1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
|
/*
* FFv1 codec
*
* Copyright (c) 2024 Lynne <dev@lynne.ee>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
struct RangeCoder {
uint64_t bytestream_start;
uint64_t bytestream;
uint64_t bytestream_end;
int low;
int range;
uint16_t outstanding_count;
uint8_t outstanding_byte;
};
#ifdef FULL_RENORM
/* Full renorm version that can handle outstanding_byte == 0xFF */
void renorm_encoder(inout RangeCoder c)
{
int bs_cnt = 0;
u8buf bytestream = u8buf(c.bytestream);
if (c.outstanding_byte == 0xFF) {
c.outstanding_byte = uint8_t(c.low >> 8);
} else if (c.low <= 0xFF00) {
bytestream[bs_cnt++].v = c.outstanding_byte;
uint16_t cnt = c.outstanding_count;
for (; cnt > 0; cnt--)
bytestream[bs_cnt++].v = uint8_t(0xFF);
c.outstanding_count = uint16_t(0);
c.outstanding_byte = uint8_t(c.low >> 8);
} else if (c.low >= 0x10000) {
bytestream[bs_cnt++].v = c.outstanding_byte + uint8_t(1);
uint16_t cnt = c.outstanding_count;
for (; cnt > 0; cnt--)
bytestream[bs_cnt++].v = uint8_t(0x00);
c.outstanding_count = uint16_t(0);
c.outstanding_byte = uint8_t(bitfieldExtract(c.low, 8, 8));
} else {
c.outstanding_count++;
}
c.bytestream += bs_cnt;
c.range <<= 8;
c.low = bitfieldInsert(0, c.low, 8, 8);
}
#else
/* Cannot deal with outstanding_byte == -1 in the name of speed */
void renorm_encoder(inout RangeCoder c)
{
uint16_t oc = c.outstanding_count + uint16_t(1);
int low = c.low;
c.range <<= 8;
c.low = bitfieldInsert(0, low, 8, 8);
if (low > 0xFF00 && low < 0x10000) {
c.outstanding_count = oc;
return;
}
u8buf bs = u8buf(c.bytestream);
uint8_t outstanding_byte = c.outstanding_byte;
c.bytestream = uint64_t(bs) + oc;
c.outstanding_count = uint16_t(0);
c.outstanding_byte = uint8_t(low >> 8);
uint8_t obs = uint8_t(low > 0xFF00);
uint8_t fill = obs - uint8_t(1); /* unsigned underflow */
bs[0].v = outstanding_byte + obs;
for (int i = 1; i < oc; i++)
bs[i].v = fill;
}
#endif
void put_rac_internal(inout RangeCoder c, const int range1, bool bit)
{
#ifdef DEBUG
if (range1 >= c.range)
debugPrintfEXT("Error: range1 >= c.range");
if (range1 <= 0)
debugPrintfEXT("Error: range1 <= 0");
#endif
int ranged = c.range - range1;
c.low += bit ? ranged : 0;
c.range = bit ? range1 : ranged;
if (expectEXT(c.range < 0x100, false))
renorm_encoder(c);
}
void put_rac_direct(inout RangeCoder c, inout uint8_t state, bool bit)
{
put_rac_internal(c, (c.range * state) >> 8, bit);
state = zero_one_state[(uint(bit) << 8) + state];
}
void put_rac(inout RangeCoder c, uint64_t state, bool bit)
{
put_rac_direct(c, u8buf(state).v, bit);
}
/* Equiprobable bit */
void put_rac_equi(inout RangeCoder c, bool bit)
{
put_rac_internal(c, c.range >> 1, bit);
}
void put_rac_terminate(inout RangeCoder c)
{
int range1 = (c.range * 129) >> 8;
#ifdef DEBUG
if (range1 >= c.range)
debugPrintfEXT("Error: range1 >= c.range");
if (range1 <= 0)
debugPrintfEXT("Error: range1 <= 0");
#endif
c.range -= range1;
if (expectEXT(c.range < 0x100, false))
renorm_encoder(c);
}
/* Return the number of bytes written. */
uint32_t rac_terminate(inout RangeCoder c)
{
put_rac_terminate(c);
c.range = uint16_t(0xFF);
c.low += 0xFF;
renorm_encoder(c);
c.range = uint16_t(0xFF);
renorm_encoder(c);
#ifdef DEBUG
if (c.low != 0)
debugPrintfEXT("Error: c.low != 0");
if (c.range < 0x100)
debugPrintfEXT("Error: range < 0x100");
#endif
return uint32_t(uint64_t(c.bytestream) - uint64_t(c.bytestream_start));
}
void rac_init(out RangeCoder r, u8buf data, uint buf_size)
{
r.bytestream_start = uint64_t(data);
r.bytestream = uint64_t(data);
r.bytestream_end = uint64_t(data) + buf_size;
r.low = 0;
r.range = 0xFF00;
r.outstanding_count = uint16_t(0);
r.outstanding_byte = uint8_t(0xFF);
}
/* Decoder */
uint overread = 0;
bool corrupt = false;
void rac_init_dec(out RangeCoder r, u8buf data, uint buf_size)
{
overread = 0;
corrupt = false;
/* Skip priming bytes */
rac_init(r, OFFBUF(u8buf, data, 2), buf_size - 2);
u8vec2 prime = u8vec2buf(data).v;
/* Switch endianness of the priming bytes */
r.low = pack16(prime.yx);
if (r.low >= 0xFF00) {
r.low = 0xFF00;
r.bytestream_end = uint64_t(data) + 2;
}
}
void refill(inout RangeCoder c)
{
c.range <<= 8;
c.low <<= 8;
if (expectEXT(c.bytestream < c.bytestream_end, false)) {
c.low |= u8buf(c.bytestream).v;
c.bytestream++;
} else {
overread++;
}
}
bool get_rac_internal(inout RangeCoder c, const int range1)
{
int ranged = c.range - range1;
bool bit = c.low >= ranged;
c.low -= bit ? ranged : 0;
c.range = (bit ? 0 : ranged) + (bit ? range1 : 0);
if (expectEXT(c.range < 0x100, false))
refill(c);
return bit;
}
bool get_rac_direct(inout RangeCoder c, inout uint8_t state)
{
bool bit = get_rac_internal(c, c.range * state >> 8);
state = zero_one_state[state + (bit ? 256 : 0)];
return bit;
}
bool get_rac(inout RangeCoder c, uint64_t state)
{
return get_rac_direct(c, u8buf(state).v);
}
bool get_rac_equi(inout RangeCoder c)
{
return get_rac_internal(c, c.range >> 1);
}
|