1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
|
/*
* NewTek SpeedHQ codec
* Copyright 2017 Steinar H. Gunderson
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* NewTek SpeedHQ decoder.
*/
#define BITSTREAM_READER_LE
#include "libavutil/attributes.h"
#include "libavutil/mem_internal.h"
#include "avcodec.h"
#include "blockdsp.h"
#include "codec_internal.h"
#include "decode.h"
#include "get_bits.h"
#include "idctdsp.h"
#include "libavutil/thread.h"
#include "mathops.h"
#include "mpeg12data.h"
#include "mpeg12vlc.h"
#include "rl.h"
#include "speedhq.h"
#define MAX_INDEX (64 - 1)
/*
* 5 bits makes for very small tables, with no more than two lookups needed
* for the longest (10-bit) codes.
*/
#define ALPHA_VLC_BITS 5
typedef struct SHQContext {
BlockDSPContext bdsp;
IDCTDSPContext idsp;
uint8_t permutated_intra_scantable[64];
int quant_matrix[64];
enum { SHQ_SUBSAMPLING_420, SHQ_SUBSAMPLING_422, SHQ_SUBSAMPLING_444 }
subsampling;
enum { SHQ_NO_ALPHA, SHQ_RLE_ALPHA, SHQ_DCT_ALPHA } alpha_type;
} SHQContext;
/* NOTE: The first element is always 16, unscaled. */
static const uint8_t unscaled_quant_matrix[64] = {
16, 16, 19, 22, 26, 27, 29, 34,
16, 16, 22, 24, 27, 29, 34, 37,
19, 22, 26, 27, 29, 34, 34, 38,
22, 22, 26, 27, 29, 34, 37, 40,
22, 26, 27, 29, 32, 35, 40, 48,
26, 27, 29, 32, 35, 40, 48, 58,
26, 27, 29, 34, 38, 46, 56, 69,
27, 29, 35, 38, 46, 56, 69, 83
};
static VLC dc_lum_vlc_le;
static VLC dc_chroma_vlc_le;
static VLC dc_alpha_run_vlc_le;
static VLC dc_alpha_level_vlc_le;
static RL_VLC_ELEM speedhq_rl_vlc[674];
static inline int decode_dc_le(GetBitContext *gb, int component)
{
int code, diff;
if (component == 0 || component == 3) {
code = get_vlc2(gb, dc_lum_vlc_le.table, DC_VLC_BITS, 2);
} else {
code = get_vlc2(gb, dc_chroma_vlc_le.table, DC_VLC_BITS, 2);
}
if (!code) {
diff = 0;
} else {
diff = get_xbits_le(gb, code);
}
return diff;
}
static inline int decode_alpha_block(const SHQContext *s, GetBitContext *gb, uint8_t last_alpha[16], uint8_t *dest, int linesize)
{
uint8_t block[128];
int i = 0, x, y;
memset(block, 0, sizeof(block));
{
OPEN_READER(re, gb);
for ( ;; ) {
int run, level;
UPDATE_CACHE_LE(re, gb);
GET_VLC(run, re, gb, dc_alpha_run_vlc_le.table, ALPHA_VLC_BITS, 2);
if (run < 0) break;
i += run;
if (i >= 128)
return AVERROR_INVALIDDATA;
UPDATE_CACHE_LE(re, gb);
GET_VLC(level, re, gb, dc_alpha_level_vlc_le.table, ALPHA_VLC_BITS, 2);
block[i++] = level;
}
CLOSE_READER(re, gb);
}
for (y = 0; y < 8; y++) {
for (x = 0; x < 16; x++) {
last_alpha[x] -= block[y * 16 + x];
}
memcpy(dest, last_alpha, 16);
dest += linesize;
}
return 0;
}
static inline int decode_dct_block(const SHQContext *s, GetBitContext *gb, int last_dc[4], int component, uint8_t *dest, int linesize)
{
const int *quant_matrix = s->quant_matrix;
const uint8_t *scantable = s->permutated_intra_scantable;
LOCAL_ALIGNED_32(int16_t, block, [64]);
int dc_offset;
s->bdsp.clear_block(block);
dc_offset = decode_dc_le(gb, component);
last_dc[component] -= dc_offset; /* Note: Opposite of most codecs. */
block[scantable[0]] = last_dc[component]; /* quant_matrix[0] is always 16. */
/* Read AC coefficients. */
{
int i = 0;
OPEN_READER(re, gb);
for ( ;; ) {
int level, run;
UPDATE_CACHE_LE(re, gb);
GET_RL_VLC(level, run, re, gb, speedhq_rl_vlc,
TEX_VLC_BITS, 2, 0);
if (level == 127) {
break;
} else if (level) {
i += run;
if (i > MAX_INDEX)
return AVERROR_INVALIDDATA;
/* If next bit is 1, level = -level */
level = (level ^ SHOW_SBITS(re, gb, 1)) -
SHOW_SBITS(re, gb, 1);
LAST_SKIP_BITS(re, gb, 1);
} else {
/* Escape. */
#if MIN_CACHE_BITS < 6 + 6 + 12
#error MIN_CACHE_BITS is too small for the escape code, add UPDATE_CACHE
#endif
run = SHOW_UBITS(re, gb, 6) + 1;
SKIP_BITS(re, gb, 6);
level = SHOW_UBITS(re, gb, 12) - 2048;
LAST_SKIP_BITS(re, gb, 12);
i += run;
if (i > MAX_INDEX)
return AVERROR_INVALIDDATA;
}
block[scantable[i]] = (level * quant_matrix[i]) >> 4;
}
CLOSE_READER(re, gb);
}
s->idsp.idct_put(dest, linesize, block);
return 0;
}
static int decode_speedhq_border(const SHQContext *s, GetBitContext *gb, AVFrame *frame, int field_number, int line_stride)
{
int linesize_y = frame->linesize[0] * line_stride;
int linesize_cb = frame->linesize[1] * line_stride;
int linesize_cr = frame->linesize[2] * line_stride;
int linesize_a;
int ret;
if (s->alpha_type != SHQ_NO_ALPHA)
linesize_a = frame->linesize[3] * line_stride;
for (int y = 0; y < frame->height; y += 16 * line_stride) {
int last_dc[4] = { 1024, 1024, 1024, 1024 };
uint8_t *dest_y, *dest_cb, *dest_cr, *dest_a;
uint8_t last_alpha[16];
int x = frame->width - 8;
dest_y = frame->data[0] + frame->linesize[0] * (y + field_number) + x;
if (s->subsampling == SHQ_SUBSAMPLING_420) {
dest_cb = frame->data[1] + frame->linesize[1] * (y/2 + field_number) + x / 2;
dest_cr = frame->data[2] + frame->linesize[2] * (y/2 + field_number) + x / 2;
} else {
av_assert2(s->subsampling == SHQ_SUBSAMPLING_422);
dest_cb = frame->data[1] + frame->linesize[1] * (y + field_number) + x / 2;
dest_cr = frame->data[2] + frame->linesize[2] * (y + field_number) + x / 2;
}
if (s->alpha_type != SHQ_NO_ALPHA) {
memset(last_alpha, 255, sizeof(last_alpha));
dest_a = frame->data[3] + frame->linesize[3] * (y + field_number) + x;
}
if ((ret = decode_dct_block(s, gb, last_dc, 0, dest_y, linesize_y)) < 0)
return ret;
if ((ret = decode_dct_block(s, gb, last_dc, 0, dest_y + 8, linesize_y)) < 0)
return ret;
if ((ret = decode_dct_block(s, gb, last_dc, 0, dest_y + 8 * linesize_y, linesize_y)) < 0)
return ret;
if ((ret = decode_dct_block(s, gb, last_dc, 0, dest_y + 8 * linesize_y + 8, linesize_y)) < 0)
return ret;
if ((ret = decode_dct_block(s, gb, last_dc, 1, dest_cb, linesize_cb)) < 0)
return ret;
if ((ret = decode_dct_block(s, gb, last_dc, 2, dest_cr, linesize_cr)) < 0)
return ret;
if (s->subsampling != SHQ_SUBSAMPLING_420) {
if ((ret = decode_dct_block(s, gb, last_dc, 1, dest_cb + 8 * linesize_cb, linesize_cb)) < 0)
return ret;
if ((ret = decode_dct_block(s, gb, last_dc, 2, dest_cr + 8 * linesize_cr, linesize_cr)) < 0)
return ret;
}
if (s->alpha_type == SHQ_RLE_ALPHA) {
/* Alpha coded using 16x8 RLE blocks. */
if ((ret = decode_alpha_block(s, gb, last_alpha, dest_a, linesize_a)) < 0)
return ret;
if ((ret = decode_alpha_block(s, gb, last_alpha, dest_a + 8 * linesize_a, linesize_a)) < 0)
return ret;
} else if (s->alpha_type == SHQ_DCT_ALPHA) {
/* Alpha encoded exactly like luma. */
if ((ret = decode_dct_block(s, gb, last_dc, 3, dest_a, linesize_a)) < 0)
return ret;
if ((ret = decode_dct_block(s, gb, last_dc, 3, dest_a + 8, linesize_a)) < 0)
return ret;
if ((ret = decode_dct_block(s, gb, last_dc, 3, dest_a + 8 * linesize_a, linesize_a)) < 0)
return ret;
if ((ret = decode_dct_block(s, gb, last_dc, 3, dest_a + 8 * linesize_a + 8, linesize_a)) < 0)
return ret;
}
}
return 0;
}
static int decode_speedhq_field(const SHQContext *s, const uint8_t *buf, int buf_size, AVFrame *frame, int field_number, int start, int end, int line_stride)
{
int ret, slice_number, slice_offsets[5];
int linesize_y = frame->linesize[0] * line_stride;
int linesize_cb = frame->linesize[1] * line_stride;
int linesize_cr = frame->linesize[2] * line_stride;
int linesize_a;
GetBitContext gb;
if (s->alpha_type != SHQ_NO_ALPHA)
linesize_a = frame->linesize[3] * line_stride;
if (end < start || end - start < 3 || end > buf_size)
return AVERROR_INVALIDDATA;
slice_offsets[0] = start;
slice_offsets[4] = end;
for (slice_number = 1; slice_number < 4; slice_number++) {
uint32_t last_offset, slice_len;
last_offset = slice_offsets[slice_number - 1];
slice_len = AV_RL24(buf + last_offset);
slice_offsets[slice_number] = last_offset + slice_len;
if (slice_len < 3 || slice_offsets[slice_number] > end - 3)
return AVERROR_INVALIDDATA;
}
for (slice_number = 0; slice_number < 4; slice_number++) {
uint32_t slice_begin, slice_end;
int x, y;
slice_begin = slice_offsets[slice_number];
slice_end = slice_offsets[slice_number + 1];
if ((ret = init_get_bits8(&gb, buf + slice_begin + 3, slice_end - slice_begin - 3)) < 0)
return ret;
for (y = slice_number * 16 * line_stride; y < frame->height; y += line_stride * 64) {
uint8_t *dest_y, *dest_cb, *dest_cr, *dest_a;
int last_dc[4] = { 1024, 1024, 1024, 1024 };
uint8_t last_alpha[16];
memset(last_alpha, 255, sizeof(last_alpha));
dest_y = frame->data[0] + frame->linesize[0] * (y + field_number);
if (s->subsampling == SHQ_SUBSAMPLING_420) {
dest_cb = frame->data[1] + frame->linesize[1] * (y/2 + field_number);
dest_cr = frame->data[2] + frame->linesize[2] * (y/2 + field_number);
} else {
dest_cb = frame->data[1] + frame->linesize[1] * (y + field_number);
dest_cr = frame->data[2] + frame->linesize[2] * (y + field_number);
}
if (s->alpha_type != SHQ_NO_ALPHA) {
dest_a = frame->data[3] + frame->linesize[3] * (y + field_number);
}
for (x = 0; x < frame->width - 8 * (s->subsampling != SHQ_SUBSAMPLING_444); x += 16) {
/* Decode the four luma blocks. */
if ((ret = decode_dct_block(s, &gb, last_dc, 0, dest_y, linesize_y)) < 0)
return ret;
if ((ret = decode_dct_block(s, &gb, last_dc, 0, dest_y + 8, linesize_y)) < 0)
return ret;
if ((ret = decode_dct_block(s, &gb, last_dc, 0, dest_y + 8 * linesize_y, linesize_y)) < 0)
return ret;
if ((ret = decode_dct_block(s, &gb, last_dc, 0, dest_y + 8 * linesize_y + 8, linesize_y)) < 0)
return ret;
/*
* Decode the first chroma block. For 4:2:0, this is the only one;
* for 4:2:2, it's the top block; for 4:4:4, it's the top-left block.
*/
if ((ret = decode_dct_block(s, &gb, last_dc, 1, dest_cb, linesize_cb)) < 0)
return ret;
if ((ret = decode_dct_block(s, &gb, last_dc, 2, dest_cr, linesize_cr)) < 0)
return ret;
if (s->subsampling != SHQ_SUBSAMPLING_420) {
/* For 4:2:2, this is the bottom block; for 4:4:4, it's the bottom-left block. */
if ((ret = decode_dct_block(s, &gb, last_dc, 1, dest_cb + 8 * linesize_cb, linesize_cb)) < 0)
return ret;
if ((ret = decode_dct_block(s, &gb, last_dc, 2, dest_cr + 8 * linesize_cr, linesize_cr)) < 0)
return ret;
if (s->subsampling == SHQ_SUBSAMPLING_444) {
/* Top-right and bottom-right blocks. */
if ((ret = decode_dct_block(s, &gb, last_dc, 1, dest_cb + 8, linesize_cb)) < 0)
return ret;
if ((ret = decode_dct_block(s, &gb, last_dc, 2, dest_cr + 8, linesize_cr)) < 0)
return ret;
if ((ret = decode_dct_block(s, &gb, last_dc, 1, dest_cb + 8 * linesize_cb + 8, linesize_cb)) < 0)
return ret;
if ((ret = decode_dct_block(s, &gb, last_dc, 2, dest_cr + 8 * linesize_cr + 8, linesize_cr)) < 0)
return ret;
dest_cb += 8;
dest_cr += 8;
}
}
dest_y += 16;
dest_cb += 8;
dest_cr += 8;
if (s->alpha_type == SHQ_RLE_ALPHA) {
/* Alpha coded using 16x8 RLE blocks. */
if ((ret = decode_alpha_block(s, &gb, last_alpha, dest_a, linesize_a)) < 0)
return ret;
if ((ret = decode_alpha_block(s, &gb, last_alpha, dest_a + 8 * linesize_a, linesize_a)) < 0)
return ret;
dest_a += 16;
} else if (s->alpha_type == SHQ_DCT_ALPHA) {
/* Alpha encoded exactly like luma. */
if ((ret = decode_dct_block(s, &gb, last_dc, 3, dest_a, linesize_a)) < 0)
return ret;
if ((ret = decode_dct_block(s, &gb, last_dc, 3, dest_a + 8, linesize_a)) < 0)
return ret;
if ((ret = decode_dct_block(s, &gb, last_dc, 3, dest_a + 8 * linesize_a, linesize_a)) < 0)
return ret;
if ((ret = decode_dct_block(s, &gb, last_dc, 3, dest_a + 8 * linesize_a + 8, linesize_a)) < 0)
return ret;
dest_a += 16;
}
}
}
}
if (s->subsampling != SHQ_SUBSAMPLING_444 && (frame->width & 15))
return decode_speedhq_border(s, &gb, frame, field_number, line_stride);
return 0;
}
static void compute_quant_matrix(int *output, int qscale)
{
int i;
for (i = 0; i < 64; i++) output[i] = unscaled_quant_matrix[ff_zigzag_direct[i]] * qscale;
}
static int speedhq_decode_frame(AVCodecContext *avctx, AVFrame *frame,
int *got_frame, AVPacket *avpkt)
{
SHQContext * const s = avctx->priv_data;
const uint8_t *buf = avpkt->data;
int buf_size = avpkt->size;
uint8_t quality;
uint32_t second_field_offset;
int ret;
if (buf_size < 4 || avctx->width < 8 || avctx->width % 8 != 0)
return AVERROR_INVALIDDATA;
if (buf_size < avctx->width*avctx->height / 64 / 4)
return AVERROR_INVALIDDATA;
quality = buf[0];
if (quality >= 100) {
return AVERROR_INVALIDDATA;
}
compute_quant_matrix(s->quant_matrix, 100 - quality);
second_field_offset = AV_RL24(buf + 1);
if (second_field_offset >= buf_size - 3) {
return AVERROR_INVALIDDATA;
}
avctx->coded_width = FFALIGN(avctx->width, 16);
avctx->coded_height = FFALIGN(avctx->height, 16);
if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) {
return ret;
}
frame->key_frame = 1;
if (second_field_offset == 4 || second_field_offset == (buf_size-4)) {
/*
* Overlapping first and second fields is used to signal
* encoding only a single field. In this case, "height"
* is ambiguous; it could mean either the height of the
* frame as a whole, or of the field. The former would make
* more sense for compatibility with legacy decoders,
* but this matches the convention used in NDI, which is
* the primary user of this trick.
*/
if ((ret = decode_speedhq_field(s, buf, buf_size, frame, 0, 4, buf_size, 1)) < 0)
return ret;
} else {
if ((ret = decode_speedhq_field(s, buf, buf_size, frame, 0, 4, second_field_offset, 2)) < 0)
return ret;
if ((ret = decode_speedhq_field(s, buf, buf_size, frame, 1, second_field_offset, buf_size, 2)) < 0)
return ret;
}
*got_frame = 1;
return buf_size;
}
/*
* Alpha VLC. Run and level are independently coded, and would be
* outside the default limits for MAX_RUN/MAX_LEVEL, so we don't
* bother with combining them into one table.
*/
static av_cold void compute_alpha_vlcs(void)
{
uint16_t run_code[134], level_code[266];
uint8_t run_bits[134], level_bits[266];
int16_t run_symbols[134], level_symbols[266];
int entry, i, sign;
/* Initialize VLC for alpha run. */
entry = 0;
/* 0 -> 0. */
run_code[entry] = 0;
run_bits[entry] = 1;
run_symbols[entry] = 0;
++entry;
/* 10xx -> xx plus 1. */
for (i = 0; i < 4; ++i) {
run_code[entry] = (i << 2) | 1;
run_bits[entry] = 4;
run_symbols[entry] = i + 1;
++entry;
}
/* 111xxxxxxx -> xxxxxxx. */
for (i = 0; i < 128; ++i) {
run_code[entry] = (i << 3) | 7;
run_bits[entry] = 10;
run_symbols[entry] = i;
++entry;
}
/* 110 -> EOB. */
run_code[entry] = 3;
run_bits[entry] = 3;
run_symbols[entry] = -1;
++entry;
av_assert0(entry == FF_ARRAY_ELEMS(run_code));
INIT_LE_VLC_SPARSE_STATIC(&dc_alpha_run_vlc_le, ALPHA_VLC_BITS,
FF_ARRAY_ELEMS(run_code),
run_bits, 1, 1,
run_code, 2, 2,
run_symbols, 2, 2, 160);
/* Initialize VLC for alpha level. */
entry = 0;
for (sign = 0; sign <= 1; ++sign) {
/* 1s -> -1 or +1 (depending on sign bit). */
level_code[entry] = (sign << 1) | 1;
level_bits[entry] = 2;
level_symbols[entry] = sign ? -1 : 1;
++entry;
/* 01sxx -> xx plus 2 (2..5 or -2..-5, depending on sign bit). */
for (i = 0; i < 4; ++i) {
level_code[entry] = (i << 3) | (sign << 2) | 2;
level_bits[entry] = 5;
level_symbols[entry] = sign ? -(i + 2) : (i + 2);
++entry;
}
}
/*
* 00xxxxxxxx -> xxxxxxxx, in two's complement. There are many codes
* here that would better be encoded in other ways (e.g. 0 would be
* encoded by increasing run, and +/- 1 would be encoded with a
* shorter code), but it doesn't hurt to allow everything.
*/
for (i = 0; i < 256; ++i) {
level_code[entry] = i << 2;
level_bits[entry] = 10;
level_symbols[entry] = i;
++entry;
}
av_assert0(entry == FF_ARRAY_ELEMS(level_code));
INIT_LE_VLC_SPARSE_STATIC(&dc_alpha_level_vlc_le, ALPHA_VLC_BITS,
FF_ARRAY_ELEMS(level_code),
level_bits, 1, 1,
level_code, 2, 2,
level_symbols, 2, 2, 288);
}
static av_cold void speedhq_static_init(void)
{
/* Exactly the same as MPEG-2, except for a little-endian reader. */
INIT_CUSTOM_VLC_STATIC(&dc_lum_vlc_le, DC_VLC_BITS, 12,
ff_mpeg12_vlc_dc_lum_bits, 1, 1,
ff_mpeg12_vlc_dc_lum_code, 2, 2,
INIT_VLC_OUTPUT_LE, 512);
INIT_CUSTOM_VLC_STATIC(&dc_chroma_vlc_le, DC_VLC_BITS, 12,
ff_mpeg12_vlc_dc_chroma_bits, 1, 1,
ff_mpeg12_vlc_dc_chroma_code, 2, 2,
INIT_VLC_OUTPUT_LE, 514);
ff_init_2d_vlc_rl(ff_speedhq_vlc_table, speedhq_rl_vlc, ff_rl_speedhq.table_run,
ff_rl_speedhq.table_level, ff_rl_speedhq.n,
FF_ARRAY_ELEMS(speedhq_rl_vlc), INIT_VLC_LE);
compute_alpha_vlcs();
}
static av_cold int speedhq_decode_init(AVCodecContext *avctx)
{
int ret;
static AVOnce init_once = AV_ONCE_INIT;
SHQContext * const s = avctx->priv_data;
ret = ff_thread_once(&init_once, speedhq_static_init);
if (ret)
return AVERROR_UNKNOWN;
ff_blockdsp_init(&s->bdsp);
ff_idctdsp_init(&s->idsp, avctx);
ff_permute_scantable(s->permutated_intra_scantable, ff_zigzag_direct,
s->idsp.idct_permutation);
switch (avctx->codec_tag) {
case MKTAG('S', 'H', 'Q', '0'):
s->subsampling = SHQ_SUBSAMPLING_420;
s->alpha_type = SHQ_NO_ALPHA;
avctx->pix_fmt = AV_PIX_FMT_YUV420P;
break;
case MKTAG('S', 'H', 'Q', '1'):
s->subsampling = SHQ_SUBSAMPLING_420;
s->alpha_type = SHQ_RLE_ALPHA;
avctx->pix_fmt = AV_PIX_FMT_YUVA420P;
break;
case MKTAG('S', 'H', 'Q', '2'):
s->subsampling = SHQ_SUBSAMPLING_422;
s->alpha_type = SHQ_NO_ALPHA;
avctx->pix_fmt = AV_PIX_FMT_YUV422P;
break;
case MKTAG('S', 'H', 'Q', '3'):
s->subsampling = SHQ_SUBSAMPLING_422;
s->alpha_type = SHQ_RLE_ALPHA;
avctx->pix_fmt = AV_PIX_FMT_YUVA422P;
break;
case MKTAG('S', 'H', 'Q', '4'):
s->subsampling = SHQ_SUBSAMPLING_444;
s->alpha_type = SHQ_NO_ALPHA;
avctx->pix_fmt = AV_PIX_FMT_YUV444P;
break;
case MKTAG('S', 'H', 'Q', '5'):
s->subsampling = SHQ_SUBSAMPLING_444;
s->alpha_type = SHQ_RLE_ALPHA;
avctx->pix_fmt = AV_PIX_FMT_YUVA444P;
break;
case MKTAG('S', 'H', 'Q', '7'):
s->subsampling = SHQ_SUBSAMPLING_422;
s->alpha_type = SHQ_DCT_ALPHA;
avctx->pix_fmt = AV_PIX_FMT_YUVA422P;
break;
case MKTAG('S', 'H', 'Q', '9'):
s->subsampling = SHQ_SUBSAMPLING_444;
s->alpha_type = SHQ_DCT_ALPHA;
avctx->pix_fmt = AV_PIX_FMT_YUVA444P;
break;
default:
av_log(avctx, AV_LOG_ERROR, "Unknown NewTek SpeedHQ FOURCC provided (%08X)\n",
avctx->codec_tag);
return AVERROR_INVALIDDATA;
}
/* This matches what NDI's RGB -> Y'CbCr 4:2:2 converter uses. */
avctx->colorspace = AVCOL_SPC_BT470BG;
avctx->chroma_sample_location = AVCHROMA_LOC_CENTER;
return 0;
}
const FFCodec ff_speedhq_decoder = {
.p.name = "speedhq",
CODEC_LONG_NAME("NewTek SpeedHQ"),
.p.type = AVMEDIA_TYPE_VIDEO,
.p.id = AV_CODEC_ID_SPEEDHQ,
.priv_data_size = sizeof(SHQContext),
.init = speedhq_decode_init,
FF_CODEC_DECODE_CB(speedhq_decode_frame),
.p.capabilities = AV_CODEC_CAP_DR1,
};
|