aboutsummaryrefslogtreecommitdiffstats
path: root/libavcodec/vp3.c
blob: 5002800ef236fd2a1cf4f8285149d972eae29eaf (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
/*
 * Copyright (C) 2003-2004 The FFmpeg project
 * Copyright (C) 2019 Peter Ross
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/**
 * @file
 * On2 VP3/VP4 Video Decoder
 *
 * VP3 Video Decoder by Mike Melanson (mike at multimedia.cx)
 * For more information about the VP3 coding process, visit:
 *   http://wiki.multimedia.cx/index.php?title=On2_VP3
 *
 * Theora decoder by Alex Beregszaszi
 */

#include "config_components.h"

#include <stddef.h>
#include <string.h>

#include "libavutil/emms.h"
#include "libavutil/imgutils.h"
#include "libavutil/mem_internal.h"

#include "avcodec.h"
#include "codec_internal.h"
#include "decode.h"
#include "get_bits.h"
#include "hpeldsp.h"
#include "jpegquanttables.h"
#include "mathops.h"
#include "thread.h"
#include "threadframe.h"
#include "videodsp.h"
#include "vp3data.h"
#include "vp4data.h"
#include "vp3dsp.h"
#include "xiph.h"

#define VP3_MV_VLC_BITS     6
#define VP4_MV_VLC_BITS     6
#define SUPERBLOCK_VLC_BITS 6

#define FRAGMENT_PIXELS 8

// FIXME split things out into their own arrays
typedef struct Vp3Fragment {
    int16_t dc;
    uint8_t coding_method;
    uint8_t qpi;
} Vp3Fragment;

#define SB_NOT_CODED        0
#define SB_PARTIALLY_CODED  1
#define SB_FULLY_CODED      2

// This is the maximum length of a single long bit run that can be encoded
// for superblock coding or block qps. Theora special-cases this to read a
// bit instead of flipping the current bit to allow for runs longer than 4129.
#define MAXIMUM_LONG_BIT_RUN 4129

#define MODE_INTER_NO_MV      0
#define MODE_INTRA            1
#define MODE_INTER_PLUS_MV    2
#define MODE_INTER_LAST_MV    3
#define MODE_INTER_PRIOR_LAST 4
#define MODE_USING_GOLDEN     5
#define MODE_GOLDEN_MV        6
#define MODE_INTER_FOURMV     7
#define CODING_MODE_COUNT     8

/* special internal mode */
#define MODE_COPY             8

static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb);
static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb);


/* There are 6 preset schemes, plus a free-form scheme */
static const int ModeAlphabet[6][CODING_MODE_COUNT] = {
    /* scheme 1: Last motion vector dominates */
    { MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
      MODE_INTER_PLUS_MV,    MODE_INTER_NO_MV,
      MODE_INTRA,            MODE_USING_GOLDEN,
      MODE_GOLDEN_MV,        MODE_INTER_FOURMV },

    /* scheme 2 */
    { MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
      MODE_INTER_NO_MV,      MODE_INTER_PLUS_MV,
      MODE_INTRA,            MODE_USING_GOLDEN,
      MODE_GOLDEN_MV,        MODE_INTER_FOURMV },

    /* scheme 3 */
    { MODE_INTER_LAST_MV,    MODE_INTER_PLUS_MV,
      MODE_INTER_PRIOR_LAST, MODE_INTER_NO_MV,
      MODE_INTRA,            MODE_USING_GOLDEN,
      MODE_GOLDEN_MV,        MODE_INTER_FOURMV },

    /* scheme 4 */
    { MODE_INTER_LAST_MV,    MODE_INTER_PLUS_MV,
      MODE_INTER_NO_MV,      MODE_INTER_PRIOR_LAST,
      MODE_INTRA,            MODE_USING_GOLDEN,
      MODE_GOLDEN_MV,        MODE_INTER_FOURMV },

    /* scheme 5: No motion vector dominates */
    { MODE_INTER_NO_MV,      MODE_INTER_LAST_MV,
      MODE_INTER_PRIOR_LAST, MODE_INTER_PLUS_MV,
      MODE_INTRA,            MODE_USING_GOLDEN,
      MODE_GOLDEN_MV,        MODE_INTER_FOURMV },

    /* scheme 6 */
    { MODE_INTER_NO_MV,      MODE_USING_GOLDEN,
      MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
      MODE_INTER_PLUS_MV,    MODE_INTRA,
      MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
};

static const uint8_t hilbert_offset[16][2] = {
    { 0, 0 }, { 1, 0 }, { 1, 1 }, { 0, 1 },
    { 0, 2 }, { 0, 3 }, { 1, 3 }, { 1, 2 },
    { 2, 2 }, { 2, 3 }, { 3, 3 }, { 3, 2 },
    { 3, 1 }, { 2, 1 }, { 2, 0 }, { 3, 0 }
};

enum {
    VP4_DC_INTRA  = 0,
    VP4_DC_INTER  = 1,
    VP4_DC_GOLDEN = 2,
    NB_VP4_DC_TYPES,
    VP4_DC_UNDEFINED = NB_VP4_DC_TYPES
};

static const uint8_t vp4_pred_block_type_map[8] = {
    [MODE_INTER_NO_MV]      = VP4_DC_INTER,
    [MODE_INTRA]            = VP4_DC_INTRA,
    [MODE_INTER_PLUS_MV]    = VP4_DC_INTER,
    [MODE_INTER_LAST_MV]    = VP4_DC_INTER,
    [MODE_INTER_PRIOR_LAST] = VP4_DC_INTER,
    [MODE_USING_GOLDEN]     = VP4_DC_GOLDEN,
    [MODE_GOLDEN_MV]        = VP4_DC_GOLDEN,
    [MODE_INTER_FOURMV]     = VP4_DC_INTER,
};

typedef struct {
    int dc;
    int type;
} VP4Predictor;

#define MIN_DEQUANT_VAL 2

typedef struct HuffEntry {
    uint8_t len, sym;
} HuffEntry;

typedef struct HuffTable {
    HuffEntry entries[32];
    uint8_t   nb_entries;
} HuffTable;

typedef struct Vp3DecodeContext {
    AVCodecContext *avctx;
    int theora, theora_tables, theora_header;
    int version;
    int width, height;
    int chroma_x_shift, chroma_y_shift;
    ThreadFrame golden_frame;
    ThreadFrame last_frame;
    ThreadFrame current_frame;
    int keyframe;
    uint8_t idct_permutation[64];
    uint8_t idct_scantable[64];
    HpelDSPContext hdsp;
    VideoDSPContext vdsp;
    VP3DSPContext vp3dsp;
    DECLARE_ALIGNED(16, int16_t, block)[64];
    int flipped_image;
    int last_slice_end;
    int skip_loop_filter;

    int qps[3];
    int nqps;
    int last_qps[3];

    int superblock_count;
    int y_superblock_width;
    int y_superblock_height;
    int y_superblock_count;
    int c_superblock_width;
    int c_superblock_height;
    int c_superblock_count;
    int u_superblock_start;
    int v_superblock_start;
    unsigned char *superblock_coding;

    int macroblock_count; /* y macroblock count */
    int macroblock_width;
    int macroblock_height;
    int c_macroblock_count;
    int c_macroblock_width;
    int c_macroblock_height;
    int yuv_macroblock_count; /* y+u+v macroblock count */

    int fragment_count;
    int fragment_width[2];
    int fragment_height[2];

    Vp3Fragment *all_fragments;
    int fragment_start[3];
    int data_offset[3];
    uint8_t offset_x;
    uint8_t offset_y;
    int offset_x_warned;

    int8_t (*motion_val[2])[2];

    /* tables */
    uint16_t coded_dc_scale_factor[2][64];
    uint32_t coded_ac_scale_factor[64];
    uint8_t base_matrix[384][64];
    uint8_t qr_count[2][3];
    uint8_t qr_size[2][3][64];
    uint16_t qr_base[2][3][64];

    /**
     * This is a list of all tokens in bitstream order. Reordering takes place
     * by pulling from each level during IDCT. As a consequence, IDCT must be
     * in Hilbert order, making the minimum slice height 64 for 4:2:0 and 32
     * otherwise. The 32 different tokens with up to 12 bits of extradata are
     * collapsed into 3 types, packed as follows:
     *   (from the low to high bits)
     *
     * 2 bits: type (0,1,2)
     *   0: EOB run, 14 bits for run length (12 needed)
     *   1: zero run, 7 bits for run length
     *                7 bits for the next coefficient (3 needed)
     *   2: coefficient, 14 bits (11 needed)
     *
     * Coefficients are signed, so are packed in the highest bits for automatic
     * sign extension.
     */
    int16_t *dct_tokens[3][64];
    int16_t *dct_tokens_base;
#define TOKEN_EOB(eob_run)              ((eob_run) << 2)
#define TOKEN_ZERO_RUN(coeff, zero_run) (((coeff) * 512) + ((zero_run) << 2) + 1)
#define TOKEN_COEFF(coeff)              (((coeff) * 4) + 2)

    /**
     * number of blocks that contain DCT coefficients at
     * the given level or higher
     */
    int num_coded_frags[3][64];
    int total_num_coded_frags;

    /* this is a list of indexes into the all_fragments array indicating
     * which of the fragments are coded */
    int *coded_fragment_list[3];

    int *kf_coded_fragment_list;
    int *nkf_coded_fragment_list;
    int num_kf_coded_fragment[3];

    /* The first 16 of the following VLCs are for the dc coefficients;
       the others are four groups of 16 VLCs each for ac coefficients. */
    VLC coeff_vlc[5 * 16];

    VLC superblock_run_length_vlc; /* version < 2 */
    VLC fragment_run_length_vlc; /* version < 2 */
    VLC block_pattern_vlc[2]; /* version >= 2*/
    VLC mode_code_vlc;
    VLC motion_vector_vlc; /* version < 2 */
    VLC vp4_mv_vlc[2][7]; /* version >=2 */

    /* these arrays need to be on 16-byte boundaries since SSE2 operations
     * index into them */
    DECLARE_ALIGNED(16, int16_t, qmat)[3][2][3][64];     ///< qmat[qpi][is_inter][plane]

    /* This table contains superblock_count * 16 entries. Each set of 16
     * numbers corresponds to the fragment indexes 0..15 of the superblock.
     * An entry will be -1 to indicate that no entry corresponds to that
     * index. */
    int *superblock_fragments;

    /* This is an array that indicates how a particular macroblock
     * is coded. */
    unsigned char *macroblock_coding;

    uint8_t *edge_emu_buffer;

    /* Huffman decode */
    HuffTable huffman_table[5 * 16];

    uint8_t filter_limit_values[64];
    DECLARE_ALIGNED(8, int, bounding_values_array)[256 + 2];

    VP4Predictor * dc_pred_row; /* dc_pred_row[y_superblock_width * 4] */
} Vp3DecodeContext;

/************************************************************************
 * VP3 specific functions
 ************************************************************************/

static av_cold void free_tables(AVCodecContext *avctx)
{
    Vp3DecodeContext *s = avctx->priv_data;

    av_freep(&s->superblock_coding);
    av_freep(&s->all_fragments);
    av_freep(&s->nkf_coded_fragment_list);
    av_freep(&s->kf_coded_fragment_list);
    av_freep(&s->dct_tokens_base);
    av_freep(&s->superblock_fragments);
    av_freep(&s->macroblock_coding);
    av_freep(&s->dc_pred_row);
    av_freep(&s->motion_val[0]);
    av_freep(&s->motion_val[1]);
}

static void vp3_decode_flush(AVCodecContext *avctx)
{
    Vp3DecodeContext *s = avctx->priv_data;

    if (s->golden_frame.f)
        ff_thread_release_ext_buffer(avctx, &s->golden_frame);
    if (s->last_frame.f)
        ff_thread_release_ext_buffer(avctx, &s->last_frame);
    if (s->current_frame.f)
        ff_thread_release_ext_buffer(avctx, &s->current_frame);
}

static av_cold int vp3_decode_end(AVCodecContext *avctx)
{
    Vp3DecodeContext *s = avctx->priv_data;
    int i, j;

    free_tables(avctx);
    av_freep(&s->edge_emu_buffer);

    s->theora_tables = 0;

    /* release all frames */
    vp3_decode_flush(avctx);
    av_frame_free(&s->current_frame.f);
    av_frame_free(&s->last_frame.f);
    av_frame_free(&s->golden_frame.f);

    for (i = 0; i < FF_ARRAY_ELEMS(s->coeff_vlc); i++)
        ff_vlc_free(&s->coeff_vlc[i]);

    ff_vlc_free(&s->superblock_run_length_vlc);
    ff_vlc_free(&s->fragment_run_length_vlc);
    ff_vlc_free(&s->mode_code_vlc);
    ff_vlc_free(&s->motion_vector_vlc);

    for (j = 0; j < 2; j++)
        for (i = 0; i < 7; i++)
            ff_vlc_free(&s->vp4_mv_vlc[j][i]);

    for (i = 0; i < 2; i++)
        ff_vlc_free(&s->block_pattern_vlc[i]);
    return 0;
}

/**
 * This function sets up all of the various blocks mappings:
 * superblocks <-> fragments, macroblocks <-> fragments,
 * superblocks <-> macroblocks
 *
 * @return 0 is successful; returns 1 if *anything* went wrong.
 */
static int init_block_mapping(Vp3DecodeContext *s)
{
    int sb_x, sb_y, plane;
    int x, y, i, j = 0;

    for (plane = 0; plane < 3; plane++) {
        int sb_width    = plane ? s->c_superblock_width
                                : s->y_superblock_width;
        int sb_height   = plane ? s->c_superblock_height
                                : s->y_superblock_height;
        int frag_width  = s->fragment_width[!!plane];
        int frag_height = s->fragment_height[!!plane];

        for (sb_y = 0; sb_y < sb_height; sb_y++)
            for (sb_x = 0; sb_x < sb_width; sb_x++)
                for (i = 0; i < 16; i++) {
                    x = 4 * sb_x + hilbert_offset[i][0];
                    y = 4 * sb_y + hilbert_offset[i][1];

                    if (x < frag_width && y < frag_height)
                        s->superblock_fragments[j++] = s->fragment_start[plane] +
                                                       y * frag_width + x;
                    else
                        s->superblock_fragments[j++] = -1;
                }
    }

    return 0;  /* successful path out */
}

/*
 * This function sets up the dequantization tables used for a particular
 * frame.
 */
static void init_dequantizer(Vp3DecodeContext *s, int qpi)
{
    int ac_scale_factor = s->coded_ac_scale_factor[s->qps[qpi]];
    int i, plane, inter, qri, bmi, bmj, qistart;

    for (inter = 0; inter < 2; inter++) {
        for (plane = 0; plane < 3; plane++) {
            int dc_scale_factor = s->coded_dc_scale_factor[!!plane][s->qps[qpi]];
            int sum = 0;
            for (qri = 0; qri < s->qr_count[inter][plane]; qri++) {
                sum += s->qr_size[inter][plane][qri];
                if (s->qps[qpi] <= sum)
                    break;
            }
            qistart = sum - s->qr_size[inter][plane][qri];
            bmi     = s->qr_base[inter][plane][qri];
            bmj     = s->qr_base[inter][plane][qri + 1];
            for (i = 0; i < 64; i++) {
                int coeff = (2 * (sum     - s->qps[qpi]) * s->base_matrix[bmi][i] -
                             2 * (qistart - s->qps[qpi]) * s->base_matrix[bmj][i] +
                             s->qr_size[inter][plane][qri]) /
                            (2 * s->qr_size[inter][plane][qri]);

                int qmin   = 8 << (inter + !i);
                int qscale = i ? ac_scale_factor : dc_scale_factor;
                int qbias = (1 + inter) * 3;
                s->qmat[qpi][inter][plane][s->idct_permutation[i]] =
                    (i == 0 || s->version < 2) ? av_clip((qscale * coeff) / 100 * 4, qmin, 4096)
                                               : (qscale * (coeff - qbias) / 100 + qbias) * 4;
            }
            /* all DC coefficients use the same quant so as not to interfere
             * with DC prediction */
            s->qmat[qpi][inter][plane][0] = s->qmat[0][inter][plane][0];
        }
    }
}

/*
 * This function initializes the loop filter boundary limits if the frame's
 * quality index is different from the previous frame's.
 *
 * The filter_limit_values may not be larger than 127.
 */
static void init_loop_filter(Vp3DecodeContext *s)
{
    ff_vp3dsp_set_bounding_values(s->bounding_values_array, s->filter_limit_values[s->qps[0]]);
}

/*
 * This function unpacks all of the superblock/macroblock/fragment coding
 * information from the bitstream.
 */
static int unpack_superblocks(Vp3DecodeContext *s, GetBitContext *gb)
{
    int superblock_starts[3] = {
        0, s->u_superblock_start, s->v_superblock_start
    };
    int bit = 0;
    int current_superblock = 0;
    int current_run = 0;
    int num_partial_superblocks = 0;

    int i, j;
    int current_fragment;
    int plane;
    int plane0_num_coded_frags = 0;

    if (s->keyframe) {
        memset(s->superblock_coding, SB_FULLY_CODED, s->superblock_count);
    } else {
        /* unpack the list of partially-coded superblocks */
        bit         = get_bits1(gb) ^ 1;
        current_run = 0;

        while (current_superblock < s->superblock_count && get_bits_left(gb) > 0) {
            if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN)
                bit = get_bits1(gb);
            else
                bit ^= 1;

            current_run = get_vlc2(gb, s->superblock_run_length_vlc.table,
                                   SUPERBLOCK_VLC_BITS, 2);
            if (current_run == 34)
                current_run += get_bits(gb, 12);

            if (current_run > s->superblock_count - current_superblock) {
                av_log(s->avctx, AV_LOG_ERROR,
                       "Invalid partially coded superblock run length\n");
                return -1;
            }

            memset(s->superblock_coding + current_superblock, bit, current_run);

            current_superblock += current_run;
            if (bit)
                num_partial_superblocks += current_run;
        }

        /* unpack the list of fully coded superblocks if any of the blocks were
         * not marked as partially coded in the previous step */
        if (num_partial_superblocks < s->superblock_count) {
            int superblocks_decoded = 0;

            current_superblock = 0;
            bit                = get_bits1(gb) ^ 1;
            current_run        = 0;

            while (superblocks_decoded < s->superblock_count - num_partial_superblocks &&
                   get_bits_left(gb) > 0) {
                if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN)
                    bit = get_bits1(gb);
                else
                    bit ^= 1;

                current_run = get_vlc2(gb, s->superblock_run_length_vlc.table,
                                       SUPERBLOCK_VLC_BITS, 2);
                if (current_run == 34)
                    current_run += get_bits(gb, 12);

                for (j = 0; j < current_run; current_superblock++) {
                    if (current_superblock >= s->superblock_count) {
                        av_log(s->avctx, AV_LOG_ERROR,
                               "Invalid fully coded superblock run length\n");
                        return -1;
                    }

                    /* skip any superblocks already marked as partially coded */
                    if (s->superblock_coding[current_superblock] == SB_NOT_CODED) {
                        s->superblock_coding[current_superblock] = 2 * bit;
                        j++;
                    }
                }
                superblocks_decoded += current_run;
            }
        }

        /* if there were partial blocks, initialize bitstream for
         * unpacking fragment codings */
        if (num_partial_superblocks) {
            current_run = 0;
            bit         = get_bits1(gb);
            /* toggle the bit because as soon as the first run length is
             * fetched the bit will be toggled again */
            bit ^= 1;
        }
    }

    /* figure out which fragments are coded; iterate through each
     * superblock (all planes) */
    s->total_num_coded_frags = 0;
    memset(s->macroblock_coding, MODE_COPY, s->macroblock_count);

    s->coded_fragment_list[0] = s->keyframe ? s->kf_coded_fragment_list
                                            : s->nkf_coded_fragment_list;

    for (plane = 0; plane < 3; plane++) {
        int sb_start = superblock_starts[plane];
        int sb_end   = sb_start + (plane ? s->c_superblock_count
                                         : s->y_superblock_count);
        int num_coded_frags = 0;

        if (s->keyframe) {
            if (s->num_kf_coded_fragment[plane] == -1) {
                for (i = sb_start; i < sb_end; i++) {
                    /* iterate through all 16 fragments in a superblock */
                    for (j = 0; j < 16; j++) {
                        /* if the fragment is in bounds, check its coding status */
                        current_fragment = s->superblock_fragments[i * 16 + j];
                        if (current_fragment != -1) {
                            s->coded_fragment_list[plane][num_coded_frags++] =
                                current_fragment;
                        }
                    }
                }
                s->num_kf_coded_fragment[plane] = num_coded_frags;
            } else
                num_coded_frags = s->num_kf_coded_fragment[plane];
        } else {
            for (i = sb_start; i < sb_end && get_bits_left(gb) > 0; i++) {
                if (get_bits_left(gb) < plane0_num_coded_frags >> 2) {
                    return AVERROR_INVALIDDATA;
                }
                /* iterate through all 16 fragments in a superblock */
                for (j = 0; j < 16; j++) {
                    /* if the fragment is in bounds, check its coding status */
                    current_fragment = s->superblock_fragments[i * 16 + j];
                    if (current_fragment != -1) {
                        int coded = s->superblock_coding[i];

                        if (coded == SB_PARTIALLY_CODED) {
                            /* fragment may or may not be coded; this is the case
                             * that cares about the fragment coding runs */
                            if (current_run-- == 0) {
                                bit        ^= 1;
                                current_run = get_vlc2(gb, s->fragment_run_length_vlc.table, 5, 2);
                            }
                            coded = bit;
                        }

                        if (coded) {
                            /* default mode; actual mode will be decoded in
                             * the next phase */
                            s->all_fragments[current_fragment].coding_method =
                                MODE_INTER_NO_MV;
                            s->coded_fragment_list[plane][num_coded_frags++] =
                                current_fragment;
                        } else {
                            /* not coded; copy this fragment from the prior frame */
                            s->all_fragments[current_fragment].coding_method =
                                MODE_COPY;
                        }
                    }
                }
            }
        }
        if (!plane)
            plane0_num_coded_frags = num_coded_frags;
        s->total_num_coded_frags += num_coded_frags;
        for (i = 0; i < 64; i++)
            s->num_coded_frags[plane][i] = num_coded_frags;
        if (plane < 2)
            s->coded_fragment_list[plane + 1] = s->coded_fragment_list[plane] +
                                                num_coded_frags;
    }
    return 0;
}

#define BLOCK_X (2 * mb_x + (k & 1))
#define BLOCK_Y (2 * mb_y + (k >> 1))

#if CONFIG_VP4_DECODER
/**
 * @return number of blocks, or > yuv_macroblock_count on error.
 *         return value is always >= 1.
 */
static int vp4_get_mb_count(Vp3DecodeContext *s, GetBitContext *gb)
{
    int v = 1;
    int bits;
    while ((bits = show_bits(gb, 9)) == 0x1ff) {
        skip_bits(gb, 9);
        v += 256;
        if (v > s->yuv_macroblock_count) {
            av_log(s->avctx, AV_LOG_ERROR, "Invalid run length\n");
            return v;
        }
    }
#define body(n) { \
    skip_bits(gb, 2 + n); \
    v += (1 << n) + get_bits(gb, n); }
#define thresh(n) (0x200 - (0x80 >> n))
#define else_if(n) else if (bits < thresh(n)) body(n)
    if (bits < 0x100) {
        skip_bits(gb, 1);
    } else if (bits < thresh(0)) {
        skip_bits(gb, 2);
        v += 1;
    }
    else_if(1)
    else_if(2)
    else_if(3)
    else_if(4)
    else_if(5)
    else_if(6)
    else body(7)
#undef body
#undef thresh
#undef else_if
    return v;
}

static int vp4_get_block_pattern(Vp3DecodeContext *s, GetBitContext *gb, int *next_block_pattern_table)
{
    int v = get_vlc2(gb, s->block_pattern_vlc[*next_block_pattern_table].table, 3, 2);
    *next_block_pattern_table = vp4_block_pattern_table_selector[v];
    return v + 1;
}

static int vp4_unpack_macroblocks(Vp3DecodeContext *s, GetBitContext *gb)
{
    int plane, i, j, k, fragment;
    int next_block_pattern_table;
    int bit, current_run, has_partial;

    memset(s->macroblock_coding, MODE_COPY, s->macroblock_count);

    if (s->keyframe)
        return 0;

    has_partial = 0;
    bit         = get_bits1(gb);
    for (i = 0; i < s->yuv_macroblock_count; i += current_run) {
        if (get_bits_left(gb) <= 0)
            return AVERROR_INVALIDDATA;
        current_run = vp4_get_mb_count(s, gb);
        if (current_run > s->yuv_macroblock_count - i)
            return -1;
        memset(s->superblock_coding + i, 2 * bit, current_run);
        bit ^= 1;
        has_partial |= bit;
    }

    if (has_partial) {
        if (get_bits_left(gb) <= 0)
            return AVERROR_INVALIDDATA;
        bit  = get_bits1(gb);
        current_run = vp4_get_mb_count(s, gb);
        for (i = 0; i < s->yuv_macroblock_count; i++) {
            if (!s->superblock_coding[i]) {
                if (!current_run) {
                    bit ^= 1;
                    current_run = vp4_get_mb_count(s, gb);
                }
                s->superblock_coding[i] = bit;
                current_run--;
            }
        }
        if (current_run) /* handle situation when vp4_get_mb_count() fails */
            return -1;
    }

    next_block_pattern_table = 0;
    i = 0;
    for (plane = 0; plane < 3; plane++) {
        int sb_x, sb_y;
        int sb_width = plane ? s->c_superblock_width : s->y_superblock_width;
        int sb_height = plane ? s->c_superblock_height : s->y_superblock_height;
        int mb_width = plane ? s->c_macroblock_width : s->macroblock_width;
        int mb_height = plane ? s->c_macroblock_height : s->macroblock_height;
        int fragment_width = s->fragment_width[!!plane];
        int fragment_height = s->fragment_height[!!plane];

        for (sb_y = 0; sb_y < sb_height; sb_y++) {
            for (sb_x = 0; sb_x < sb_width; sb_x++) {
                for (j = 0; j < 4; j++) {
                    int mb_x = 2 * sb_x + (j >> 1);
                    int mb_y = 2 * sb_y + (j >> 1) ^ (j & 1);
                    int mb_coded, pattern, coded;

                    if (mb_x >= mb_width || mb_y >= mb_height)
                        continue;

                    mb_coded = s->superblock_coding[i++];

                    if (mb_coded == SB_FULLY_CODED)
                        pattern = 0xF;
                    else if (mb_coded == SB_PARTIALLY_CODED)
                        pattern = vp4_get_block_pattern(s, gb, &next_block_pattern_table);
                    else
                        pattern = 0;

                    for (k = 0; k < 4; k++) {
                        if (BLOCK_X >= fragment_width || BLOCK_Y >= fragment_height)
                            continue;
                        fragment = s->fragment_start[plane] + BLOCK_Y * fragment_width + BLOCK_X;
                        coded = pattern & (8 >> k);
                        /* MODE_INTER_NO_MV is the default for coded fragments.
                           the actual method is decoded in the next phase. */
                        s->all_fragments[fragment].coding_method = coded ? MODE_INTER_NO_MV : MODE_COPY;
                    }
                }
            }
        }
    }
    return 0;
}
#endif

/*
 * This function unpacks all the coding mode data for individual macroblocks
 * from the bitstream.
 */
static int unpack_modes(Vp3DecodeContext *s, GetBitContext *gb)
{
    int i, j, k, sb_x, sb_y;
    int scheme;
    int current_macroblock;
    int current_fragment;
    int coding_mode;
    int custom_mode_alphabet[CODING_MODE_COUNT];
    const int *alphabet;
    Vp3Fragment *frag;

    if (s->keyframe) {
        for (i = 0; i < s->fragment_count; i++)
            s->all_fragments[i].coding_method = MODE_INTRA;
    } else {
        /* fetch the mode coding scheme for this frame */
        scheme = get_bits(gb, 3);

        /* is it a custom coding scheme? */
        if (scheme == 0) {
            for (i = 0; i < 8; i++)
                custom_mode_alphabet[i] = MODE_INTER_NO_MV;
            for (i = 0; i < 8; i++)
                custom_mode_alphabet[get_bits(gb, 3)] = i;
            alphabet = custom_mode_alphabet;
        } else
            alphabet = ModeAlphabet[scheme - 1];

        /* iterate through all of the macroblocks that contain 1 or more
         * coded fragments */
        for (sb_y = 0; sb_y < s->y_superblock_height; sb_y++) {
            for (sb_x = 0; sb_x < s->y_superblock_width; sb_x++) {
                if (get_bits_left(gb) <= 0)
                    return -1;

                for (j = 0; j < 4; j++) {
                    int mb_x = 2 * sb_x + (j >> 1);
                    int mb_y = 2 * sb_y + (((j >> 1) + j) & 1);
                    current_macroblock = mb_y * s->macroblock_width + mb_x;

                    if (mb_x >= s->macroblock_width ||
                        mb_y >= s->macroblock_height)
                        continue;

                    /* coding modes are only stored if the macroblock has
                     * at least one luma block coded, otherwise it must be
                     * INTER_NO_MV */
                    for (k = 0; k < 4; k++) {
                        current_fragment = BLOCK_Y *
                                           s->fragment_width[0] + BLOCK_X;
                        if (s->all_fragments[current_fragment].coding_method != MODE_COPY)
                            break;
                    }
                    if (k == 4) {
                        s->macroblock_coding[current_macroblock] = MODE_INTER_NO_MV;
                        continue;
                    }

                    /* mode 7 means get 3 bits for each coding mode */
                    if (scheme == 7)
                        coding_mode = get_bits(gb, 3);
                    else
                        coding_mode = alphabet[get_vlc2(gb, s->mode_code_vlc.table, 3, 3)];

                    s->macroblock_coding[current_macroblock] = coding_mode;
                    for (k = 0; k < 4; k++) {
                        frag = s->all_fragments + BLOCK_Y * s->fragment_width[0] + BLOCK_X;
                        if (frag->coding_method != MODE_COPY)
                            frag->coding_method = coding_mode;
                    }

#define SET_CHROMA_MODES                                                      \
    if (frag[s->fragment_start[1]].coding_method != MODE_COPY)                \
        frag[s->fragment_start[1]].coding_method = coding_mode;               \
    if (frag[s->fragment_start[2]].coding_method != MODE_COPY)                \
        frag[s->fragment_start[2]].coding_method = coding_mode;

                    if (s->chroma_y_shift) {
                        frag = s->all_fragments + mb_y *
                               s->fragment_width[1] + mb_x;
                        SET_CHROMA_MODES
                    } else if (s->chroma_x_shift) {
                        frag = s->all_fragments +
                               2 * mb_y * s->fragment_width[1] + mb_x;
                        for (k = 0; k < 2; k++) {
                            SET_CHROMA_MODES
                            frag += s->fragment_width[1];
                        }
                    } else {
                        for (k = 0; k < 4; k++) {
                            frag = s->all_fragments +
                                   BLOCK_Y * s->fragment_width[1] + BLOCK_X;
                            SET_CHROMA_MODES
                        }
                    }
                }
            }
        }
    }

    return 0;
}

static int vp4_get_mv(Vp3DecodeContext *s, GetBitContext *gb, int axis, int last_motion)
{
    int v = get_vlc2(gb, s->vp4_mv_vlc[axis][vp4_mv_table_selector[FFABS(last_motion)]].table,
                     VP4_MV_VLC_BITS, 2);
    return last_motion < 0 ? -v : v;
}

/*
 * This function unpacks all the motion vectors for the individual
 * macroblocks from the bitstream.
 */
static int unpack_vectors(Vp3DecodeContext *s, GetBitContext *gb)
{
    int j, k, sb_x, sb_y;
    int coding_mode;
    int motion_x[4];
    int motion_y[4];
    int last_motion_x = 0;
    int last_motion_y = 0;
    int prior_last_motion_x = 0;
    int prior_last_motion_y = 0;
    int last_gold_motion_x = 0;
    int last_gold_motion_y = 0;
    int current_macroblock;
    int current_fragment;
    int frag;

    if (s->keyframe)
        return 0;

    /* coding mode 0 is the VLC scheme; 1 is the fixed code scheme; 2 is VP4 code scheme */
    coding_mode = s->version < 2 ? get_bits1(gb) : 2;

    /* iterate through all of the macroblocks that contain 1 or more
     * coded fragments */
    for (sb_y = 0; sb_y < s->y_superblock_height; sb_y++) {
        for (sb_x = 0; sb_x < s->y_superblock_width; sb_x++) {
            if (get_bits_left(gb) <= 0)
                return -1;

            for (j = 0; j < 4; j++) {
                int mb_x = 2 * sb_x + (j >> 1);
                int mb_y = 2 * sb_y + (((j >> 1) + j) & 1);
                current_macroblock = mb_y * s->macroblock_width + mb_x;

                if (mb_x >= s->macroblock_width  ||
                    mb_y >= s->macroblock_height ||
                    s->macroblock_coding[current_macroblock] == MODE_COPY)
                    continue;

                switch (s->macroblock_coding[current_macroblock]) {
                case MODE_GOLDEN_MV:
                    if (coding_mode == 2) { /* VP4 */
                        last_gold_motion_x = motion_x[0] = vp4_get_mv(s, gb, 0, last_gold_motion_x);
                        last_gold_motion_y = motion_y[0] = vp4_get_mv(s, gb, 1, last_gold_motion_y);
                        break;
                    } /* otherwise fall through */
                case MODE_INTER_PLUS_MV:
                    /* all 6 fragments use the same motion vector */
                    if (coding_mode == 0) {
                        motion_x[0] = get_vlc2(gb, s->motion_vector_vlc.table,
                                               VP3_MV_VLC_BITS, 2);
                        motion_y[0] = get_vlc2(gb, s->motion_vector_vlc.table,
                                               VP3_MV_VLC_BITS, 2);
                    } else if (coding_mode == 1) {
                        motion_x[0] = fixed_motion_vector_table[get_bits(gb, 6)];
                        motion_y[0] = fixed_motion_vector_table[get_bits(gb, 6)];
                    } else { /* VP4 */
                        motion_x[0] = vp4_get_mv(s, gb, 0, last_motion_x);
                        motion_y[0] = vp4_get_mv(s, gb, 1, last_motion_y);
                    }

                    /* vector maintenance, only on MODE_INTER_PLUS_MV */
                    if (s->macroblock_coding[current_macroblock] == MODE_INTER_PLUS_MV) {
                        prior_last_motion_x = last_motion_x;
                        prior_last_motion_y = last_motion_y;
                        last_motion_x       = motion_x[0];
                        last_motion_y       = motion_y[0];
                    }
                    break;

                case MODE_INTER_FOURMV:
                    /* vector maintenance */
                    prior_last_motion_x = last_motion_x;
                    prior_last_motion_y = last_motion_y;

                    /* fetch 4 vectors from the bitstream, one for each
                     * Y fragment, then average for the C fragment vectors */
                    for (k = 0; k < 4; k++) {
                        current_fragment = BLOCK_Y * s->fragment_width[0] + BLOCK_X;
                        if (s->all_fragments[current_fragment].coding_method != MODE_COPY) {
                            if (coding_mode == 0) {
                                motion_x[k] = get_vlc2(gb, s->motion_vector_vlc.table,
                                                       VP3_MV_VLC_BITS, 2);
                                motion_y[k] = get_vlc2(gb, s->motion_vector_vlc.table,
                                                       VP3_MV_VLC_BITS, 2);
                            } else if (coding_mode == 1) {
                                motion_x[k] = fixed_motion_vector_table[get_bits(gb, 6)];
                                motion_y[k] = fixed_motion_vector_table[get_bits(gb, 6)];
                            } else { /* VP4 */
                                motion_x[k] = vp4_get_mv(s, gb, 0, prior_last_motion_x);
                                motion_y[k] = vp4_get_mv(s, gb, 1, prior_last_motion_y);
                            }
                            last_motion_x = motion_x[k];
                            last_motion_y = motion_y[k];
                        } else {
                            motion_x[k] = 0;
                            motion_y[k] = 0;
                        }
                    }
                    break;

                case MODE_INTER_LAST_MV:
                    /* all 6 fragments use the last motion vector */
                    motion_x[0] = last_motion_x;
                    motion_y[0] = last_motion_y;

                    /* no vector maintenance (last vector remains the
                     * last vector) */
                    break;

                case MODE_INTER_PRIOR_LAST:
                    /* all 6 fragments use the motion vector prior to the
                     * last motion vector */
                    motion_x[0] = prior_last_motion_x;
                    motion_y[0] = prior_last_motion_y;

                    /* vector maintenance */
                    prior_last_motion_x = last_motion_x;
                    prior_last_motion_y = last_motion_y;
                    last_motion_x       = motion_x[0];
                    last_motion_y       = motion_y[0];
                    break;

                default:
                    /* covers intra, inter without MV, golden without MV */
                    motion_x[0] = 0;
                    motion_y[0] = 0;

                    /* no vector maintenance */
                    break;
                }

                /* assign the motion vectors to the correct fragments */
                for (k = 0; k < 4; k++) {
                    current_fragment =
                        BLOCK_Y * s->fragment_width[0] + BLOCK_X;
                    if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
                        s->motion_val[0][current_fragment][0] = motion_x[k];
                        s->motion_val[0][current_fragment][1] = motion_y[k];
                    } else {
                        s->motion_val[0][current_fragment][0] = motion_x[0];
                        s->motion_val[0][current_fragment][1] = motion_y[0];
                    }
                }

                if (s->chroma_y_shift) {
                    if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
                        motion_x[0] = RSHIFT(motion_x[0] + motion_x[1] +
                                             motion_x[2] + motion_x[3], 2);
                        motion_y[0] = RSHIFT(motion_y[0] + motion_y[1] +
                                             motion_y[2] + motion_y[3], 2);
                    }
                    if (s->version <= 2) {
                        motion_x[0] = (motion_x[0] >> 1) | (motion_x[0] & 1);
                        motion_y[0] = (motion_y[0] >> 1) | (motion_y[0] & 1);
                    }
                    frag = mb_y * s->fragment_width[1] + mb_x;
                    s->motion_val[1][frag][0] = motion_x[0];
                    s->motion_val[1][frag][1] = motion_y[0];
                } else if (s->chroma_x_shift) {
                    if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
                        motion_x[0] = RSHIFT(motion_x[0] + motion_x[1], 1);
                        motion_y[0] = RSHIFT(motion_y[0] + motion_y[1], 1);
                        motion_x[1] = RSHIFT(motion_x[2] + motion_x[3], 1);
                        motion_y[1] = RSHIFT(motion_y[2] + motion_y[3], 1);
                    } else {
                        motion_x[1] = motion_x[0];
                        motion_y[1] = motion_y[0];
                    }
                    if (s->version <= 2) {
                        motion_x[0] = (motion_x[0] >> 1) | (motion_x[0] & 1);
                        motion_x[1] = (motion_x[1] >> 1) | (motion_x[1] & 1);
                    }
                    frag = 2 * mb_y * s->fragment_width[1] + mb_x;
                    for (k = 0; k < 2; k++) {
                        s->motion_val[1][frag][0] = motion_x[k];
                        s->motion_val[1][frag][1] = motion_y[k];
                        frag += s->fragment_width[1];
                    }
                } else {
                    for (k = 0; k < 4; k++) {
                        frag = BLOCK_Y * s->fragment_width[1] + BLOCK_X;
                        if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
                            s->motion_val[1][frag][0] = motion_x[k];
                            s->motion_val[1][frag][1] = motion_y[k];
                        } else {
                            s->motion_val[1][frag][0] = motion_x[0];
                            s->motion_val[1][frag][1] = motion_y[0];
                        }
                    }
                }
            }
        }
    }

    return 0;
}

static int unpack_block_qpis(Vp3DecodeContext *s, GetBitContext *gb)
{
    int qpi, i, j, bit, run_length, blocks_decoded, num_blocks_at_qpi;
    int num_blocks = s->total_num_coded_frags;

    for (qpi = 0; qpi < s->nqps - 1 && num_blocks > 0; qpi++) {
        i = blocks_decoded = num_blocks_at_qpi = 0;

        bit        = get_bits1(gb) ^ 1;
        run_length = 0;

        do {
            if (run_length == MAXIMUM_LONG_BIT_RUN)
                bit = get_bits1(gb);
            else
                bit ^= 1;

            run_length = get_vlc2(gb, s->superblock_run_length_vlc.table,
                                  SUPERBLOCK_VLC_BITS, 2);
            if (run_length == 34)
                run_length += get_bits(gb, 12);
            blocks_decoded += run_length;

            if (!bit)
                num_blocks_at_qpi += run_length;

            for (j = 0; j < run_length; i++) {
                if (i >= s->total_num_coded_frags)
                    return -1;

                if (s->all_fragments[s->coded_fragment_list[0][i]].qpi == qpi) {
                    s->all_fragments[s->coded_fragment_list[0][i]].qpi += bit;
                    j++;
                }
            }
        } while (blocks_decoded < num_blocks && get_bits_left(gb) > 0);

        num_blocks -= num_blocks_at_qpi;
    }

    return 0;
}

static inline int get_eob_run(GetBitContext *gb, int token)
{
    int v = eob_run_table[token].base;
    if (eob_run_table[token].bits)
        v += get_bits(gb, eob_run_table[token].bits);
    return v;
}

static inline int get_coeff(GetBitContext *gb, int token, int16_t *coeff)
{
    int bits_to_get, zero_run;

    bits_to_get = coeff_get_bits[token];
    if (bits_to_get)
        bits_to_get = get_bits(gb, bits_to_get);
    *coeff = coeff_tables[token][bits_to_get];

    zero_run = zero_run_base[token];
    if (zero_run_get_bits[token])
        zero_run += get_bits(gb, zero_run_get_bits[token]);

    return zero_run;
}

/*
 * This function is called by unpack_dct_coeffs() to extract the VLCs from
 * the bitstream. The VLCs encode tokens which are used to unpack DCT
 * data. This function unpacks all the VLCs for either the Y plane or both
 * C planes, and is called for DC coefficients or different AC coefficient
 * levels (since different coefficient types require different VLC tables.
 *
 * This function returns a residual eob run. E.g, if a particular token gave
 * instructions to EOB the next 5 fragments and there were only 2 fragments
 * left in the current fragment range, 3 would be returned so that it could
 * be passed into the next call to this same function.
 */
static int unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb,
                       VLC *table, int coeff_index,
                       int plane,
                       int eob_run)
{
    int i, j = 0;
    int token;
    int zero_run  = 0;
    int16_t coeff = 0;
    int blocks_ended;
    int coeff_i = 0;
    int num_coeffs      = s->num_coded_frags[plane][coeff_index];
    int16_t *dct_tokens = s->dct_tokens[plane][coeff_index];

    /* local references to structure members to avoid repeated dereferences */
    int *coded_fragment_list   = s->coded_fragment_list[plane];
    Vp3Fragment *all_fragments = s->all_fragments;
    const VLCElem *vlc_table = table->table;

    if (num_coeffs < 0) {
        av_log(s->avctx, AV_LOG_ERROR,
               "Invalid number of coefficients at level %d\n", coeff_index);
        return AVERROR_INVALIDDATA;
    }

    if (eob_run > num_coeffs) {
        coeff_i      =
        blocks_ended = num_coeffs;
        eob_run     -= num_coeffs;
    } else {
        coeff_i      =
        blocks_ended = eob_run;
        eob_run      = 0;
    }

    // insert fake EOB token to cover the split between planes or zzi
    if (blocks_ended)
        dct_tokens[j++] = blocks_ended << 2;

    while (coeff_i < num_coeffs && get_bits_left(gb) > 0) {
        /* decode a VLC into a token */
        token = get_vlc2(gb, vlc_table, 11, 3);
        /* use the token to get a zero run, a coefficient, and an eob run */
        if ((unsigned) token <= 6U) {
            eob_run = get_eob_run(gb, token);
            if (!eob_run)
                eob_run = INT_MAX;

            // record only the number of blocks ended in this plane,
            // any spill will be recorded in the next plane.
            if (eob_run > num_coeffs - coeff_i) {
                dct_tokens[j++] = TOKEN_EOB(num_coeffs - coeff_i);
                blocks_ended   += num_coeffs - coeff_i;
                eob_run        -= num_coeffs - coeff_i;
                coeff_i         = num_coeffs;
            } else {
                dct_tokens[j++] = TOKEN_EOB(eob_run);
                blocks_ended   += eob_run;
                coeff_i        += eob_run;
                eob_run         = 0;
            }
        } else if (token >= 0) {
            zero_run = get_coeff(gb, token, &coeff);

            if (zero_run) {
                dct_tokens[j++] = TOKEN_ZERO_RUN(coeff, zero_run);
            } else {
                // Save DC into the fragment structure. DC prediction is
                // done in raster order, so the actual DC can't be in with
                // other tokens. We still need the token in dct_tokens[]
                // however, or else the structure collapses on itself.
                if (!coeff_index)
                    all_fragments[coded_fragment_list[coeff_i]].dc = coeff;

                dct_tokens[j++] = TOKEN_COEFF(coeff);
            }

            if (coeff_index + zero_run > 64) {
                av_log(s->avctx, AV_LOG_DEBUG,
                       "Invalid zero run of %d with %d coeffs left\n",
                       zero_run, 64 - coeff_index);
                zero_run = 64 - coeff_index;
            }

            // zero runs code multiple coefficients,
            // so don't try to decode coeffs for those higher levels
            for (i = coeff_index + 1; i <= coeff_index + zero_run; i++)
                s->num_coded_frags[plane][i]--;
            coeff_i++;
        } else {
            av_log(s->avctx, AV_LOG_ERROR, "Invalid token %d\n", token);
            return -1;
        }
    }

    if (blocks_ended > s->num_coded_frags[plane][coeff_index])
        av_log(s->avctx, AV_LOG_ERROR, "More blocks ended than coded!\n");

    // decrement the number of blocks that have higher coefficients for each
    // EOB run at this level
    if (blocks_ended)
        for (i = coeff_index + 1; i < 64; i++)
            s->num_coded_frags[plane][i] -= blocks_ended;

    // setup the next buffer
    if (plane < 2)
        s->dct_tokens[plane + 1][coeff_index] = dct_tokens + j;
    else if (coeff_index < 63)
        s->dct_tokens[0][coeff_index + 1] = dct_tokens + j;

    return eob_run;
}

static void reverse_dc_prediction(Vp3DecodeContext *s,
                                  int first_fragment,
                                  int fragment_width,
                                  int fragment_height);
/*
 * This function unpacks all of the DCT coefficient data from the
 * bitstream.
 */
static int unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb)
{
    int i;
    int dc_y_table;
    int dc_c_table;
    int ac_y_table;
    int ac_c_table;
    int residual_eob_run = 0;
    VLC *y_tables[64];
    VLC *c_tables[64];

    s->dct_tokens[0][0] = s->dct_tokens_base;

    if (get_bits_left(gb) < 16)
        return AVERROR_INVALIDDATA;

    /* fetch the DC table indexes */
    dc_y_table = get_bits(gb, 4);
    dc_c_table = get_bits(gb, 4);

    /* unpack the Y plane DC coefficients */
    residual_eob_run = unpack_vlcs(s, gb, &s->coeff_vlc[dc_y_table], 0,
                                   0, residual_eob_run);
    if (residual_eob_run < 0)
        return residual_eob_run;
    if (get_bits_left(gb) < 8)
        return AVERROR_INVALIDDATA;

    /* reverse prediction of the Y-plane DC coefficients */
    reverse_dc_prediction(s, 0, s->fragment_width[0], s->fragment_height[0]);

    /* unpack the C plane DC coefficients */
    residual_eob_run = unpack_vlcs(s, gb, &s->coeff_vlc[dc_c_table], 0,
                                   1, residual_eob_run);
    if (residual_eob_run < 0)
        return residual_eob_run;
    residual_eob_run = unpack_vlcs(s, gb, &s->coeff_vlc[dc_c_table], 0,
                                   2, residual_eob_run);
    if (residual_eob_run < 0)
        return residual_eob_run;

    /* reverse prediction of the C-plane DC coefficients */
    if (!(s->avctx->flags & AV_CODEC_FLAG_GRAY)) {
        reverse_dc_prediction(s, s->fragment_start[1],
                              s->fragment_width[1], s->fragment_height[1]);
        reverse_dc_prediction(s, s->fragment_start[2],
                              s->fragment_width[1], s->fragment_height[1]);
    }

    if (get_bits_left(gb) < 8)
        return AVERROR_INVALIDDATA;
    /* fetch the AC table indexes */
    ac_y_table = get_bits(gb, 4);
    ac_c_table = get_bits(gb, 4);

    /* build tables of AC VLC tables */
    for (i = 1; i <= 5; i++) {
        /* AC VLC table group 1 */
        y_tables[i] = &s->coeff_vlc[ac_y_table + 16];
        c_tables[i] = &s->coeff_vlc[ac_c_table + 16];
    }
    for (i = 6; i <= 14; i++) {
        /* AC VLC table group 2 */
        y_tables[i] = &s->coeff_vlc[ac_y_table + 32];
        c_tables[i] = &s->coeff_vlc[ac_c_table + 32];
    }
    for (i = 15; i <= 27; i++) {
        /* AC VLC table group 3 */
        y_tables[i] = &s->coeff_vlc[ac_y_table + 48];
        c_tables[i] = &s->coeff_vlc[ac_c_table + 48];
    }
    for (i = 28; i <= 63; i++) {
        /* AC VLC table group 4 */
        y_tables[i] = &s->coeff_vlc[ac_y_table + 64];
        c_tables[i] = &s->coeff_vlc[ac_c_table + 64];
    }

    /* decode all AC coefficients */
    for (i = 1; i <= 63; i++) {
        residual_eob_run = unpack_vlcs(s, gb, y_tables[i], i,
                                       0, residual_eob_run);
        if (residual_eob_run < 0)
            return residual_eob_run;

        residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i,
                                       1, residual_eob_run);
        if (residual_eob_run < 0)
            return residual_eob_run;
        residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i,
                                       2, residual_eob_run);
        if (residual_eob_run < 0)
            return residual_eob_run;
    }

    return 0;
}

#if CONFIG_VP4_DECODER
/**
 * eob_tracker[] is instead of TOKEN_EOB(value)
 * a dummy TOKEN_EOB(0) value is used to make vp3_dequant work
 *
 * @return < 0 on error
 */
static int vp4_unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb,
                       VLC *vlc_tables[64],
                       int plane, int eob_tracker[64], int fragment)
{
    int token;
    int zero_run  = 0;
    int16_t coeff = 0;
    int coeff_i = 0;
    int eob_run;

    while (!eob_tracker[coeff_i]) {
        if (get_bits_left(gb) < 1)
            return AVERROR_INVALIDDATA;

        token = get_vlc2(gb, vlc_tables[coeff_i]->table, 11, 3);

        /* use the token to get a zero run, a coefficient, and an eob run */
        if ((unsigned) token <= 6U) {
            eob_run = get_eob_run(gb, token);
            *s->dct_tokens[plane][coeff_i]++ = TOKEN_EOB(0);
            eob_tracker[coeff_i] = eob_run - 1;
            return 0;
        } else if (token >= 0) {
            zero_run = get_coeff(gb, token, &coeff);

            if (zero_run) {
                if (coeff_i + zero_run > 64) {
                    av_log(s->avctx, AV_LOG_DEBUG,
                        "Invalid zero run of %d with %d coeffs left\n",
                        zero_run, 64 - coeff_i);
                    zero_run = 64 - coeff_i;
                }
                *s->dct_tokens[plane][coeff_i]++ = TOKEN_ZERO_RUN(coeff, zero_run);
                coeff_i += zero_run;
            } else {
                if (!coeff_i)
                    s->all_fragments[fragment].dc = coeff;

                *s->dct_tokens[plane][coeff_i]++ = TOKEN_COEFF(coeff);
            }
            coeff_i++;
            if (coeff_i >= 64) /* > 64 occurs when there is a zero_run overflow */
                return 0; /* stop */
        } else {
            av_log(s->avctx, AV_LOG_ERROR, "Invalid token %d\n", token);
            return -1;
        }
    }
    *s->dct_tokens[plane][coeff_i]++ = TOKEN_EOB(0);
    eob_tracker[coeff_i]--;
    return 0;
}

static void vp4_dc_predictor_reset(VP4Predictor *p)
{
    p->dc = 0;
    p->type = VP4_DC_UNDEFINED;
}

static void vp4_dc_pred_before(const Vp3DecodeContext *s, VP4Predictor dc_pred[6][6], int sb_x)
{
    int i, j;

    for (i = 0; i < 4; i++)
        dc_pred[0][i + 1] = s->dc_pred_row[sb_x * 4 + i];

    for (j = 1; j < 5; j++)
        for (i = 0; i < 4; i++)
            vp4_dc_predictor_reset(&dc_pred[j][i + 1]);
}

static void vp4_dc_pred_after(Vp3DecodeContext *s, VP4Predictor dc_pred[6][6], int sb_x)
{
    int i;

    for (i = 0; i < 4; i++)
        s->dc_pred_row[sb_x * 4 + i] = dc_pred[4][i + 1];

    for (i = 1; i < 5; i++)
        dc_pred[i][0] = dc_pred[i][4];
}

/* note: dc_pred points to the current block */
static int vp4_dc_pred(const Vp3DecodeContext *s, const VP4Predictor * dc_pred, const int * last_dc, int type, int plane)
{
    int count = 0;
    int dc = 0;

    if (dc_pred[-6].type == type) {
        dc += dc_pred[-6].dc;
        count++;
    }

    if (dc_pred[6].type == type) {
        dc += dc_pred[6].dc;
        count++;
    }

    if (count != 2 && dc_pred[-1].type == type) {
        dc += dc_pred[-1].dc;
        count++;
    }

    if (count != 2 && dc_pred[1].type == type) {
        dc += dc_pred[1].dc;
        count++;
    }

    /* using division instead of shift to correctly handle negative values */
    return count == 2 ? dc / 2 : last_dc[type];
}

static void vp4_set_tokens_base(Vp3DecodeContext *s)
{
    int plane, i;
    int16_t *base = s->dct_tokens_base;
    for (plane = 0; plane < 3; plane++) {
        for (i = 0; i < 64; i++) {
            s->dct_tokens[plane][i] = base;
            base += s->fragment_width[!!plane] * s->fragment_height[!!plane];
        }
    }
}

static int vp4_unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb)
{
    int i, j;
    int dc_y_table;
    int dc_c_table;
    int ac_y_table;
    int ac_c_table;
    VLC *tables[2][64];
    int plane, sb_y, sb_x;
    int eob_tracker[64];
    VP4Predictor dc_pred[6][6];
    int last_dc[NB_VP4_DC_TYPES];

    if (get_bits_left(gb) < 16)
        return AVERROR_INVALIDDATA;

    /* fetch the DC table indexes */
    dc_y_table = get_bits(gb, 4);
    dc_c_table = get_bits(gb, 4);

    ac_y_table = get_bits(gb, 4);
    ac_c_table = get_bits(gb, 4);

    /* build tables of DC/AC VLC tables */

    /* DC table group */
    tables[0][0] = &s->coeff_vlc[dc_y_table];
    tables[1][0] = &s->coeff_vlc[dc_c_table];
    for (i = 1; i <= 5; i++) {
        /* AC VLC table group 1 */
        tables[0][i] = &s->coeff_vlc[ac_y_table + 16];
        tables[1][i] = &s->coeff_vlc[ac_c_table + 16];
    }
    for (i = 6; i <= 14; i++) {
        /* AC VLC table group 2 */
        tables[0][i] = &s->coeff_vlc[ac_y_table + 32];
        tables[1][i] = &s->coeff_vlc[ac_c_table + 32];
    }
    for (i = 15; i <= 27; i++) {
        /* AC VLC table group 3 */
        tables[0][i] = &s->coeff_vlc[ac_y_table + 48];
        tables[1][i] = &s->coeff_vlc[ac_c_table + 48];
    }
    for (i = 28; i <= 63; i++) {
        /* AC VLC table group 4 */
        tables[0][i] = &s->coeff_vlc[ac_y_table + 64];
        tables[1][i] = &s->coeff_vlc[ac_c_table + 64];
    }

    vp4_set_tokens_base(s);

    memset(last_dc, 0, sizeof(last_dc));

    for (plane = 0; plane < ((s->avctx->flags & AV_CODEC_FLAG_GRAY) ? 1 : 3); plane++) {
        memset(eob_tracker, 0, sizeof(eob_tracker));

        /* initialise dc prediction */
        for (i = 0; i < s->fragment_width[!!plane]; i++)
            vp4_dc_predictor_reset(&s->dc_pred_row[i]);

        for (j = 0; j < 6; j++)
            for (i = 0; i < 6; i++)
                vp4_dc_predictor_reset(&dc_pred[j][i]);

        for (sb_y = 0; sb_y * 4 < s->fragment_height[!!plane]; sb_y++) {
            for (sb_x = 0; sb_x *4 < s->fragment_width[!!plane]; sb_x++) {
                vp4_dc_pred_before(s, dc_pred, sb_x);
                for (j = 0; j < 16; j++) {
                        int hx = hilbert_offset[j][0];
                        int hy = hilbert_offset[j][1];
                        int x  = 4 * sb_x + hx;
                        int y  = 4 * sb_y + hy;
                        VP4Predictor *this_dc_pred = &dc_pred[hy + 1][hx + 1];
                        int fragment, dc_block_type;

                        if (x >= s->fragment_width[!!plane] || y >= s->fragment_height[!!plane])
                            continue;

                        fragment = s->fragment_start[plane] + y * s->fragment_width[!!plane] + x;

                        if (s->all_fragments[fragment].coding_method == MODE_COPY)
                            continue;

                        if (vp4_unpack_vlcs(s, gb, tables[!!plane], plane, eob_tracker, fragment) < 0)
                            return -1;

                        dc_block_type = vp4_pred_block_type_map[s->all_fragments[fragment].coding_method];

                        s->all_fragments[fragment].dc +=
                            vp4_dc_pred(s, this_dc_pred, last_dc, dc_block_type, plane);

                        this_dc_pred->type = dc_block_type,
                        this_dc_pred->dc   = last_dc[dc_block_type] = s->all_fragments[fragment].dc;
                }
                vp4_dc_pred_after(s, dc_pred, sb_x);
            }
        }
    }

    vp4_set_tokens_base(s);

    return 0;
}
#endif

/*
 * This function reverses the DC prediction for each coded fragment in
 * the frame. Much of this function is adapted directly from the original
 * VP3 source code.
 */
#define COMPATIBLE_FRAME(x)                                                   \
    (compatible_frame[s->all_fragments[x].coding_method] == current_frame_type)
#define DC_COEFF(u) s->all_fragments[u].dc

static void reverse_dc_prediction(Vp3DecodeContext *s,
                                  int first_fragment,
                                  int fragment_width,
                                  int fragment_height)
{
#define PUL 8
#define PU 4
#define PUR 2
#define PL 1

    int x, y;
    int i = first_fragment;

    int predicted_dc;

    /* DC values for the left, up-left, up, and up-right fragments */
    int vl, vul, vu, vur;

    /* indexes for the left, up-left, up, and up-right fragments */
    int l, ul, u, ur;

    /*
     * The 6 fields mean:
     *   0: up-left multiplier
     *   1: up multiplier
     *   2: up-right multiplier
     *   3: left multiplier
     */
    static const int predictor_transform[16][4] = {
        {    0,   0,   0,   0 },
        {    0,   0,   0, 128 }, // PL
        {    0,   0, 128,   0 }, // PUR
        {    0,   0,  53,  75 }, // PUR|PL
        {    0, 128,   0,   0 }, // PU
        {    0,  64,   0,  64 }, // PU |PL
        {    0, 128,   0,   0 }, // PU |PUR
        {    0,   0,  53,  75 }, // PU |PUR|PL
        {  128,   0,   0,   0 }, // PUL
        {    0,   0,   0, 128 }, // PUL|PL
        {   64,   0,  64,   0 }, // PUL|PUR
        {    0,   0,  53,  75 }, // PUL|PUR|PL
        {    0, 128,   0,   0 }, // PUL|PU
        { -104, 116,   0, 116 }, // PUL|PU |PL
        {   24,  80,  24,   0 }, // PUL|PU |PUR
        { -104, 116,   0, 116 }  // PUL|PU |PUR|PL
    };

    /* This table shows which types of blocks can use other blocks for
     * prediction. For example, INTRA is the only mode in this table to
     * have a frame number of 0. That means INTRA blocks can only predict
     * from other INTRA blocks. There are 2 golden frame coding types;
     * blocks encoding in these modes can only predict from other blocks
     * that were encoded with these 1 of these 2 modes. */
    static const unsigned char compatible_frame[9] = {
        1,    /* MODE_INTER_NO_MV */
        0,    /* MODE_INTRA */
        1,    /* MODE_INTER_PLUS_MV */
        1,    /* MODE_INTER_LAST_MV */
        1,    /* MODE_INTER_PRIOR_MV */
        2,    /* MODE_USING_GOLDEN */
        2,    /* MODE_GOLDEN_MV */
        1,    /* MODE_INTER_FOUR_MV */
        3     /* MODE_COPY */
    };
    int current_frame_type;

    /* there is a last DC predictor for each of the 3 frame types */
    short last_dc[3];

    int transform = 0;

    vul =
    vu  =
    vur =
    vl  = 0;
    last_dc[0] =
    last_dc[1] =
    last_dc[2] = 0;

    /* for each fragment row... */
    for (y = 0; y < fragment_height; y++) {
        /* for each fragment in a row... */
        for (x = 0; x < fragment_width; x++, i++) {

            /* reverse prediction if this block was coded */
            if (s->all_fragments[i].coding_method != MODE_COPY) {
                current_frame_type =
                    compatible_frame[s->all_fragments[i].coding_method];

                transform = 0;
                if (x) {
                    l  = i - 1;
                    vl = DC_COEFF(l);
                    if (COMPATIBLE_FRAME(l))
                        transform |= PL;
                }
                if (y) {
                    u  = i - fragment_width;
                    vu = DC_COEFF(u);
                    if (COMPATIBLE_FRAME(u))
                        transform |= PU;
                    if (x) {
                        ul  = i - fragment_width - 1;
                        vul = DC_COEFF(ul);
                        if (COMPATIBLE_FRAME(ul))
                            transform |= PUL;
                    }
                    if (x + 1 < fragment_width) {
                        ur  = i - fragment_width + 1;
                        vur = DC_COEFF(ur);
                        if (COMPATIBLE_FRAME(ur))
                            transform |= PUR;
                    }
                }

                if (transform == 0) {
                    /* if there were no fragments to predict from, use last
                     * DC saved */
                    predicted_dc = last_dc[current_frame_type];
                } else {
                    /* apply the appropriate predictor transform */
                    predicted_dc =
                        (predictor_transform[transform][0] * vul) +
                        (predictor_transform[transform][1] * vu) +
                        (predictor_transform[transform][2] * vur) +
                        (predictor_transform[transform][3] * vl);

                    predicted_dc /= 128;

                    /* check for outranging on the [ul u l] and
                     * [ul u ur l] predictors */
                    if ((transform == 15) || (transform == 13)) {
                        if (FFABS(predicted_dc - vu) > 128)
                            predicted_dc = vu;
                        else if (FFABS(predicted_dc - vl) > 128)
                            predicted_dc = vl;
                        else if (FFABS(predicted_dc - vul) > 128)
                            predicted_dc = vul;
                    }
                }

                /* at long last, apply the predictor */
                DC_COEFF(i) += predicted_dc;
                /* save the DC */
                last_dc[current_frame_type] = DC_COEFF(i);
            }
        }
    }
}

static void apply_loop_filter(Vp3DecodeContext *s, int plane,
                              int ystart, int yend)
{
    int x, y;
    int *bounding_values = s->bounding_values_array + 127;

    int width           = s->fragment_width[!!plane];
    int height          = s->fragment_height[!!plane];
    int fragment        = s->fragment_start[plane] + ystart * width;
    ptrdiff_t stride    = s->current_frame.f->linesize[plane];
    uint8_t *plane_data = s->current_frame.f->data[plane];
    if (!s->flipped_image)
        stride = -stride;
    plane_data += s->data_offset[plane] + 8 * ystart * stride;

    for (y = ystart; y < yend; y++) {
        for (x = 0; x < width; x++) {
            /* This code basically just deblocks on the edges of coded blocks.
             * However, it has to be much more complicated because of the
             * brain damaged deblock ordering used in VP3/Theora. Order matters
             * because some pixels get filtered twice. */
            if (s->all_fragments[fragment].coding_method != MODE_COPY) {
                /* do not perform left edge filter for left columns frags */
                if (x > 0) {
                    s->vp3dsp.h_loop_filter(
                        plane_data + 8 * x,
                        stride, bounding_values);
                }

                /* do not perform top edge filter for top row fragments */
                if (y > 0) {
                    s->vp3dsp.v_loop_filter(
                        plane_data + 8 * x,
                        stride, bounding_values);
                }

                /* do not perform right edge filter for right column
                 * fragments or if right fragment neighbor is also coded
                 * in this frame (it will be filtered in next iteration) */
                if ((x < width - 1) &&
                    (s->all_fragments[fragment + 1].coding_method == MODE_COPY)) {
                    s->vp3dsp.h_loop_filter(
                        plane_data + 8 * x + 8,
                        stride, bounding_values);
                }

                /* do not perform bottom edge filter for bottom row
                 * fragments or if bottom fragment neighbor is also coded
                 * in this frame (it will be filtered in the next row) */
                if ((y < height - 1) &&
                    (s->all_fragments[fragment + width].coding_method == MODE_COPY)) {
                    s->vp3dsp.v_loop_filter(
                        plane_data + 8 * x + 8 * stride,
                        stride, bounding_values);
                }
            }

            fragment++;
        }
        plane_data += 8 * stride;
    }
}

/**
 * Pull DCT tokens from the 64 levels to decode and dequant the coefficients
 * for the next block in coding order
 */
static inline int vp3_dequant(Vp3DecodeContext *s, Vp3Fragment *frag,
                              int plane, int inter, int16_t block[64])
{
    int16_t *dequantizer = s->qmat[frag->qpi][inter][plane];
    uint8_t *perm = s->idct_scantable;
    int i = 0;

    do {
        int token = *s->dct_tokens[plane][i];
        switch (token & 3) {
        case 0: // EOB
            if (--token < 4) // 0-3 are token types so the EOB run must now be 0
                s->dct_tokens[plane][i]++;
            else
                *s->dct_tokens[plane][i] = token & ~3;
            goto end;
        case 1: // zero run
            s->dct_tokens[plane][i]++;
            i += (token >> 2) & 0x7f;
            if (i > 63) {
                av_log(s->avctx, AV_LOG_ERROR, "Coefficient index overflow\n");
                return i;
            }
            block[perm[i]] = (token >> 9) * dequantizer[perm[i]];
            i++;
            break;
        case 2: // coeff
            block[perm[i]] = (token >> 2) * dequantizer[perm[i]];
            s->dct_tokens[plane][i++]++;
            break;
        default: // shouldn't happen
            return i;
        }
    } while (i < 64);
    // return value is expected to be a valid level
    i--;
end:
    // the actual DC+prediction is in the fragment structure
    block[0] = frag->dc * s->qmat[0][inter][plane][0];
    return i;
}

/**
 * called when all pixels up to row y are complete
 */
static void vp3_draw_horiz_band(Vp3DecodeContext *s, int y)
{
    int h, cy, i;
    int offset[AV_NUM_DATA_POINTERS];

    if (HAVE_THREADS && s->avctx->active_thread_type & FF_THREAD_FRAME) {
        int y_flipped = s->flipped_image ? s->height - y : y;

        /* At the end of the frame, report INT_MAX instead of the height of
         * the frame. This makes the other threads' ff_thread_await_progress()
         * calls cheaper, because they don't have to clip their values. */
        ff_thread_report_progress(&s->current_frame,
                                  y_flipped == s->height ? INT_MAX
                                                         : y_flipped - 1,
                                  0);
    }

    if (!s->avctx->draw_horiz_band)
        return;

    h = y - s->last_slice_end;
    s->last_slice_end = y;
    y -= h;

    if (!s->flipped_image)
        y = s->height - y - h;

    cy        = y >> s->chroma_y_shift;
    offset[0] = s->current_frame.f->linesize[0] * y;
    offset[1] = s->current_frame.f->linesize[1] * cy;
    offset[2] = s->current_frame.f->linesize[2] * cy;
    for (i = 3; i < AV_NUM_DATA_POINTERS; i++)
        offset[i] = 0;

    emms_c();
    s->avctx->draw_horiz_band(s->avctx, s->current_frame.f, offset, y, 3, h);
}

/**
 * Wait for the reference frame of the current fragment.
 * The progress value is in luma pixel rows.
 */
static void await_reference_row(Vp3DecodeContext *s, Vp3Fragment *fragment,
                                int motion_y, int y)
{
    const ThreadFrame *ref_frame;
    int ref_row;
    int border = motion_y & 1;

    if (fragment->coding_method == MODE_USING_GOLDEN ||
        fragment->coding_method == MODE_GOLDEN_MV)
        ref_frame = &s->golden_frame;
    else
        ref_frame = &s->last_frame;

    ref_row = y + (motion_y >> 1);
    ref_row = FFMAX(FFABS(ref_row), ref_row + 8 + border);

    ff_thread_await_progress(ref_frame, ref_row, 0);
}

#if CONFIG_VP4_DECODER
/**
 * @return non-zero if temp (edge_emu_buffer) was populated
 */
static int vp4_mc_loop_filter(Vp3DecodeContext *s, int plane, int motion_x, int motion_y, int bx, int by,
       uint8_t * motion_source, int stride, int src_x, int src_y, uint8_t *temp)
{
    int motion_shift = plane ? 4 : 2;
    int subpel_mask = plane ? 3 : 1;
    int *bounding_values = s->bounding_values_array + 127;

    int i;
    int x, y;
    int x2, y2;
    int x_subpel, y_subpel;
    int x_offset, y_offset;

    int block_width = plane ? 8 : 16;
    int plane_width  = s->width  >> (plane && s->chroma_x_shift);
    int plane_height = s->height >> (plane && s->chroma_y_shift);

#define loop_stride 12
    uint8_t loop[12 * loop_stride];

    /* using division instead of shift to correctly handle negative values */
    x = 8 * bx + motion_x / motion_shift;
    y = 8 * by + motion_y / motion_shift;

    x_subpel = motion_x & subpel_mask;
    y_subpel = motion_y & subpel_mask;

    if (x_subpel || y_subpel) {
        x--;
        y--;

        if (x_subpel)
            x = FFMIN(x, x + FFSIGN(motion_x));

        if (y_subpel)
            y = FFMIN(y, y + FFSIGN(motion_y));

        x2 = x + block_width;
        y2 = y + block_width;

        if (x2 < 0 || x2 >= plane_width || y2 < 0 || y2 >= plane_height)
            return 0;

        x_offset = (-(x + 2) & 7) + 2;
        y_offset = (-(y + 2) & 7) + 2;

        if (x_offset > 8 + x_subpel && y_offset > 8 + y_subpel)
            return 0;

        s->vdsp.emulated_edge_mc(loop, motion_source - stride - 1,
             loop_stride, stride,
             12, 12, src_x - 1, src_y - 1,
             plane_width,
             plane_height);

        if (x_offset <= 8 + x_subpel)
            ff_vp3dsp_h_loop_filter_12(loop + x_offset, loop_stride, bounding_values);

        if (y_offset <= 8 + y_subpel)
            ff_vp3dsp_v_loop_filter_12(loop + y_offset*loop_stride, loop_stride, bounding_values);

    } else {

        x_offset = -x & 7;
        y_offset = -y & 7;

        if (!x_offset && !y_offset)
            return 0;

        s->vdsp.emulated_edge_mc(loop, motion_source - stride - 1,
             loop_stride, stride,
             12, 12, src_x - 1, src_y - 1,
             plane_width,
             plane_height);

#define safe_loop_filter(name, ptr, stride, bounding_values) \
    if ((uintptr_t)(ptr) & 7) \
        s->vp3dsp.name##_unaligned(ptr, stride, bounding_values); \
    else \
        s->vp3dsp.name(ptr, stride, bounding_values);

        if (x_offset)
            safe_loop_filter(h_loop_filter, loop + loop_stride + x_offset + 1, loop_stride, bounding_values);

        if (y_offset)
            safe_loop_filter(v_loop_filter, loop + (y_offset + 1)*loop_stride + 1, loop_stride, bounding_values);
    }

    for (i = 0; i < 9; i++)
        memcpy(temp + i*stride, loop + (i + 1) * loop_stride + 1, 9);

    return 1;
}
#endif

/*
 * Perform the final rendering for a particular slice of data.
 * The slice number ranges from 0..(c_superblock_height - 1).
 */
static void render_slice(Vp3DecodeContext *s, int slice)
{
    int x, y, i, j, fragment;
    int16_t *block = s->block;
    int motion_x = 0xdeadbeef, motion_y = 0xdeadbeef;
    int motion_halfpel_index;
    uint8_t *motion_source;
    int plane, first_pixel;

    if (slice >= s->c_superblock_height)
        return;

    for (plane = 0; plane < 3; plane++) {
        uint8_t *output_plane = s->current_frame.f->data[plane] +
                                s->data_offset[plane];
        uint8_t *last_plane = s->last_frame.f->data[plane] +
                              s->data_offset[plane];
        uint8_t *golden_plane = s->golden_frame.f->data[plane] +
                                s->data_offset[plane];
        ptrdiff_t stride = s->current_frame.f->linesize[plane];
        int plane_width  = s->width  >> (plane && s->chroma_x_shift);
        int plane_height = s->height >> (plane && s->chroma_y_shift);
        int8_t(*motion_val)[2] = s->motion_val[!!plane];

        int sb_x, sb_y = slice << (!plane && s->chroma_y_shift);
        int slice_height = sb_y + 1 + (!plane && s->chroma_y_shift);
        int slice_width  = plane ? s->c_superblock_width
                                 : s->y_superblock_width;

        int fragment_width  = s->fragment_width[!!plane];
        int fragment_height = s->fragment_height[!!plane];
        int fragment_start  = s->fragment_start[plane];

        int do_await = !plane && HAVE_THREADS &&
                       (s->avctx->active_thread_type & FF_THREAD_FRAME);

        if (!s->flipped_image)
            stride = -stride;
        if (CONFIG_GRAY && plane && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
            continue;

        /* for each superblock row in the slice (both of them)... */
        for (; sb_y < slice_height; sb_y++) {
            /* for each superblock in a row... */
            for (sb_x = 0; sb_x < slice_width; sb_x++) {
                /* for each block in a superblock... */
                for (j = 0; j < 16; j++) {
                    x        = 4 * sb_x + hilbert_offset[j][0];
                    y        = 4 * sb_y + hilbert_offset[j][1];
                    fragment = y * fragment_width + x;

                    i = fragment_start + fragment;

                    // bounds check
                    if (x >= fragment_width || y >= fragment_height)
                        continue;

                    first_pixel = 8 * y * stride + 8 * x;

                    if (do_await &&
                        s->all_fragments[i].coding_method != MODE_INTRA)
                        await_reference_row(s, &s->all_fragments[i],
                                            motion_val[fragment][1],
                                            (16 * y) >> s->chroma_y_shift);

                    /* transform if this block was coded */
                    if (s->all_fragments[i].coding_method != MODE_COPY) {
                        if ((s->all_fragments[i].coding_method == MODE_USING_GOLDEN) ||
                            (s->all_fragments[i].coding_method == MODE_GOLDEN_MV))
                            motion_source = golden_plane;
                        else
                            motion_source = last_plane;

                        motion_source       += first_pixel;
                        motion_halfpel_index = 0;

                        /* sort out the motion vector if this fragment is coded
                         * using a motion vector method */
                        if ((s->all_fragments[i].coding_method > MODE_INTRA) &&
                            (s->all_fragments[i].coding_method != MODE_USING_GOLDEN)) {
                            int src_x, src_y;
                            int standard_mc = 1;
                            motion_x = motion_val[fragment][0];
                            motion_y = motion_val[fragment][1];
#if CONFIG_VP4_DECODER
                            if (plane && s->version >= 2) {
                                motion_x = (motion_x >> 1) | (motion_x & 1);
                                motion_y = (motion_y >> 1) | (motion_y & 1);
                            }
#endif

                            src_x = (motion_x >> 1) + 8 * x;
                            src_y = (motion_y >> 1) + 8 * y;

                            motion_halfpel_index = motion_x & 0x01;
                            motion_source       += (motion_x >> 1);

                            motion_halfpel_index |= (motion_y & 0x01) << 1;
                            motion_source        += ((motion_y >> 1) * stride);

#if CONFIG_VP4_DECODER
                            if (s->version >= 2) {
                                uint8_t *temp = s->edge_emu_buffer;
                                if (stride < 0)
                                    temp -= 8 * stride;
                                if (vp4_mc_loop_filter(s, plane, motion_val[fragment][0], motion_val[fragment][1], x, y, motion_source, stride, src_x, src_y, temp)) {
                                    motion_source = temp;
                                    standard_mc = 0;
                                }
                            }
#endif

                            if (standard_mc && (
                                src_x < 0 || src_y < 0 ||
                                src_x + 9 >= plane_width ||
                                src_y + 9 >= plane_height)) {
                                uint8_t *temp = s->edge_emu_buffer;
                                if (stride < 0)
                                    temp -= 8 * stride;

                                s->vdsp.emulated_edge_mc(temp, motion_source,
                                                         stride, stride,
                                                         9, 9, src_x, src_y,
                                                         plane_width,
                                                         plane_height);
                                motion_source = temp;
                            }
                        }

                        /* first, take care of copying a block from either the
                         * previous or the golden frame */
                        if (s->all_fragments[i].coding_method != MODE_INTRA) {
                            /* Note, it is possible to implement all MC cases
                             * with put_no_rnd_pixels_l2 which would look more
                             * like the VP3 source but this would be slower as
                             * put_no_rnd_pixels_tab is better optimized */
                            if (motion_halfpel_index != 3) {
                                s->hdsp.put_no_rnd_pixels_tab[1][motion_halfpel_index](
                                    output_plane + first_pixel,
                                    motion_source, stride, 8);
                            } else {
                                /* d is 0 if motion_x and _y have the same sign,
                                 * else -1 */
                                int d = (motion_x ^ motion_y) >> 31;
                                s->vp3dsp.put_no_rnd_pixels_l2(output_plane + first_pixel,
                                                               motion_source - d,
                                                               motion_source + stride + 1 + d,
                                                               stride, 8);
                            }
                        }

                        /* invert DCT and place (or add) in final output */

                        if (s->all_fragments[i].coding_method == MODE_INTRA) {
                            vp3_dequant(s, s->all_fragments + i,
                                        plane, 0, block);
                            s->vp3dsp.idct_put(output_plane + first_pixel,
                                               stride,
                                               block);
                        } else {
                            if (vp3_dequant(s, s->all_fragments + i,
                                            plane, 1, block)) {
                                s->vp3dsp.idct_add(output_plane + first_pixel,
                                                   stride,
                                                   block);
                            } else {
                                s->vp3dsp.idct_dc_add(output_plane + first_pixel,
                                                      stride, block);
                            }
                        }
                    } else {
                        /* copy directly from the previous frame */
                        s->hdsp.put_pixels_tab[1][0](
                            output_plane + first_pixel,
                            last_plane + first_pixel,
                            stride, 8);
                    }
                }
            }

            // Filter up to the last row in the superblock row
            if (s->version < 2 && !s->skip_loop_filter)
                apply_loop_filter(s, plane, 4 * sb_y - !!sb_y,
                                  FFMIN(4 * sb_y + 3, fragment_height - 1));
        }
    }

    /* this looks like a good place for slice dispatch... */
    /* algorithm:
     *   if (slice == s->macroblock_height - 1)
     *     dispatch (both last slice & 2nd-to-last slice);
     *   else if (slice > 0)
     *     dispatch (slice - 1);
     */

    vp3_draw_horiz_band(s, FFMIN((32 << s->chroma_y_shift) * (slice + 1) - 16,
                                 s->height - 16));
}

/// Allocate tables for per-frame data in Vp3DecodeContext
static av_cold int allocate_tables(AVCodecContext *avctx)
{
    Vp3DecodeContext *s = avctx->priv_data;
    int y_fragment_count, c_fragment_count;

    free_tables(avctx);

    y_fragment_count = s->fragment_width[0] * s->fragment_height[0];
    c_fragment_count = s->fragment_width[1] * s->fragment_height[1];

    /* superblock_coding is used by unpack_superblocks (VP3/Theora) and vp4_unpack_macroblocks (VP4) */
    s->superblock_coding = av_mallocz(FFMAX(s->superblock_count, s->yuv_macroblock_count));
    s->all_fragments     = av_calloc(s->fragment_count, sizeof(*s->all_fragments));

    s-> kf_coded_fragment_list = av_calloc(s->fragment_count, sizeof(int));
    s->nkf_coded_fragment_list = av_calloc(s->fragment_count, sizeof(int));
    memset(s-> num_kf_coded_fragment, -1, sizeof(s-> num_kf_coded_fragment));

    s->dct_tokens_base = av_calloc(s->fragment_count,
                                   64 * sizeof(*s->dct_tokens_base));
    s->motion_val[0] = av_calloc(y_fragment_count, sizeof(*s->motion_val[0]));
    s->motion_val[1] = av_calloc(c_fragment_count, sizeof(*s->motion_val[1]));

    /* work out the block mapping tables */
    s->superblock_fragments = av_calloc(s->superblock_count, 16 * sizeof(int));
    s->macroblock_coding    = av_mallocz(s->macroblock_count + 1);

    s->dc_pred_row = av_malloc_array(s->y_superblock_width * 4, sizeof(*s->dc_pred_row));

    if (!s->superblock_coding    || !s->all_fragments          ||
        !s->dct_tokens_base      || !s->kf_coded_fragment_list ||
        !s->nkf_coded_fragment_list ||
        !s->superblock_fragments || !s->macroblock_coding      ||
        !s->dc_pred_row ||
        !s->motion_val[0]        || !s->motion_val[1]) {
        return -1;
    }

    init_block_mapping(s);

    return 0;
}

static av_cold int init_frames(Vp3DecodeContext *s)
{
    s->current_frame.f = av_frame_alloc();
    s->last_frame.f    = av_frame_alloc();
    s->golden_frame.f  = av_frame_alloc();

    if (!s->current_frame.f || !s->last_frame.f || !s->golden_frame.f)
        return AVERROR(ENOMEM);

    return 0;
}

static av_cold int vp3_decode_init(AVCodecContext *avctx)
{
    Vp3DecodeContext *s = avctx->priv_data;
    int i, inter, plane, ret;
    int c_width;
    int c_height;
    int y_fragment_count, c_fragment_count;
#if CONFIG_VP4_DECODER
    int j;
#endif

    ret = init_frames(s);
    if (ret < 0)
        return ret;

    if (avctx->codec_tag == MKTAG('V', 'P', '4', '0')) {
        s->version = 3;
#if !CONFIG_VP4_DECODER
        av_log(avctx, AV_LOG_ERROR, "This build does not support decoding VP4.\n");
        return AVERROR_DECODER_NOT_FOUND;
#endif
    } else if (avctx->codec_tag == MKTAG('V', 'P', '3', '0'))
        s->version = 0;
    else
        s->version = 1;

    s->avctx  = avctx;
    s->width  = FFALIGN(avctx->coded_width, 16);
    s->height = FFALIGN(avctx->coded_height, 16);
    if (s->width < 18)
        return AVERROR_PATCHWELCOME;
    if (avctx->codec_id != AV_CODEC_ID_THEORA)
        avctx->pix_fmt = AV_PIX_FMT_YUV420P;
    avctx->chroma_sample_location = AVCHROMA_LOC_CENTER;
    ff_hpeldsp_init(&s->hdsp, avctx->flags | AV_CODEC_FLAG_BITEXACT);
    ff_videodsp_init(&s->vdsp, 8);
    ff_vp3dsp_init(&s->vp3dsp, avctx->flags);

    for (i = 0; i < 64; i++) {
#define TRANSPOSE(x) (((x) >> 3) | (((x) & 7) << 3))
        s->idct_permutation[i] = TRANSPOSE(i);
        s->idct_scantable[i]   = TRANSPOSE(ff_zigzag_direct[i]);
#undef TRANSPOSE
    }

    /* initialize to an impossible value which will force a recalculation
     * in the first frame decode */
    for (i = 0; i < 3; i++)
        s->qps[i] = -1;

    ret = av_pix_fmt_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_x_shift, &s->chroma_y_shift);
    if (ret)
        return ret;

    s->y_superblock_width  = (s->width  + 31) / 32;
    s->y_superblock_height = (s->height + 31) / 32;
    s->y_superblock_count  = s->y_superblock_width * s->y_superblock_height;

    /* work out the dimensions for the C planes */
    c_width                = s->width >> s->chroma_x_shift;
    c_height               = s->height >> s->chroma_y_shift;
    s->c_superblock_width  = (c_width  + 31) / 32;
    s->c_superblock_height = (c_height + 31) / 32;
    s->c_superblock_count  = s->c_superblock_width * s->c_superblock_height;

    s->superblock_count   = s->y_superblock_count + (s->c_superblock_count * 2);
    s->u_superblock_start = s->y_superblock_count;
    s->v_superblock_start = s->u_superblock_start + s->c_superblock_count;

    s->macroblock_width  = (s->width  + 15) / 16;
    s->macroblock_height = (s->height + 15) / 16;
    s->macroblock_count  = s->macroblock_width * s->macroblock_height;
    s->c_macroblock_width  = (c_width  + 15) / 16;
    s->c_macroblock_height = (c_height + 15) / 16;
    s->c_macroblock_count  = s->c_macroblock_width * s->c_macroblock_height;
    s->yuv_macroblock_count = s->macroblock_count + 2 * s->c_macroblock_count;

    s->fragment_width[0]  = s->width / FRAGMENT_PIXELS;
    s->fragment_height[0] = s->height / FRAGMENT_PIXELS;
    s->fragment_width[1]  = s->fragment_width[0] >> s->chroma_x_shift;
    s->fragment_height[1] = s->fragment_height[0] >> s->chroma_y_shift;

    /* fragment count covers all 8x8 blocks for all 3 planes */
    y_fragment_count     = s->fragment_width[0] * s->fragment_height[0];
    c_fragment_count     = s->fragment_width[1] * s->fragment_height[1];
    s->fragment_count    = y_fragment_count + 2 * c_fragment_count;
    s->fragment_start[1] = y_fragment_count;
    s->fragment_start[2] = y_fragment_count + c_fragment_count;

    if (!s->theora_tables) {
        const uint8_t (*bias_tabs)[32][2];

        for (i = 0; i < 64; i++) {
            s->coded_dc_scale_factor[0][i] = s->version < 2 ? vp31_dc_scale_factor[i] : vp4_y_dc_scale_factor[i];
            s->coded_dc_scale_factor[1][i] = s->version < 2 ? vp31_dc_scale_factor[i] : vp4_uv_dc_scale_factor[i];
            s->coded_ac_scale_factor[i] = s->version < 2 ? vp31_ac_scale_factor[i] : vp4_ac_scale_factor[i];
            s->base_matrix[0][i]        = s->version < 2 ? vp31_intra_y_dequant[i] : vp4_generic_dequant[i];
            s->base_matrix[1][i]        = s->version < 2 ? ff_mjpeg_std_chrominance_quant_tbl[i] : vp4_generic_dequant[i];
            s->base_matrix[2][i]        = s->version < 2 ? vp31_inter_dequant[i]   : vp4_generic_dequant[i];
            s->filter_limit_values[i]   = s->version < 2 ? vp31_filter_limit_values[i] : vp4_filter_limit_values[i];
        }

        for (inter = 0; inter < 2; inter++) {
            for (plane = 0; plane < 3; plane++) {
                s->qr_count[inter][plane]   = 1;
                s->qr_size[inter][plane][0] = 63;
                s->qr_base[inter][plane][0] =
                s->qr_base[inter][plane][1] = 2 * inter + (!!plane) * !inter;
            }
        }

        /* init VLC tables */
        bias_tabs = CONFIG_VP4_DECODER && s->version >= 2 ? vp4_bias : vp3_bias;
        for (int i = 0; i < FF_ARRAY_ELEMS(s->coeff_vlc); i++) {
            ret = ff_vlc_init_from_lengths(&s->coeff_vlc[i], 11, 32,
                                           &bias_tabs[i][0][1], 2,
                                           &bias_tabs[i][0][0], 2, 1,
                                           0, 0, avctx);
            if (ret < 0)
                return ret;
        }
    } else {
        for (i = 0; i < FF_ARRAY_ELEMS(s->coeff_vlc); i++) {
            const HuffTable *tab = &s->huffman_table[i];

            ret = ff_vlc_init_from_lengths(&s->coeff_vlc[i], 11, tab->nb_entries,
                                           &tab->entries[0].len, sizeof(*tab->entries),
                                           &tab->entries[0].sym, sizeof(*tab->entries), 1,
                                           0, 0, avctx);
            if (ret < 0)
                return ret;
        }
    }

    ret = ff_vlc_init_from_lengths(&s->superblock_run_length_vlc, SUPERBLOCK_VLC_BITS, 34,
                                   superblock_run_length_vlc_lens, 1,
                                   NULL, 0, 0, 1, 0, avctx);
    if (ret < 0)
        return ret;

    ret = ff_vlc_init_from_lengths(&s->fragment_run_length_vlc, 5, 30,
                                   fragment_run_length_vlc_len, 1,
                                   NULL, 0, 0, 0, 0, avctx);
    if (ret < 0)
        return ret;

    ret = ff_vlc_init_from_lengths(&s->mode_code_vlc, 3, 8,
                                   mode_code_vlc_len, 1,
                                   NULL, 0, 0, 0, 0, avctx);
    if (ret < 0)
        return ret;

    ret = ff_vlc_init_from_lengths(&s->motion_vector_vlc, VP3_MV_VLC_BITS, 63,
                                   &motion_vector_vlc_table[0][1], 2,
                                   &motion_vector_vlc_table[0][0], 2, 1,
                                   -31, 0, avctx);
    if (ret < 0)
        return ret;

#if CONFIG_VP4_DECODER
    for (j = 0; j < 2; j++)
        for (i = 0; i < 7; i++) {
            ret = ff_vlc_init_from_lengths(&s->vp4_mv_vlc[j][i], VP4_MV_VLC_BITS, 63,
                                           &vp4_mv_vlc[j][i][0][1], 2,
                                           &vp4_mv_vlc[j][i][0][0], 2, 1, -31,
                                           0, avctx);
            if (ret < 0)
                return ret;
        }

    /* version >= 2 */
    for (i = 0; i < 2; i++)
        if ((ret = vlc_init(&s->block_pattern_vlc[i], 3, 14,
                            &vp4_block_pattern_vlc[i][0][1], 2, 1,
                            &vp4_block_pattern_vlc[i][0][0], 2, 1, 0)) < 0)
            return ret;
#endif

    return allocate_tables(avctx);
}

/// Release and shuffle frames after decode finishes
static int update_frames(AVCodecContext *avctx)
{
    Vp3DecodeContext *s = avctx->priv_data;
    int ret = 0;

    /* shuffle frames (last = current) */
    ff_thread_release_ext_buffer(avctx, &s->last_frame);
    ret = ff_thread_ref_frame(&s->last_frame, &s->current_frame);
    if (ret < 0)
        goto fail;

    if (s->keyframe) {
        ff_thread_release_ext_buffer(avctx, &s->golden_frame);
        ret = ff_thread_ref_frame(&s->golden_frame, &s->current_frame);
    }

fail:
    ff_thread_release_ext_buffer(avctx, &s->current_frame);
    return ret;
}

#if HAVE_THREADS
static int ref_frame(Vp3DecodeContext *s, ThreadFrame *dst, ThreadFrame *src)
{
    ff_thread_release_ext_buffer(s->avctx, dst);
    if (src->f->data[0])
        return ff_thread_ref_frame(dst, src);
    return 0;
}

static int ref_frames(Vp3DecodeContext *dst, Vp3DecodeContext *src)
{
    int ret;
    if ((ret = ref_frame(dst, &dst->current_frame, &src->current_frame)) < 0 ||
        (ret = ref_frame(dst, &dst->golden_frame,  &src->golden_frame)) < 0  ||
        (ret = ref_frame(dst, &dst->last_frame,    &src->last_frame)) < 0)
        return ret;
    return 0;
}

static int vp3_update_thread_context(AVCodecContext *dst, const AVCodecContext *src)
{
    Vp3DecodeContext *s = dst->priv_data, *s1 = src->priv_data;
    int qps_changed = 0, i, err;

    if (!s1->current_frame.f->data[0] ||
        s->width != s1->width || s->height != s1->height) {
        if (s != s1)
            ref_frames(s, s1);
        return -1;
    }

    if (s != s1) {
        // copy previous frame data
        if ((err = ref_frames(s, s1)) < 0)
            return err;

        s->keyframe = s1->keyframe;

        // copy qscale data if necessary
        for (i = 0; i < 3; i++) {
            if (s->qps[i] != s1->qps[1]) {
                qps_changed = 1;
                memcpy(&s->qmat[i], &s1->qmat[i], sizeof(s->qmat[i]));
            }
        }

        if (s->qps[0] != s1->qps[0])
            memcpy(&s->bounding_values_array, &s1->bounding_values_array,
                   sizeof(s->bounding_values_array));

        if (qps_changed) {
            memcpy(s->qps,      s1->qps,      sizeof(s->qps));
            memcpy(s->last_qps, s1->last_qps, sizeof(s->last_qps));
            s->nqps = s1->nqps;
        }
    }

    return update_frames(dst);
}
#endif

static int vp3_decode_frame(AVCodecContext *avctx, AVFrame *frame,
                            int *got_frame, AVPacket *avpkt)
{
    const uint8_t *buf  = avpkt->data;
    int buf_size        = avpkt->size;
    Vp3DecodeContext *s = avctx->priv_data;
    GetBitContext gb;
    int i, ret;

    if ((ret = init_get_bits8(&gb, buf, buf_size)) < 0)
        return ret;

#if CONFIG_THEORA_DECODER
    if (s->theora && get_bits1(&gb)) {
        int type = get_bits(&gb, 7);
        skip_bits_long(&gb, 6*8); /* "theora" */

        if (s->avctx->active_thread_type&FF_THREAD_FRAME) {
            av_log(avctx, AV_LOG_ERROR, "midstream reconfiguration with multithreading is unsupported, try -threads 1\n");
            return AVERROR_PATCHWELCOME;
        }
        if (type == 0) {
            vp3_decode_end(avctx);
            ret = theora_decode_header(avctx, &gb);

            if (ret >= 0)
                ret = vp3_decode_init(avctx);
            if (ret < 0) {
                vp3_decode_end(avctx);
                return ret;
            }
            return buf_size;
        } else if (type == 2) {
            vp3_decode_end(avctx);
            ret = theora_decode_tables(avctx, &gb);
            if (ret >= 0)
                ret = vp3_decode_init(avctx);
            if (ret < 0) {
                vp3_decode_end(avctx);
                return ret;
            }
            return buf_size;
        }

        av_log(avctx, AV_LOG_ERROR,
               "Header packet passed to frame decoder, skipping\n");
        return -1;
    }
#endif

    s->keyframe = !get_bits1(&gb);
    if (!s->all_fragments) {
        av_log(avctx, AV_LOG_ERROR, "Data packet without prior valid headers\n");
        return -1;
    }
    if (!s->theora)
        skip_bits(&gb, 1);
    for (i = 0; i < 3; i++)
        s->last_qps[i] = s->qps[i];

    s->nqps = 0;
    do {
        s->qps[s->nqps++] = get_bits(&gb, 6);
    } while (s->theora >= 0x030200 && s->nqps < 3 && get_bits1(&gb));
    for (i = s->nqps; i < 3; i++)
        s->qps[i] = -1;

    if (s->avctx->debug & FF_DEBUG_PICT_INFO)
        av_log(s->avctx, AV_LOG_INFO, " VP3 %sframe #%"PRId64": Q index = %d\n",
               s->keyframe ? "key" : "", avctx->frame_num + 1, s->qps[0]);

    s->skip_loop_filter = !s->filter_limit_values[s->qps[0]] ||
                          avctx->skip_loop_filter >= (s->keyframe ? AVDISCARD_ALL
                                                                  : AVDISCARD_NONKEY);

    if (s->qps[0] != s->last_qps[0])
        init_loop_filter(s);

    for (i = 0; i < s->nqps; i++)
        // reinit all dequantizers if the first one changed, because
        // the DC of the first quantizer must be used for all matrices
        if (s->qps[i] != s->last_qps[i] || s->qps[0] != s->last_qps[0])
            init_dequantizer(s, i);

    if (avctx->skip_frame >= AVDISCARD_NONKEY && !s->keyframe)
        return buf_size;

    s->current_frame.f->pict_type = s->keyframe ? AV_PICTURE_TYPE_I
                                                : AV_PICTURE_TYPE_P;
    if (s->keyframe)
        s->current_frame.f->flags |= AV_FRAME_FLAG_KEY;
    else
        s->current_frame.f->flags &= ~AV_FRAME_FLAG_KEY;
    if ((ret = ff_thread_get_ext_buffer(avctx, &s->current_frame,
                                        AV_GET_BUFFER_FLAG_REF)) < 0)
        goto error;

    if (!s->edge_emu_buffer) {
        s->edge_emu_buffer = av_malloc(9 * FFABS(s->current_frame.f->linesize[0]));
        if (!s->edge_emu_buffer) {
            ret = AVERROR(ENOMEM);
            goto error;
        }
    }

    if (s->keyframe) {
        if (!s->theora) {
            skip_bits(&gb, 4); /* width code */
            skip_bits(&gb, 4); /* height code */
            if (s->version) {
                int version = get_bits(&gb, 5);
#if !CONFIG_VP4_DECODER
                if (version >= 2) {
                    av_log(avctx, AV_LOG_ERROR, "This build does not support decoding VP4.\n");
                    return AVERROR_DECODER_NOT_FOUND;
                }
#endif
                s->version = version;
                if (avctx->frame_num == 0)
                    av_log(s->avctx, AV_LOG_DEBUG,
                           "VP version: %d\n", s->version);
            }
        }
        if (s->version || s->theora) {
            if (get_bits1(&gb))
                av_log(s->avctx, AV_LOG_ERROR,
                       "Warning, unsupported keyframe coding type?!\n");
            skip_bits(&gb, 2); /* reserved? */

#if CONFIG_VP4_DECODER
            if (s->version >= 2) {
                int mb_height, mb_width;
                int mb_width_mul, mb_width_div, mb_height_mul, mb_height_div;

                mb_height = get_bits(&gb, 8);
                mb_width  = get_bits(&gb, 8);
                if (mb_height != s->macroblock_height ||
                    mb_width != s->macroblock_width)
                    avpriv_request_sample(s->avctx, "macroblock dimension mismatch");

                mb_width_mul = get_bits(&gb, 5);
                mb_width_div = get_bits(&gb, 3);
                mb_height_mul = get_bits(&gb, 5);
                mb_height_div = get_bits(&gb, 3);
                if (mb_width_mul != 1 || mb_width_div != 1 || mb_height_mul != 1 || mb_height_div != 1)
                    avpriv_request_sample(s->avctx, "unexpected macroblock dimension multipler/divider");

                if (get_bits(&gb, 2))
                    avpriv_request_sample(s->avctx, "unknown bits");
            }
#endif
        }
    } else {
        if (!s->golden_frame.f->data[0]) {
            av_log(s->avctx, AV_LOG_WARNING,
                   "vp3: first frame not a keyframe\n");

            s->golden_frame.f->pict_type = AV_PICTURE_TYPE_I;
            if ((ret = ff_thread_get_ext_buffer(avctx, &s->golden_frame,
                                                AV_GET_BUFFER_FLAG_REF)) < 0)
                goto error;
            ff_thread_release_ext_buffer(avctx, &s->last_frame);
            if ((ret = ff_thread_ref_frame(&s->last_frame,
                                           &s->golden_frame)) < 0)
                goto error;
            ff_thread_report_progress(&s->last_frame, INT_MAX, 0);
        }
    }

    memset(s->all_fragments, 0, s->fragment_count * sizeof(Vp3Fragment));
    ff_thread_finish_setup(avctx);

    if (s->version < 2) {
        if ((ret = unpack_superblocks(s, &gb)) < 0) {
            av_log(s->avctx, AV_LOG_ERROR, "error in unpack_superblocks\n");
            goto error;
        }
#if CONFIG_VP4_DECODER
    } else {
        if ((ret = vp4_unpack_macroblocks(s, &gb)) < 0) {
            av_log(s->avctx, AV_LOG_ERROR, "error in vp4_unpack_macroblocks\n");
            goto error;
    }
#endif
    }
    if ((ret = unpack_modes(s, &gb)) < 0) {
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_modes\n");
        goto error;
    }
    if (ret = unpack_vectors(s, &gb)) {
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_vectors\n");
        goto error;
    }
    if ((ret = unpack_block_qpis(s, &gb)) < 0) {
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_block_qpis\n");
        goto error;
    }

    if (s->version < 2) {
        if ((ret = unpack_dct_coeffs(s, &gb)) < 0) {
            av_log(s->avctx, AV_LOG_ERROR, "error in unpack_dct_coeffs\n");
            goto error;
        }
#if CONFIG_VP4_DECODER
    } else {
        if ((ret = vp4_unpack_dct_coeffs(s, &gb)) < 0) {
            av_log(s->avctx, AV_LOG_ERROR, "error in vp4_unpack_dct_coeffs\n");
            goto error;
        }
#endif
    }

    for (i = 0; i < 3; i++) {
        int height = s->height >> (i && s->chroma_y_shift);
        if (s->flipped_image)
            s->data_offset[i] = 0;
        else
            s->data_offset[i] = (height - 1) * s->current_frame.f->linesize[i];
    }

    s->last_slice_end = 0;
    for (i = 0; i < s->c_superblock_height; i++)
        render_slice(s, i);

    // filter the last row
    if (s->version < 2)
        for (i = 0; i < 3; i++) {
            int row = (s->height >> (3 + (i && s->chroma_y_shift))) - 1;
            apply_loop_filter(s, i, row, row + 1);
        }
    vp3_draw_horiz_band(s, s->height);

    /* output frame, offset as needed */
    if ((ret = av_frame_ref(frame, s->current_frame.f)) < 0)
        return ret;

    frame->crop_left   = s->offset_x;
    frame->crop_right  = avctx->coded_width - avctx->width - s->offset_x;
    frame->crop_top    = s->offset_y;
    frame->crop_bottom = avctx->coded_height - avctx->height - s->offset_y;

    *got_frame = 1;

    if (!HAVE_THREADS || !(s->avctx->active_thread_type & FF_THREAD_FRAME)) {
        ret = update_frames(avctx);
        if (ret < 0)
            return ret;
    }

    return buf_size;

error:
    ff_thread_report_progress(&s->current_frame, INT_MAX, 0);

    if (!HAVE_THREADS || !(s->avctx->active_thread_type & FF_THREAD_FRAME))
        av_frame_unref(s->current_frame.f);

    return ret;
}

static int read_huffman_tree(HuffTable *huff, GetBitContext *gb, int length,
                             AVCodecContext *avctx)
{
    if (get_bits1(gb)) {
        int token;
        if (huff->nb_entries >= 32) { /* overflow */
            av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
            return -1;
        }
        token = get_bits(gb, 5);
        ff_dlog(avctx, "code length %d, curr entry %d, token %d\n",
                length, huff->nb_entries, token);
        huff->entries[huff->nb_entries++] = (HuffEntry){ length, token };
    } else {
        /* The following bound follows from the fact that nb_entries <= 32. */
        if (length >= 31) { /* overflow */
            av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
            return -1;
        }
        length++;
        if (read_huffman_tree(huff, gb, length, avctx))
            return -1;
        if (read_huffman_tree(huff, gb, length, avctx))
            return -1;
    }
    return 0;
}

#if CONFIG_THEORA_DECODER
static const enum AVPixelFormat theora_pix_fmts[4] = {
    AV_PIX_FMT_YUV420P, AV_PIX_FMT_NONE, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV444P
};

static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb)
{
    Vp3DecodeContext *s = avctx->priv_data;
    int visible_width, visible_height, colorspace;
    uint8_t offset_x = 0, offset_y = 0;
    int ret;
    AVRational fps, aspect;

    if (get_bits_left(gb) < 206)
        return AVERROR_INVALIDDATA;

    s->theora_header = 0;
    s->theora = get_bits(gb, 24);
    av_log(avctx, AV_LOG_DEBUG, "Theora bitstream version %X\n", s->theora);
    if (!s->theora) {
        s->theora = 1;
        avpriv_request_sample(s->avctx, "theora 0");
    }

    /* 3.2.0 aka alpha3 has the same frame orientation as original vp3
     * but previous versions have the image flipped relative to vp3 */
    if (s->theora < 0x030200) {
        s->flipped_image = 1;
        av_log(avctx, AV_LOG_DEBUG,
               "Old (<alpha3) Theora bitstream, flipped image\n");
    }

    visible_width  =
    s->width       = get_bits(gb, 16) << 4;
    visible_height =
    s->height      = get_bits(gb, 16) << 4;

    if (s->theora >= 0x030200) {
        visible_width  = get_bits(gb, 24);
        visible_height = get_bits(gb, 24);

        offset_x = get_bits(gb, 8); /* offset x */
        offset_y = get_bits(gb, 8); /* offset y, from bottom */
    }

    /* sanity check */
    if (av_image_check_size(visible_width, visible_height, 0, avctx) < 0 ||
        visible_width  + offset_x > s->width ||
        visible_height + offset_y > s->height ||
        visible_width < 18
    ) {
        av_log(avctx, AV_LOG_ERROR,
               "Invalid frame dimensions - w:%d h:%d x:%d y:%d (%dx%d).\n",
               visible_width, visible_height, offset_x, offset_y,
               s->width, s->height);
        return AVERROR_INVALIDDATA;
    }

    fps.num = get_bits_long(gb, 32);
    fps.den = get_bits_long(gb, 32);
    if (fps.num && fps.den) {
        if (fps.num < 0 || fps.den < 0) {
            av_log(avctx, AV_LOG_ERROR, "Invalid framerate\n");
            return AVERROR_INVALIDDATA;
        }
        av_reduce(&avctx->framerate.den, &avctx->framerate.num,
                  fps.den, fps.num, 1 << 30);
    }

    aspect.num = get_bits(gb, 24);
    aspect.den = get_bits(gb, 24);
    if (aspect.num && aspect.den) {
        av_reduce(&avctx->sample_aspect_ratio.num,
                  &avctx->sample_aspect_ratio.den,
                  aspect.num, aspect.den, 1 << 30);
        ff_set_sar(avctx, avctx->sample_aspect_ratio);
    }

    if (s->theora < 0x030200)
        skip_bits(gb, 5); /* keyframe frequency force */
    colorspace = get_bits(gb, 8);
    skip_bits(gb, 24); /* bitrate */

    skip_bits(gb, 6); /* quality hint */

    if (s->theora >= 0x030200) {
        skip_bits(gb, 5); /* keyframe frequency force */
        avctx->pix_fmt = theora_pix_fmts[get_bits(gb, 2)];
        if (avctx->pix_fmt == AV_PIX_FMT_NONE) {
            av_log(avctx, AV_LOG_ERROR, "Invalid pixel format\n");
            return AVERROR_INVALIDDATA;
        }
        skip_bits(gb, 3); /* reserved */
    } else
        avctx->pix_fmt = AV_PIX_FMT_YUV420P;

    if (s->width < 18)
        return AVERROR_PATCHWELCOME;
    ret = ff_set_dimensions(avctx, s->width, s->height);
    if (ret < 0)
        return ret;
    if (!(avctx->flags2 & AV_CODEC_FLAG2_IGNORE_CROP)) {
        avctx->width  = visible_width;
        avctx->height = visible_height;
        // translate offsets from theora axis ([0,0] lower left)
        // to normal axis ([0,0] upper left)
        s->offset_x = offset_x;
        s->offset_y = s->height - visible_height - offset_y;
    }

    if (colorspace == 1)
        avctx->color_primaries = AVCOL_PRI_BT470M;
    else if (colorspace == 2)
        avctx->color_primaries = AVCOL_PRI_BT470BG;

    if (colorspace == 1 || colorspace == 2) {
        avctx->colorspace = AVCOL_SPC_BT470BG;
        avctx->color_trc  = AVCOL_TRC_BT709;
    }

    s->theora_header = 1;
    return 0;
}

static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb)
{
    Vp3DecodeContext *s = avctx->priv_data;
    int i, n, matrices, inter, plane, ret;

    if (!s->theora_header)
        return AVERROR_INVALIDDATA;

    if (s->theora >= 0x030200) {
        n = get_bits(gb, 3);
        /* loop filter limit values table */
        if (n)
            for (i = 0; i < 64; i++)
                s->filter_limit_values[i] = get_bits(gb, n);
    }

    if (s->theora >= 0x030200)
        n = get_bits(gb, 4) + 1;
    else
        n = 16;
    /* quality threshold table */
    for (i = 0; i < 64; i++)
        s->coded_ac_scale_factor[i] = get_bits(gb, n);

    if (s->theora >= 0x030200)
        n = get_bits(gb, 4) + 1;
    else
        n = 16;
    /* dc scale factor table */
    for (i = 0; i < 64; i++)
        s->coded_dc_scale_factor[0][i] =
        s->coded_dc_scale_factor[1][i] = get_bits(gb, n);

    if (s->theora >= 0x030200)
        matrices = get_bits(gb, 9) + 1;
    else
        matrices = 3;

    if (matrices > 384) {
        av_log(avctx, AV_LOG_ERROR, "invalid number of base matrixes\n");
        return -1;
    }

    for (n = 0; n < matrices; n++)
        for (i = 0; i < 64; i++)
            s->base_matrix[n][i] = get_bits(gb, 8);

    for (inter = 0; inter <= 1; inter++) {
        for (plane = 0; plane <= 2; plane++) {
            int newqr = 1;
            if (inter || plane > 0)
                newqr = get_bits1(gb);
            if (!newqr) {
                int qtj, plj;
                if (inter && get_bits1(gb)) {
                    qtj = 0;
                    plj = plane;
                } else {
                    qtj = (3 * inter + plane - 1) / 3;
                    plj = (plane + 2) % 3;
                }
                s->qr_count[inter][plane] = s->qr_count[qtj][plj];
                memcpy(s->qr_size[inter][plane], s->qr_size[qtj][plj],
                       sizeof(s->qr_size[0][0]));
                memcpy(s->qr_base[inter][plane], s->qr_base[qtj][plj],
                       sizeof(s->qr_base[0][0]));
            } else {
                int qri = 0;
                int qi  = 0;

                for (;;) {
                    i = get_bits(gb, av_log2(matrices - 1) + 1);
                    if (i >= matrices) {
                        av_log(avctx, AV_LOG_ERROR,
                               "invalid base matrix index\n");
                        return -1;
                    }
                    s->qr_base[inter][plane][qri] = i;
                    if (qi >= 63)
                        break;
                    i = get_bits(gb, av_log2(63 - qi) + 1) + 1;
                    s->qr_size[inter][plane][qri++] = i;
                    qi += i;
                }

                if (qi > 63) {
                    av_log(avctx, AV_LOG_ERROR, "invalid qi %d > 63\n", qi);
                    return -1;
                }
                s->qr_count[inter][plane] = qri;
            }
        }
    }

    /* Huffman tables */
    for (int i = 0; i < FF_ARRAY_ELEMS(s->huffman_table); i++) {
        s->huffman_table[i].nb_entries = 0;
        if ((ret = read_huffman_tree(&s->huffman_table[i], gb, 0, avctx)) < 0)
            return ret;
    }

    s->theora_tables = 1;

    return 0;
}

static av_cold int theora_decode_init(AVCodecContext *avctx)
{
    Vp3DecodeContext *s = avctx->priv_data;
    GetBitContext gb;
    int ptype;
    const uint8_t *header_start[3];
    int header_len[3];
    int i;
    int ret;

    avctx->pix_fmt = AV_PIX_FMT_YUV420P;

    s->theora = 1;

    if (!avctx->extradata_size) {
        av_log(avctx, AV_LOG_ERROR, "Missing extradata!\n");
        return -1;
    }

    if (avpriv_split_xiph_headers(avctx->extradata, avctx->extradata_size,
                                  42, header_start, header_len) < 0) {
        av_log(avctx, AV_LOG_ERROR, "Corrupt extradata\n");
        return -1;
    }

    for (i = 0; i < 3; i++) {
        if (header_len[i] <= 0)
            continue;
        ret = init_get_bits8(&gb, header_start[i], header_len[i]);
        if (ret < 0)
            return ret;

        ptype = get_bits(&gb, 8);

        if (!(ptype & 0x80)) {
            av_log(avctx, AV_LOG_ERROR, "Invalid extradata!\n");
//          return -1;
        }

        // FIXME: Check for this as well.
        skip_bits_long(&gb, 6 * 8); /* "theora" */

        switch (ptype) {
        case 0x80:
            if (theora_decode_header(avctx, &gb) < 0)
                return -1;
            break;
        case 0x81:
// FIXME: is this needed? it breaks sometimes
//            theora_decode_comments(avctx, gb);
            break;
        case 0x82:
            if (theora_decode_tables(avctx, &gb))
                return -1;
            break;
        default:
            av_log(avctx, AV_LOG_ERROR,
                   "Unknown Theora config packet: %d\n", ptype & ~0x80);
            break;
        }
        if (ptype != 0x81 && get_bits_left(&gb) >= 8U)
            av_log(avctx, AV_LOG_WARNING,
                   "%d bits left in packet %X\n",
                   get_bits_left(&gb), ptype);
        if (s->theora < 0x030200)
            break;
    }

    return vp3_decode_init(avctx);
}

const FFCodec ff_theora_decoder = {
    .p.name                = "theora",
    CODEC_LONG_NAME("Theora"),
    .p.type                = AVMEDIA_TYPE_VIDEO,
    .p.id                  = AV_CODEC_ID_THEORA,
    .priv_data_size        = sizeof(Vp3DecodeContext),
    .init                  = theora_decode_init,
    .close                 = vp3_decode_end,
    FF_CODEC_DECODE_CB(vp3_decode_frame),
    .p.capabilities        = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DRAW_HORIZ_BAND |
                             AV_CODEC_CAP_FRAME_THREADS,
    .flush                 = vp3_decode_flush,
    UPDATE_THREAD_CONTEXT(vp3_update_thread_context),
    .caps_internal         = FF_CODEC_CAP_INIT_CLEANUP |
                             FF_CODEC_CAP_EXPORTS_CROPPING | FF_CODEC_CAP_ALLOCATE_PROGRESS,
};
#endif

const FFCodec ff_vp3_decoder = {
    .p.name                = "vp3",
    CODEC_LONG_NAME("On2 VP3"),
    .p.type                = AVMEDIA_TYPE_VIDEO,
    .p.id                  = AV_CODEC_ID_VP3,
    .priv_data_size        = sizeof(Vp3DecodeContext),
    .init                  = vp3_decode_init,
    .close                 = vp3_decode_end,
    FF_CODEC_DECODE_CB(vp3_decode_frame),
    .p.capabilities        = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DRAW_HORIZ_BAND |
                             AV_CODEC_CAP_FRAME_THREADS,
    .flush                 = vp3_decode_flush,
    UPDATE_THREAD_CONTEXT(vp3_update_thread_context),
    .caps_internal         = FF_CODEC_CAP_INIT_CLEANUP |
                             FF_CODEC_CAP_ALLOCATE_PROGRESS,
};

#if CONFIG_VP4_DECODER
const FFCodec ff_vp4_decoder = {
    .p.name                = "vp4",
    CODEC_LONG_NAME("On2 VP4"),
    .p.type                = AVMEDIA_TYPE_VIDEO,
    .p.id                  = AV_CODEC_ID_VP4,
    .priv_data_size        = sizeof(Vp3DecodeContext),
    .init                  = vp3_decode_init,
    .close                 = vp3_decode_end,
    FF_CODEC_DECODE_CB(vp3_decode_frame),
    .p.capabilities        = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DRAW_HORIZ_BAND |
                             AV_CODEC_CAP_FRAME_THREADS,
    .flush                 = vp3_decode_flush,
    UPDATE_THREAD_CONTEXT(vp3_update_thread_context),
    .caps_internal         = FF_CODEC_CAP_INIT_CLEANUP |
                             FF_CODEC_CAP_ALLOCATE_PROGRESS,
};
#endif