idx + FFMIN((x*inv_angle + 256) >> 9, w);
                        p[x] = top[idx];
                    }
                } else {
                    for (int i = refh; i <= refh + FFMAX(1, h/w) * ref_idx + 1; i++)
                        left[i] = left[refh - 1];
                }
            }
        }
    }
    edge->left = (uint8_t*)left;
    edge->top  = (uint8_t*)top;
}

//8.4.1 General decoding process for coding units coded in intra prediction mode
static void FUNC(intra_pred)(const VVCLocalContext *lc, int x0, int y0,
    const int width, const int height, int c_idx)
{
    VVCFrameContext *fc     = lc->fc;
    const VVCSPS *sps = fc->ps.sps;
    const VVCPPS *pps = fc->ps.pps;
    const CodingUnit *cu = lc->cu;
    const int log2_min_cb_size    = sps->min_cb_log2_size_y;
    const int min_cb_width        = pps->min_cb_width;
    const int x_cb                = x0 >> log2_min_cb_size;
    const int y_cb                = y0 >> log2_min_cb_size;

    const int hshift = fc->ps.sps->hshift[c_idx];
    const int vshift = fc->ps.sps->vshift[c_idx];
    const int x = x0 >> hshift;
    const int y = y0 >> vshift;
    const int w = width >> hshift;
    const int h = height >> vshift;
    const ptrdiff_t stride = fc->frame->linesize[c_idx] / sizeof(pixel);

    const int pred_mode = c_idx ? cu->intra_pred_mode_c : cu->intra_pred_mode_y;
    const int mode = ff_vvc_wide_angle_mode_mapping(cu, w, h, c_idx, pred_mode);

    const int intra_mip_flag  = SAMPLE_CTB(fc->tab.imf, x_cb, y_cb);
    const int is_intra_mip    = intra_mip_flag && (!c_idx || cu->mip_chroma_direct_flag);
    const int ref_idx = c_idx ? 0 : cu->intra_luma_ref_idx;
    const int need_pdpc = ff_vvc_need_pdpc(w, h, cu->bdpcm_flag[c_idx], mode, ref_idx);


    pixel *src = (pixel*)fc->frame->data[c_idx] + x + y * stride;
    IntraEdgeParams edge;

    FUNC(prepare_intra_edge_params)(lc, &edge, src, stride, x, y, w, h, c_idx, is_intra_mip, mode, ref_idx, need_pdpc);

    if (is_intra_mip) {
        int intra_mip_transposed_flag = SAMPLE_CTB(fc->tab.imtf, x_cb, y_cb);
        int intra_mip_mode = SAMPLE_CTB(fc->tab.imm, x_cb, y_cb);

        fc->vvcdsp.intra.pred_mip((uint8_t *)src, edge.top, edge.left,
                        w, h, stride, intra_mip_mode, intra_mip_transposed_flag);
    } else if (mode == INTRA_PLANAR) {
        fc->vvcdsp.intra.pred_planar((uint8_t *)src, edge.top, edge.left, w, h, stride);
    } else if (mode == INTRA_DC) {
        fc->vvcdsp.intra.pred_dc((uint8_t *)src, edge.top, edge.left, w, h, stride);
    } else if (mode == INTRA_VERT) {
        fc->vvcdsp.intra.pred_v((uint8_t *)src, edge.top, w, h, stride);
    } else if (mode == INTRA_HORZ) {
        fc->vvcdsp.intra.pred_h((uint8_t *)src, edge.left, w, h, stride);
    } else {
        if (mode >= INTRA_DIAG) {
            fc->vvcdsp.intra.pred_angular_v((uint8_t *)src, edge.top, edge.left,
                                  w, h, stride, c_idx, mode, ref_idx,
                                  edge.filter_flag, need_pdpc);
        } else {
            fc->vvcdsp.intra.pred_angular_h((uint8_t *)src, edge.top, edge.left,
                                  w, h, stride, c_idx, mode, ref_idx,
                                  edge.filter_flag, need_pdpc);
        }
    }
    if (need_pdpc) {
        //8.4.5.2.15 Position-dependent intra prediction sample filtering process
        if (!is_intra_mip && (mode == INTRA_PLANAR || mode == INTRA_DC ||
            mode == INTRA_VERT || mode == INTRA_HORZ)) {
            const int scale = (av_log2(w) + av_log2(h) - 2) >> 2;
            const pixel *left = (pixel*)edge.left;
            const pixel *top  = (pixel*)edge.top;
            for (int y = 0; y < h; y++) {
                for (int x = 0; x < w; x++) {
                    int l, t, wl, wt, pred;
                    pixel val;
                    if (mode == INTRA_PLANAR || mode == INTRA_DC) {
                        l  = left[y];
                        t = top[x];
                        wl = 32 >> FFMIN((x << 1) >> scale, 31);
                        wt = 32 >> FFMIN((y << 1) >> scale, 31);
                    } else {
                        l  = left[y] - left[-1] + POS(x,y);
                        t = top[x] - top[-1] + POS(x,y);
                        wl = (mode == INTRA_VERT) ?  (32 >> FFMIN((x << 1) >> scale, 31)) : 0;
                        wt = (mode == INTRA_HORZ) ?  (32 >> FFMIN((y << 1) >> scale, 31)) : 0;
                    }
                    val = POS(x, y);
                    pred  = val + ((wl * (l - val) + wt * (t - val) + 32) >> 6);
                    POS(x, y) = CLIP(pred);
                }
            }
        }
    }
}

//8.4.5.2.11 Specification of INTRA_PLANAR intra prediction mode
static av_always_inline void FUNC(pred_planar)(uint8_t *_src, const uint8_t *_top,
    const uint8_t *_left, const int w, const int h, const ptrdiff_t stride)
{
    int x, y;
    pixel *src        = (pixel *)_src;
    const pixel *top  = (const pixel *)_top;
    const pixel *left = (const pixel *)_left;
    const int logw  = av_log2(w);
    const int logh  = av_log2(h);
    const int size  =  w * h;
    const int shift = (logw + logh + 1);
    for (y = 0; y < h; y++) {
        for (x = 0; x < w; x++) {
            const int pred_v = ((h - 1 - y) * top[x]  + (y + 1) * left[h]) << logw;
            const int pred_h = ((w - 1 - x) * left[y] + (x + 1) * top[w]) << logh;
            const int pred = (pred_v + pred_h + size) >> shift;
            POS(x, y) = pred;
        }
    }
}

//8.4.5.2.3 MIP boundary sample downsampling process
static av_always_inline void FUNC(mip_downsampling)(int *reduced, const int boundary_size,
    const pixel *ref, const int n_tb_s)
{
    const int b_dwn = n_tb_s / boundary_size;
    const int log2 = av_log2(b_dwn);

    if (boundary_size == n_tb_s) {
        for (int i = 0; i < n_tb_s; i++)
            reduced[i] = ref[i];
        return;
    }
    for (int i = 0; i < boundary_size; i++) {
        int r;
        r = *ref++;
        for (int j = 1; j < b_dwn; j++)
            r += *ref++;
        reduced[i] = (r + (1 << (log2 - 1))) >> log2;
    }
}

static av_always_inline void FUNC(mip_reduced_pred)(pixel *src, const ptrdiff_t stride,
    const int up_hor, const int up_ver, const int pred_size, const int *reduced, const int reduced_size,
    const int ow, const int temp0, const uint8_t *matrix, int is_transposed)
{
    src = &POS(up_hor - 1, up_ver - 1);
    for (int y = 0; y < pred_size; y++) {
        for (int x = 0; x < pred_size; x++) {
            int pred = 0;
            for (int i = 0; i < reduced_size; i++)
                pred += reduced[i] * matrix[i];
            matrix += reduced_size;
            pred = ((pred + ow) >> 6) + temp0;
            pred = av_clip(pred, 0, (1<<BIT_DEPTH) - 1);
            if (is_transposed)
                POS(y * up_hor, x * up_ver) = pred;
            else
                POS(x * up_hor, y * up_ver) = pred;
        }
    }
}

static av_always_inline void FUNC(mip_upsampling_1d)(pixel *dst, const int dst_step, const int dst_stride, const int dst_height, const int factor,
    const pixel *boundary, const int boundary_step,  const int pred_size)
{

    for (int i = 0; i < dst_height; i++) {
        const pixel *before = boundary;
        const pixel *after  = dst - dst_step;
        pixel *d = dst;
        for (int j = 0; j < pred_size; j++) {
            after += dst_step * factor;
            for (int k = 1; k < factor; k++) {
                int mid = (factor - k) * (*before) + k * (*after);
                *d = (mid + factor / 2) / factor;
                d += dst_step;
            }
            before = after;
            d += dst_step;
        }
        boundary += boundary_step;
        dst += dst_stride;
    }
}

//8.4.5.2.2 Matrix-based intra sample prediction
static av_always_inline void FUNC(pred_mip)(uint8_t *_src, const uint8_t *_top,
    const uint8_t *_left, const int w, const int h, const ptrdiff_t stride,
    int mode_id, int is_transposed)
{
    pixel *src        = (pixel *)_src;
    const pixel *top  = (const pixel *)_top;
    const pixel *left = (const pixel *)_left;

    const int size_id = ff_vvc_get_mip_size_id(w, h);
    static const int boundary_sizes[] = {2, 4, 4};
    static const int pred_sizes[] = {4, 4, 8};
    const int boundary_size = boundary_sizes[size_id];
    const int pred_size     = pred_sizes[size_id];
    const int in_size = 2 * boundary_size - ((size_id == 2) ? 1 : 0);
    const uint8_t *matrix = ff_vvc_get_mip_matrix(size_id, mode_id);
    const int up_hor = w / pred_size;
    const int up_ver = h / pred_size;

    int reduced[16];
    int *red_t  = reduced;
    int *red_l  = reduced + boundary_size;
    int off = 1, ow = 0;
    int temp0;

    if (is_transposed) {
        FFSWAP(int*, red_t, red_l);
    }
    FUNC(mip_downsampling)(red_t, boundary_size, top, w);
    FUNC(mip_downsampling)(red_l, boundary_size, left, h);

    temp0 = reduced[0];
    if (size_id != 2) {
        off = 0;
        ow = (1 << (BIT_DEPTH - 1)) - temp0;
    } else {
        ow = reduced[1] - temp0;
    }
    reduced[0] = ow;
    for (int i = 1; i < in_size; i++) {
        reduced[i] = reduced[i + off] - temp0;
        ow += reduced[i];
    }
    ow = 32 - 32 * ow;

    FUNC(mip_reduced_pred)(src, stride, up_hor, up_ver, pred_size, reduced, in_size, ow, temp0, matrix, is_transposed);
    if (up_hor > 1 || up_ver > 1) {
        if (up_hor > 1)
            FUNC(mip_upsampling_1d)(&POS(0, up_ver - 1), 1, up_ver * stride, pred_size, up_hor, left + up_ver - 1, up_ver, pred_size);
        if (up_ver > 1)
            FUNC(mip_upsampling_1d)(src, stride, 1, w, up_ver, top, 1, pred_size);
    }
}

static av_always_inline pixel FUNC(pred_dc_val)(const pixel *top, const pixel *left,
    const int w, const int h)
{
    pixel dc_val;
    int sum = 0;
    unsigned int offset = (w == h) ? (w << 1) : FFMAX(w, h);
    const int shift = av_log2(offset);
    offset >>= 1;
    if (w >= h) {
        for (int i = 0; i < w; i++)
            sum += top[i];
    }
    if (w <= h) {
        for (int i = 0; i < h; i++)
            sum += left[i];
    }
    dc_val = (sum + offset) >> shift;
    return dc_val;
}

//8.4.5.2.12 Specification of INTRA_DC intra prediction mode
static av_always_inline void FUNC(pred_dc)(uint8_t *_src, const uint8_t *_top,
    const uint8_t *_left, const int w, const int h, const ptrdiff_t stride)
{
    int x, y;
    pixel *src          = (pixel *)_src;
    const pixel *top    = (const pixel *)_top;
    const pixel *left   = (const pixel *)_left;
    const pixel dc      = FUNC(pred_dc_val)(top, left, w, h);
    const pixel4 a      = PIXEL_SPLAT_X4(dc);
    for (y = 0; y < h; y++) {
        pixel *s = src;
        for (x = 0; x < w; x += 4) {
            AV_WN4P(s, a);
            s += 4;
        }
        src += stride;
    }
}

static av_always_inline void FUNC(pred_v)(uint8_t *_src, const uint8_t *_top,
    const int w, const int h, const ptrdiff_t stride)
{
    pixel *src          = (pixel *)_src;
    const pixel *top    = (const pixel *)_top;
    for (int y = 0; y < h; y++) {
        memcpy(src, top, sizeof(pixel)  * w);
        src += stride;
    }
}

static void FUNC(pred_h)(uint8_t *_src, const uint8_t *_left, const int w, const int h,
    const ptrdiff_t stride)
{
    pixel *src          = (pixel *)_src;
    const pixel *left    = (const pixel *)_left;
    for (int y = 0; y < h; y++) {
        const pixel4 a = PIXEL_SPLAT_X4(left[y]);
        for (int x = 0; x < w; x += 4) {
            AV_WN4P(&POS(x, y), a);
        }
    }
}

#define INTRA_LUMA_FILTER(p)    CLIP((p[0] * f[0] + p[1] * f[1] + p[2] * f[2] + p[3] * f[3] + 32) >> 6)
#define INTRA_CHROMA_FILTER(p)  (((32 - fact) * p[1] + fact * p[2] + 16) >> 5)

//8.4.5.2.13 Specification of INTRA_ANGULAR2..INTRA_ANGULAR66 intra prediction modes
static void FUNC(pred_angular_v)(uint8_t *_src, const uint8_t *_top, const uint8_t *_left,
    const int w, const int h, const ptrdiff_t stride, const int c_idx, const int mode,
    const int ref_idx, const int filter_flag, const int need_pdpc)
{
    pixel *src          = (pixel *)_src;
    const pixel *left   = (const pixel *)_left;
    const pixel *top    = (const pixel *)_top - (1 + ref_idx);
    const int intra_pred_angle = ff_vvc_intra_pred_angle_derive(mode);
    int pos = (1 + ref_idx) * intra_pred_angle;
    const int dp = intra_pred_angle;
    const int is_luma = !c_idx;
    int nscale, inv_angle;

    if (need_pdpc) {
        inv_angle = ff_vvc_intra_inv_angle_derive(intra_pred_angle);
        nscale = ff_vvc_nscale_derive(w, h, mode);
    }

    for (int y = 0; y < h; y++) {
        const int idx   = (pos >> 5) + ref_idx;
        const int fact = pos & 31;
        if (!fact && (!is_luma || !filter_flag)) {
            for (int x = 0; x < w; x++) {
                const pixel *p = top + x + idx + 1;
                POS(x, y) = *p;
            }
        } else {
            if (!c_idx) {
                const int8_t *f = ff_vvc_intra_luma_filter[filter_flag][fact];
                for (int x = 0; x < w; x++) {
                    const pixel *p = top + x + idx;
                    POS(x, y) = INTRA_LUMA_FILTER(p);
                }
            } else {
                for (int x = 0; x < w; x++) {
                    const pixel *p = top + x + idx;
                    POS(x, y) = INTRA_CHROMA_FILTER(p);
                }
            }
        }
        if (need_pdpc) {
            int inv_angle_sum = 256 + inv_angle;
            for (int x = 0; x < FFMIN(w, 3 << nscale); x++) {
                const pixel l   = left[y + (inv_angle_sum >> 9)];
                const pixel val = POS(x, y);
                const int wl    = 32 >> ((x << 1) >> nscale);
                const int pred  = val + (((l - val) * wl + 32) >> 6);
                POS(x, y) = CLIP(pred);
                inv_angle_sum += inv_angle;
            }
        }
        pos += dp;
    }
}

//8.4.5.2.13 Specification of INTRA_ANGULAR2..INTRA_ANGULAR66 intra prediction modes
static void FUNC(pred_angular_h)(uint8_t *_src, const uint8_t *_top, const uint8_t *_left,
    const int w, const int h, const ptrdiff_t stride, const int c_idx, const int mode,
    const int ref_idx, const int filter_flag, const int need_pdpc)
{
    pixel *src          = (pixel *)_src;
    const pixel *left   = (const pixel *)_left - (1 + ref_idx);
    const pixel *top    = (const pixel *)_top;
    const int is_luma = !c_idx;
    const int intra_pred_angle = ff_vvc_intra_pred_angle_derive(mode);
    const int dp = intra_pred_angle;
    int nscale = 0, inv_angle, inv_angle_sum;

    if (need_pdpc) {
        inv_angle = ff_vvc_intra_inv_angle_derive(intra_pred_angle);
        inv_angle_sum = 256 + inv_angle;
        nscale = ff_vvc_nscale_derive(w, h, mode);
    }

    for (int y = 0; y < h; y++) {
        int pos = (1 + ref_idx) * intra_pred_angle;
        int wt;
        if (need_pdpc)
            wt = (32 >> FFMIN(31, (y * 2) >> nscale));

        for (int x = 0; x < w; x++) {
            const int idx  = (pos >> 5) + ref_idx;
            const int fact = pos & 31;
            const pixel *p = left + y + idx;
            int pred;
            if (!fact && (!is_luma || !filter_flag)) {
                pred = p[1];
            } else {
                if (!c_idx) {
                    const int8_t *f = ff_vvc_intra_luma_filter[filter_flag][fact];
                    pred = INTRA_LUMA_FILTER(p);
                } else {
                    pred = INTRA_CHROMA_FILTER(p);
                }
            }
            if (need_pdpc) {
                if (y < (3 << nscale)) {
                    const pixel t = top[x + (inv_angle_sum >> 9)];
                    pred = CLIP(pred + (((t - pred) * wt + 32) >> 6));
                }
            }
            POS(x, y) = pred;
            pos += dp;
        }
        if (need_pdpc)
            inv_angle_sum += inv_angle;
    }
}

static void FUNC(ff_vvc_intra_dsp_init)(VVCIntraDSPContext *const intra)
{
    intra->lmcs_scale_chroma  = FUNC(lmcs_scale_chroma);
    intra->intra_cclm_pred    = FUNC(intra_cclm_pred);
    intra->intra_pred         = FUNC(intra_pred);
    intra->pred_planar        = FUNC(pred_planar);
    intra->pred_mip           = FUNC(pred_mip);
    intra->pred_dc            = FUNC(pred_dc);
    intra->pred_v             = FUNC(pred_v);
    intra->pred_h             = FUNC(pred_h);
    intra->pred_angular_v     = FUNC(pred_angular_v);
    intra->pred_angular_h     = FUNC(pred_angular_h);
}