1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
|
/*
* Ut Video decoder
* Copyright (c) 2011 Konstantin Shishkov
*
* This file is part of Libav.
*
* Libav is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* Libav is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Libav; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* Ut Video decoder
*/
#include <stdlib.h>
#include "libavutil/intreadwrite.h"
#include "avcodec.h"
#include "bytestream.h"
#include "get_bits.h"
#include "dsputil.h"
#include "thread.h"
enum {
PRED_NONE = 0,
PRED_LEFT,
PRED_GRADIENT,
PRED_MEDIAN,
};
typedef struct UtvideoContext {
AVCodecContext *avctx;
AVFrame pic;
DSPContext dsp;
uint32_t frame_info_size, flags, frame_info;
int planes;
int slices;
int compression;
int interlaced;
int frame_pred;
uint8_t *slice_bits;
int slice_bits_size;
} UtvideoContext;
typedef struct HuffEntry {
uint8_t sym;
uint8_t len;
} HuffEntry;
static int huff_cmp(const void *a, const void *b)
{
const HuffEntry *aa = a, *bb = b;
return (aa->len - bb->len)*256 + aa->sym - bb->sym;
}
static int build_huff(const uint8_t *src, VLC *vlc, int *fsym)
{
int i;
HuffEntry he[256];
int last;
uint32_t codes[256];
uint8_t bits[256];
uint8_t syms[256];
uint32_t code;
*fsym = -1;
for (i = 0; i < 256; i++) {
he[i].sym = i;
he[i].len = *src++;
}
qsort(he, 256, sizeof(*he), huff_cmp);
if (!he[0].len) {
*fsym = he[0].sym;
return 0;
}
if (he[0].len > 32)
return -1;
last = 255;
while (he[last].len == 255 && last)
last--;
code = 1;
for (i = last; i >= 0; i--) {
codes[i] = code >> (32 - he[i].len);
bits[i] = he[i].len;
syms[i] = he[i].sym;
code += 0x80000000u >> (he[i].len - 1);
}
return ff_init_vlc_sparse(vlc, FFMIN(he[last].len, 9), last + 1,
bits, sizeof(*bits), sizeof(*bits),
codes, sizeof(*codes), sizeof(*codes),
syms, sizeof(*syms), sizeof(*syms), 0);
}
static int decode_plane(UtvideoContext *c, int plane_no,
uint8_t *dst, int step, int stride,
int width, int height,
const uint8_t *src, int src_size, int use_pred)
{
int i, j, slice, pix;
int sstart, send;
VLC vlc;
GetBitContext gb;
int prev, fsym;
const int cmask = ~(!plane_no && c->avctx->pix_fmt == PIX_FMT_YUV420P);
if (build_huff(src, &vlc, &fsym)) {
av_log(c->avctx, AV_LOG_ERROR, "Cannot build Huffman codes\n");
return AVERROR_INVALIDDATA;
}
if (fsym >= 0) { // build_huff reported a symbol to fill slices with
send = 0;
for (slice = 0; slice < c->slices; slice++) {
uint8_t *dest;
sstart = send;
send = (height * (slice + 1) / c->slices) & cmask;
dest = dst + sstart * stride;
prev = 0x80;
for (j = sstart; j < send; j++) {
for (i = 0; i < width * step; i += step) {
pix = fsym;
if (use_pred) {
prev += pix;
pix = prev;
}
dest[i] = pix;
}
dest += stride;
}
}
return 0;
}
src += 256;
src_size -= 256;
send = 0;
for (slice = 0; slice < c->slices; slice++) {
uint8_t *dest;
int slice_data_start, slice_data_end, slice_size;
sstart = send;
send = (height * (slice + 1) / c->slices) & cmask;
dest = dst + sstart * stride;
// slice offset and size validation was done earlier
slice_data_start = slice ? AV_RL32(src + slice * 4 - 4) : 0;
slice_data_end = AV_RL32(src + slice * 4);
slice_size = slice_data_end - slice_data_start;
if (!slice_size) {
for (j = sstart; j < send; j++) {
for (i = 0; i < width * step; i += step)
dest[i] = 0x80;
dest += stride;
}
continue;
}
memcpy(c->slice_bits, src + slice_data_start + c->slices * 4, slice_size);
memset(c->slice_bits + slice_size, 0, FF_INPUT_BUFFER_PADDING_SIZE);
c->dsp.bswap_buf((uint32_t*)c->slice_bits, (uint32_t*)c->slice_bits,
(slice_data_end - slice_data_start + 3) >> 2);
init_get_bits(&gb, c->slice_bits, slice_size * 8);
prev = 0x80;
for (j = sstart; j < send; j++) {
for (i = 0; i < width * step; i += step) {
if (get_bits_left(&gb) <= 0) {
av_log(c->avctx, AV_LOG_ERROR, "Slice decoding ran out of bits\n");
goto fail;
}
pix = get_vlc2(&gb, vlc.table, vlc.bits, 4);
if (pix < 0) {
av_log(c->avctx, AV_LOG_ERROR, "Decoding error\n");
goto fail;
}
if (use_pred) {
prev += pix;
pix = prev;
}
dest[i] = pix;
}
dest += stride;
}
if (get_bits_left(&gb) > 32)
av_log(c->avctx, AV_LOG_WARNING, "%d bits left after decoding slice\n",
get_bits_left(&gb));
}
ff_free_vlc(&vlc);
return 0;
fail:
ff_free_vlc(&vlc);
return AVERROR_INVALIDDATA;
}
static const int rgb_order[4] = { 1, 2, 0, 3 };
static void restore_rgb_planes(uint8_t *src, int step, int stride, int width, int height)
{
int i, j;
uint8_t r, g, b;
for (j = 0; j < height; j++) {
for (i = 0; i < width * step; i += step) {
r = src[i];
g = src[i + 1];
b = src[i + 2];
src[i] = r + g - 0x80;
src[i + 2] = b + g - 0x80;
}
src += stride;
}
}
static void restore_median(uint8_t *src, int step, int stride,
int width, int height, int slices, int rmode)
{
int i, j, slice;
int A, B, C;
uint8_t *bsrc;
int slice_start, slice_height;
const int cmask = ~rmode;
for (slice = 0; slice < slices; slice++) {
slice_start = ((slice * height) / slices) & cmask;
slice_height = ((((slice + 1) * height) / slices) & cmask) - slice_start;
bsrc = src + slice_start * stride;
// first line - left neighbour prediction
bsrc[0] += 0x80;
A = bsrc[0];
for (i = step; i < width * step; i += step) {
bsrc[i] += A;
A = bsrc[i];
}
bsrc += stride;
if (slice_height == 1)
continue;
// second line - first element has top predition, the rest uses median
C = bsrc[-stride];
bsrc[0] += C;
A = bsrc[0];
for (i = step; i < width * step; i += step) {
B = bsrc[i - stride];
bsrc[i] += mid_pred(A, B, (uint8_t)(A + B - C));
C = B;
A = bsrc[i];
}
bsrc += stride;
// the rest of lines use continuous median prediction
for (j = 2; j < slice_height; j++) {
for (i = 0; i < width * step; i += step) {
B = bsrc[i - stride];
bsrc[i] += mid_pred(A, B, (uint8_t)(A + B - C));
C = B;
A = bsrc[i];
}
bsrc += stride;
}
}
}
/* UtVideo interlaced mode treats every two lines as a single one,
* so restoring function should take care of possible padding between
* two parts of the same "line".
*/
static void restore_median_il(uint8_t *src, int step, int stride,
int width, int height, int slices, int rmode)
{
int i, j, slice;
int A, B, C;
uint8_t *bsrc;
int slice_start, slice_height;
const int cmask = ~(rmode ? 3 : 1);
const int stride2 = stride << 1;
for (slice = 0; slice < slices; slice++) {
slice_start = ((slice * height) / slices) & cmask;
slice_height = ((((slice + 1) * height) / slices) & cmask) - slice_start;
slice_height >>= 1;
bsrc = src + slice_start * stride;
// first line - left neighbour prediction
bsrc[0] += 0x80;
A = bsrc[0];
for (i = step; i < width * step; i += step) {
bsrc[i] += A;
A = bsrc[i];
}
for (i = 0; i < width * step; i += step) {
bsrc[stride + i] += A;
A = bsrc[stride + i];
}
bsrc += stride2;
if (slice_height == 1)
continue;
// second line - first element has top predition, the rest uses median
C = bsrc[-stride2];
bsrc[0] += C;
A = bsrc[0];
for (i = step; i < width * step; i += step) {
B = bsrc[i - stride2];
bsrc[i] += mid_pred(A, B, (uint8_t)(A + B - C));
C = B;
A = bsrc[i];
}
for (i = 0; i < width * step; i += step) {
B = bsrc[i - stride];
bsrc[stride + i] += mid_pred(A, B, (uint8_t)(A + B - C));
C = B;
A = bsrc[stride + i];
}
bsrc += stride2;
// the rest of lines use continuous median prediction
for (j = 2; j < slice_height; j++) {
for (i = 0; i < width * step; i += step) {
B = bsrc[i - stride2];
bsrc[i] += mid_pred(A, B, (uint8_t)(A + B - C));
C = B;
A = bsrc[i];
}
for (i = 0; i < width * step; i += step) {
B = bsrc[i - stride];
bsrc[i + stride] += mid_pred(A, B, (uint8_t)(A + B - C));
C = B;
A = bsrc[i + stride];
}
bsrc += stride2;
}
}
}
static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, AVPacket *avpkt)
{
const uint8_t *buf = avpkt->data;
int buf_size = avpkt->size;
const uint8_t *buf_end = buf + buf_size;
UtvideoContext *c = avctx->priv_data;
const uint8_t *ptr;
int i, j;
const uint8_t *plane_start[5];
int plane_size, max_slice_size = 0, slice_start, slice_end, slice_size;
int ret;
if (c->pic.data[0])
ff_thread_release_buffer(avctx, &c->pic);
c->pic.reference = 1;
c->pic.buffer_hints = FF_BUFFER_HINTS_VALID;
if ((ret = ff_thread_get_buffer(avctx, &c->pic)) < 0) {
av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
return ret;
}
ff_thread_finish_setup(avctx);
/* parse plane structure to retrieve frame flags and validate slice offsets */
ptr = buf;
for (i = 0; i < c->planes; i++) {
plane_start[i] = ptr;
if (buf_end - ptr < 256 + 4 * c->slices) {
av_log(avctx, AV_LOG_ERROR, "Insufficient data for a plane\n");
return AVERROR_INVALIDDATA;
}
ptr += 256;
slice_start = 0;
slice_end = 0;
for (j = 0; j < c->slices; j++) {
slice_end = bytestream_get_le32(&ptr);
slice_size = slice_end - slice_start;
if (slice_size < 0) {
av_log(avctx, AV_LOG_ERROR, "Incorrect slice size\n");
return AVERROR_INVALIDDATA;
}
slice_start = slice_end;
max_slice_size = FFMAX(max_slice_size, slice_size);
}
plane_size = slice_end;
if (buf_end - ptr < plane_size) {
av_log(avctx, AV_LOG_ERROR, "Plane size is bigger than available data\n");
return AVERROR_INVALIDDATA;
}
ptr += plane_size;
}
plane_start[c->planes] = ptr;
if (buf_end - ptr < c->frame_info_size) {
av_log(avctx, AV_LOG_ERROR, "Not enough data for frame information\n");
return AVERROR_INVALIDDATA;
}
c->frame_info = AV_RL32(ptr);
av_log(avctx, AV_LOG_DEBUG, "frame information flags %X\n", c->frame_info);
c->frame_pred = (c->frame_info >> 8) & 3;
if (c->frame_pred == PRED_GRADIENT) {
av_log_ask_for_sample(avctx, "Frame uses gradient prediction\n");
return AVERROR_PATCHWELCOME;
}
av_fast_malloc(&c->slice_bits, &c->slice_bits_size,
max_slice_size + FF_INPUT_BUFFER_PADDING_SIZE);
if (!c->slice_bits) {
av_log(avctx, AV_LOG_ERROR, "Cannot allocate temporary buffer\n");
return AVERROR(ENOMEM);
}
switch (c->avctx->pix_fmt) {
case PIX_FMT_RGB24:
case PIX_FMT_RGBA:
for (i = 0; i < c->planes; i++) {
ret = decode_plane(c, i, c->pic.data[0] + rgb_order[i], c->planes,
c->pic.linesize[0], avctx->width, avctx->height,
plane_start[i], plane_start[i + 1] - plane_start[i],
c->frame_pred == PRED_LEFT);
if (ret)
return ret;
if (c->frame_pred == PRED_MEDIAN)
restore_median(c->pic.data[0] + rgb_order[i], c->planes,
c->pic.linesize[0], avctx->width, avctx->height,
c->slices, 0);
}
restore_rgb_planes(c->pic.data[0], c->planes, c->pic.linesize[0],
avctx->width, avctx->height);
break;
case PIX_FMT_YUV420P:
for (i = 0; i < 3; i++) {
ret = decode_plane(c, i, c->pic.data[i], 1,
c->pic.linesize[i], avctx->width >> !!i, avctx->height >> !!i,
plane_start[i], plane_start[i + 1] - plane_start[i],
c->frame_pred == PRED_LEFT);
if (ret)
return ret;
if (c->frame_pred == PRED_MEDIAN) {
if (!c->interlaced) {
restore_median(c->pic.data[i], 1, c->pic.linesize[i],
avctx->width >> !!i, avctx->height >> !!i,
c->slices, !i);
} else {
restore_median_il(c->pic.data[i], 1, c->pic.linesize[i],
avctx->width >> !!i,
avctx->height >> !!i,
c->slices, !i);
}
}
}
break;
case PIX_FMT_YUV422P:
for (i = 0; i < 3; i++) {
ret = decode_plane(c, i, c->pic.data[i], 1,
c->pic.linesize[i], avctx->width >> !!i, avctx->height,
plane_start[i], plane_start[i + 1] - plane_start[i],
c->frame_pred == PRED_LEFT);
if (ret)
return ret;
if (c->frame_pred == PRED_MEDIAN) {
if (!c->interlaced) {
restore_median(c->pic.data[i], 1, c->pic.linesize[i],
avctx->width >> !!i, avctx->height,
c->slices, 0);
} else {
restore_median_il(c->pic.data[i], 1, c->pic.linesize[i],
avctx->width >> !!i, avctx->height,
c->slices, 0);
}
}
}
break;
}
c->pic.key_frame = 1;
c->pic.pict_type = AV_PICTURE_TYPE_I;
*data_size = sizeof(AVFrame);
*(AVFrame*)data = c->pic;
/* always report that the buffer was completely consumed */
return buf_size;
}
static av_cold int decode_init(AVCodecContext *avctx)
{
UtvideoContext * const c = avctx->priv_data;
c->avctx = avctx;
ff_dsputil_init(&c->dsp, avctx);
if (avctx->extradata_size < 16) {
av_log(avctx, AV_LOG_ERROR, "Insufficient extradata size %d, should be at least 16\n",
avctx->extradata_size);
return AVERROR_INVALIDDATA;
}
av_log(avctx, AV_LOG_DEBUG, "Encoder version %d.%d.%d.%d\n",
avctx->extradata[3], avctx->extradata[2],
avctx->extradata[1], avctx->extradata[0]);
av_log(avctx, AV_LOG_DEBUG, "Original format %X\n", AV_RB32(avctx->extradata + 4));
c->frame_info_size = AV_RL32(avctx->extradata + 8);
c->flags = AV_RL32(avctx->extradata + 12);
if (c->frame_info_size != 4)
av_log_ask_for_sample(avctx, "Frame info is not 4 bytes\n");
av_log(avctx, AV_LOG_DEBUG, "Encoding parameters %08X\n", c->flags);
c->slices = (c->flags >> 24) + 1;
c->compression = c->flags & 1;
c->interlaced = c->flags & 0x800;
c->slice_bits_size = 0;
switch (avctx->codec_tag) {
case MKTAG('U', 'L', 'R', 'G'):
c->planes = 3;
avctx->pix_fmt = PIX_FMT_RGB24;
break;
case MKTAG('U', 'L', 'R', 'A'):
c->planes = 4;
avctx->pix_fmt = PIX_FMT_RGBA;
break;
case MKTAG('U', 'L', 'Y', '0'):
c->planes = 3;
avctx->pix_fmt = PIX_FMT_YUV420P;
break;
case MKTAG('U', 'L', 'Y', '2'):
c->planes = 3;
avctx->pix_fmt = PIX_FMT_YUV422P;
break;
default:
av_log(avctx, AV_LOG_ERROR, "Unknown Ut Video FOURCC provided (%08X)\n",
avctx->codec_tag);
return AVERROR_INVALIDDATA;
}
return 0;
}
static av_cold int decode_end(AVCodecContext *avctx)
{
UtvideoContext * const c = avctx->priv_data;
if (c->pic.data[0])
ff_thread_release_buffer(avctx, &c->pic);
av_freep(&c->slice_bits);
return 0;
}
AVCodec ff_utvideo_decoder = {
.name = "utvideo",
.type = AVMEDIA_TYPE_VIDEO,
.id = CODEC_ID_UTVIDEO,
.priv_data_size = sizeof(UtvideoContext),
.init = decode_init,
.close = decode_end,
.decode = decode_frame,
.capabilities = CODEC_CAP_DR1 | CODEC_CAP_FRAME_THREADS,
.long_name = NULL_IF_CONFIG_SMALL("Ut Video"),
};
|