1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
|
/*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/lfg.h"
#include "libavutil/random_seed.h"
#include "libavcodec/apv_decode.h"
#include "libavcodec/apv_dsp.h"
#include "libavcodec/put_bits.h"
// Whole file included here to get internal symbols.
#include "libavcodec/apv_entropy.c"
// As defined in 7.1.4, for testing.
// Adds a check to limit loop after reading 16 zero bits to avoid
// getting stuck reading a stream of zeroes forever (this matches
// the behaviour of the faster version).
static unsigned int apv_read_vlc_spec(GetBitContext *gbc, int k_param)
{
unsigned int symbol_value = 0;
int parse_exp_golomb = 1;
int k = k_param;
int stop_loop = 0;
if(get_bits1(gbc) == 1) {
parse_exp_golomb = 0;
} else {
if (get_bits1(gbc) == 0) {
symbol_value += (1 << k);
parse_exp_golomb = 0;
} else {
symbol_value += (2 << k);
parse_exp_golomb = 1;
}
}
if (parse_exp_golomb) {
int read_limit = 0;
do {
if (get_bits1(gbc) == 1) {
stop_loop = 1;
} else {
if (++read_limit == 16)
break;
symbol_value += (1 << k);
k++;
}
} while (!stop_loop);
}
if (k > 0)
symbol_value += get_bits(gbc, k);
return symbol_value;
}
// As defined in 7.2.4, for testing.
static void apv_write_vlc_spec(PutBitContext *pbc,
unsigned int symbol_val, int k_param)
{
int prefix_vlc_table[3][2] = {{1, 0}, {0, 0}, {0, 1}};
unsigned int symbol_value = symbol_val;
int val_prefix_vlc = av_clip(symbol_val >> k_param, 0, 2);
int bit_count = 0;
int k = k_param;
while (symbol_value >= (1 << k)) {
symbol_value -= (1 << k);
if (bit_count < 2)
put_bits(pbc, 1, prefix_vlc_table[val_prefix_vlc][bit_count]);
else
put_bits(pbc, 1, 0);
if (bit_count >= 2)
++k;
++bit_count;
}
if(bit_count < 2)
put_bits(pbc, 1, prefix_vlc_table[val_prefix_vlc][bit_count]);
else
put_bits(pbc, 1, 1);
if(k > 0)
put_bits(pbc, k, symbol_value);
}
// Old version of ff_apv_entropy_decode_block, for test comparison.
static int apv_entropy_decode_block(int16_t *restrict coeff,
GetBitContext *restrict gbc,
APVEntropyState *restrict state)
{
const APVVLCLUT *lut = state->decode_lut;
// DC coefficient.
{
int abs_dc_coeff_diff;
int sign_dc_coeff_diff;
int dc_coeff;
abs_dc_coeff_diff = apv_read_vlc(gbc, state->prev_k_dc, lut);
if (abs_dc_coeff_diff > 0)
sign_dc_coeff_diff = get_bits1(gbc);
else
sign_dc_coeff_diff = 0;
if (sign_dc_coeff_diff)
dc_coeff = state->prev_dc - abs_dc_coeff_diff;
else
dc_coeff = state->prev_dc + abs_dc_coeff_diff;
if (dc_coeff < APV_MIN_TRANS_COEFF ||
dc_coeff > APV_MAX_TRANS_COEFF) {
av_log(state->log_ctx, AV_LOG_ERROR,
"Out-of-range DC coefficient value: %d "
"(from prev_dc %d abs_dc_coeff_diff %d sign_dc_coeff_diff %d)\n",
dc_coeff, state->prev_dc, abs_dc_coeff_diff, sign_dc_coeff_diff);
return AVERROR_INVALIDDATA;
}
coeff[0] = dc_coeff;
state->prev_dc = dc_coeff;
state->prev_k_dc = FFMIN(abs_dc_coeff_diff >> 1, 5);
}
// AC coefficients.
{
int scan_pos = 1;
int first_ac = 1;
int k_run = 0;
int k_level = state->prev_k_level;
do {
int coeff_zero_run;
coeff_zero_run = apv_read_vlc(gbc, k_run, lut);
if (coeff_zero_run > APV_BLK_COEFFS - scan_pos) {
av_log(state->log_ctx, AV_LOG_ERROR,
"Out-of-range zero-run value: %d (at scan pos %d)\n",
coeff_zero_run, scan_pos);
return AVERROR_INVALIDDATA;
}
for (int i = 0; i < coeff_zero_run; i++) {
coeff[ff_zigzag_direct[scan_pos]] = 0;
++scan_pos;
}
k_run = FFMIN(coeff_zero_run >> 2, 2);
if (scan_pos < APV_BLK_COEFFS) {
int abs_ac_coeff_minus1;
int sign_ac_coeff;
int abs_level, level;
abs_ac_coeff_minus1 = apv_read_vlc(gbc, k_level, lut);
sign_ac_coeff = get_bits(gbc, 1);
abs_level = abs_ac_coeff_minus1 + 1;
if (sign_ac_coeff)
level = -abs_level;
else
level = abs_level;
if (level < APV_MIN_TRANS_COEFF ||
level > APV_MAX_TRANS_COEFF) {
av_log(state->log_ctx, AV_LOG_ERROR,
"Out-of-range AC coefficient value: %d "
"(from k_param %d abs_ac_coeff_minus1 %d sign_ac_coeff %d)\n",
level, k_level, abs_ac_coeff_minus1, sign_ac_coeff);
}
coeff[ff_zigzag_direct[scan_pos]] = level;
k_level = FFMIN(abs_level >> 2, 4);
if (first_ac) {
state->prev_k_level = k_level;
first_ac = 0;
}
++scan_pos;
}
} while (scan_pos < APV_BLK_COEFFS);
}
return 0;
}
static void binary(char *buf, uint32_t value, int bits)
{
for (int i = 0; i < bits; i++)
buf[i] = (value >> (bits - i - 1) & 1) ? '1' : '0';
buf[bits] = '\0';
}
static int test_apv_read_vlc(void)
{
APVVLCLUT lut;
int err = 0;
ff_apv_entropy_build_decode_lut(&lut);
// Generate all possible 20 bit sequences (padded with zeroes), then
// verify that spec and improved parsing functions get the same result
// and consume the same number of bits for each possible k_param.
for (int k = 0; k <= 5; k++) {
for (uint32_t b = 0; b < (1 << 20); b++) {
uint8_t buf[8] = {
b >> 12,
b >> 4,
b << 4,
0, 0, 0, 0, 0
};
GetBitContext gbc_test, gbc_spec;
unsigned int res_test, res_spec;
int con_test, con_spec;
init_get_bits8(&gbc_test, buf, 8);
init_get_bits8(&gbc_spec, buf, 8);
res_test = apv_read_vlc (&gbc_test, k, &lut);
res_spec = apv_read_vlc_spec(&gbc_spec, k);
con_test = get_bits_count(&gbc_test);
con_spec = get_bits_count(&gbc_spec);
if (res_test != res_spec ||
con_test != con_spec) {
char str[21];
binary(str, b, 20);
av_log(NULL, AV_LOG_ERROR,
"Mismatch reading %s (%d) with k=%d:\n", str, b, k);
av_log(NULL, AV_LOG_ERROR,
"Test function result %d consumed %d bits.\n",
res_test, con_test);
av_log(NULL, AV_LOG_ERROR,
"Spec function result %d consumed %d bits.\n",
res_spec, con_spec);
++err;
if (err > 10)
return err;
}
}
}
return err;
}
static int random_coeff(AVLFG *lfg)
{
// Geometric distribution of code lengths (1-14 bits),
// uniform distribution within codes of the length,
// equal probability of either sign.
int length = (av_lfg_get(lfg) / (UINT_MAX / 14 + 1));
int random = av_lfg_get(lfg);
int value = (1 << length) + (random & (1 << length) - 1);
if (random & (1 << length))
return value;
else
return -value;
}
static int random_run(AVLFG *lfg)
{
// Expoenential distrbution of run lengths.
unsigned int random = av_lfg_get(lfg);
for (int len = 0;; len++) {
if (random & (1 << len))
return len;
}
// You rolled zero on a 2^32 sided die; well done!
return 64;
}
static int test_apv_entropy_decode_block(void)
{
// Generate random entropy blocks, code them, then ensure they
// decode to the same block with both implementations.
APVVLCLUT decode_lut;
AVLFG lfg;
unsigned int seed = av_get_random_seed();
av_lfg_init(&lfg, seed);
av_log(NULL, AV_LOG_INFO, "seed = %u\n", seed);
ff_apv_entropy_build_decode_lut(&decode_lut);
for (int t = 0; t < 100; t++) {
APVEntropyState state, save_state;
int16_t block[64];
int16_t block_test1[64];
int16_t block_test2[64];
uint8_t buffer[1024];
PutBitContext pbc;
GetBitContext gbc;
int bits_written;
int pos, run, coeff, level, err;
int k_dc, k_run, k_level;
memset(block, 0, sizeof(block));
memset(buffer, 0, sizeof(buffer));
init_put_bits(&pbc, buffer, sizeof(buffer));
// Randomly-constructed state.
memset(&state, 0, sizeof(state));
state.decode_lut = &decode_lut;
state.prev_dc = random_coeff(&lfg);
state.prev_k_dc = av_lfg_get(&lfg) % 5;
state.prev_k_level = av_lfg_get(&lfg) % 4;
save_state = state;
k_dc = state.prev_k_dc;
k_run = 0;
k_level = state.prev_k_level;
coeff = random_coeff(&lfg) / 2;
block[ff_zigzag_direct[0]] = state.prev_dc + coeff;
apv_write_vlc_spec(&pbc, FFABS(coeff), k_dc);
if (coeff != 0)
put_bits(&pbc, 1, coeff < 0);
pos = 1;
while (pos < 64) {
run = random_run(&lfg);
if (pos + run > 64)
run = 64 - pos;
apv_write_vlc_spec(&pbc, run, k_run);
k_run = av_clip(run >> 2, 0, 2);
pos += run;
if (pos < 64) {
coeff = random_coeff(&lfg);
level = FFABS(coeff) - 1;
block[ff_zigzag_direct[pos]] = coeff;
apv_write_vlc_spec(&pbc, level, k_level);
put_bits(&pbc, 1, coeff < 0);
k_level = av_clip((level + 1) >> 2, 0, 4);
++pos;
}
}
bits_written = put_bits_count(&pbc);
flush_put_bits(&pbc);
// Fill output block with a distinctive error value.
for (int i = 0; i < 64; i++)
block_test1[i] = -9999;
init_get_bits8(&gbc, buffer, sizeof(buffer));
err = apv_entropy_decode_block(block_test1, &gbc, &state);
if (err < 0) {
av_log(NULL, AV_LOG_ERROR, "Entropy decode returned error.\n");
return 1;
} else {
int bits_read = get_bits_count(&gbc);
if (bits_written != bits_read) {
av_log(NULL, AV_LOG_ERROR, "Wrote %d bits but read %d.\n",
bits_written, bits_read);
return 1;
} else {
err = 0;
for (int i = 0; i < 64; i++) {
if (block[i] != block_test1[i])
++err;
}
if (err > 0) {
av_log(NULL, AV_LOG_ERROR, "%d mismatches in output block.\n", err);
return err;
}
}
}
init_get_bits8(&gbc, buffer, sizeof(buffer));
memset(block_test2, 0, 64 * sizeof(int16_t));
err = ff_apv_entropy_decode_block(block_test2, &gbc, &save_state);
if (err < 0) {
av_log(NULL, AV_LOG_ERROR, "Entropy decode returned error.\n");
return 1;
} else {
int bits_read = get_bits_count(&gbc);
if (bits_written != bits_read) {
av_log(NULL, AV_LOG_ERROR, "Wrote %d bits but read %d.\n",
bits_written, bits_read);
return 1;
} else {
err = 0;
for (int i = 0; i < 64; i++) {
if (block[i] != block_test2[i])
++err;
}
if (err > 0) {
av_log(NULL, AV_LOG_ERROR, "%d mismatches in output block.\n", err);
return err;
}
}
}
if (state.prev_dc != save_state.prev_dc ||
state.prev_k_dc != save_state.prev_k_dc ||
state.prev_k_level != save_state.prev_k_level) {
av_log(NULL, AV_LOG_ERROR, "Entropy state mismatch.\n");
return 1;
}
}
return 0;
}
int main(void)
{
int err;
err = test_apv_read_vlc();
if (err) {
av_log(NULL, AV_LOG_ERROR, "Read VLC test failed.\n");
return err;
}
err = test_apv_entropy_decode_block();
if (err) {
av_log(NULL, AV_LOG_ERROR, "Entropy decode block test failed.\n");
return err;
}
return 0;
}
|