1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
|
/*
* QCELP decoder
* Copyright (c) 2007 Reynaldo H. Verdejo Pinochet
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* QCELP decoder
* @author Reynaldo H. Verdejo Pinochet
* @remark FFmpeg merging spearheaded by Kenan Gillet
* @remark Development mentored by Benjamin Larson
*/
#include "libavutil/avassert.h"
#include "libavutil/channel_layout.h"
#include "libavutil/float_dsp.h"
#include "avcodec.h"
#include "codec_internal.h"
#include "decode.h"
#include "get_bits.h"
#include "qcelpdata.h"
#include "celp_filters.h"
#include "acelp_filters.h"
#include "acelp_vectors.h"
#include "lsp.h"
typedef enum {
I_F_Q = -1, /**< insufficient frame quality */
SILENCE,
RATE_OCTAVE,
RATE_QUARTER,
RATE_HALF,
RATE_FULL
} qcelp_packet_rate;
typedef struct QCELPContext {
GetBitContext gb;
qcelp_packet_rate bitrate;
QCELPFrame frame; /**< unpacked data frame */
uint8_t erasure_count;
uint8_t octave_count; /**< count the consecutive RATE_OCTAVE frames */
float prev_lspf[10];
float predictor_lspf[10];/**< LSP predictor for RATE_OCTAVE and I_F_Q */
float pitch_synthesis_filter_mem[303];
float pitch_pre_filter_mem[303];
float rnd_fir_filter_mem[180];
float formant_mem[170];
float last_codebook_gain;
int prev_g1[2];
int prev_bitrate;
float pitch_gain[4];
uint8_t pitch_lag[4];
uint16_t first16bits;
uint8_t warned_buf_mismatch_bitrate;
/* postfilter */
float postfilter_synth_mem[10];
float postfilter_agc_mem;
float postfilter_tilt_mem;
} QCELPContext;
/**
* Initialize the speech codec according to the specification.
*
* TIA/EIA/IS-733 2.4.9
*/
static av_cold int qcelp_decode_init(AVCodecContext *avctx)
{
QCELPContext *q = avctx->priv_data;
int i;
av_channel_layout_uninit(&avctx->ch_layout);
avctx->ch_layout = (AVChannelLayout)AV_CHANNEL_LAYOUT_MONO;
avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
for (i = 0; i < 10; i++)
q->prev_lspf[i] = (i + 1) / 11.0;
return 0;
}
/**
* Decode the 10 quantized LSP frequencies from the LSPV/LSP
* transmission codes of any bitrate and check for badly received packets.
*
* @param q the context
* @param lspf line spectral pair frequencies
*
* @return 0 on success, -1 if the packet is badly received
*
* TIA/EIA/IS-733 2.4.3.2.6.2-2, 2.4.8.7.3
*/
static int decode_lspf(QCELPContext *q, float *lspf)
{
int i;
float tmp_lspf, smooth, erasure_coeff;
const float *predictors;
if (q->bitrate == RATE_OCTAVE || q->bitrate == I_F_Q) {
predictors = q->prev_bitrate != RATE_OCTAVE &&
q->prev_bitrate != I_F_Q ? q->prev_lspf
: q->predictor_lspf;
if (q->bitrate == RATE_OCTAVE) {
q->octave_count++;
for (i = 0; i < 10; i++) {
q->predictor_lspf[i] =
lspf[i] = (q->frame.lspv[i] ? QCELP_LSP_SPREAD_FACTOR
: -QCELP_LSP_SPREAD_FACTOR) +
predictors[i] * QCELP_LSP_OCTAVE_PREDICTOR +
(i + 1) * ((1 - QCELP_LSP_OCTAVE_PREDICTOR) / 11);
}
smooth = q->octave_count < 10 ? .875 : 0.1;
} else {
erasure_coeff = QCELP_LSP_OCTAVE_PREDICTOR;
av_assert2(q->bitrate == I_F_Q);
if (q->erasure_count > 1)
erasure_coeff *= q->erasure_count < 4 ? 0.9 : 0.7;
for (i = 0; i < 10; i++) {
q->predictor_lspf[i] =
lspf[i] = (i + 1) * (1 - erasure_coeff) / 11 +
erasure_coeff * predictors[i];
}
smooth = 0.125;
}
// Check the stability of the LSP frequencies.
lspf[0] = FFMAX(lspf[0], QCELP_LSP_SPREAD_FACTOR);
for (i = 1; i < 10; i++)
lspf[i] = FFMAX(lspf[i], lspf[i - 1] + QCELP_LSP_SPREAD_FACTOR);
lspf[9] = FFMIN(lspf[9], 1.0 - QCELP_LSP_SPREAD_FACTOR);
for (i = 9; i > 0; i--)
lspf[i - 1] = FFMIN(lspf[i - 1], lspf[i] - QCELP_LSP_SPREAD_FACTOR);
// Low-pass filter the LSP frequencies.
ff_weighted_vector_sumf(lspf, lspf, q->prev_lspf, smooth, 1.0 - smooth, 10);
} else {
q->octave_count = 0;
tmp_lspf = 0.0;
for (i = 0; i < 5; i++) {
lspf[2 * i + 0] = tmp_lspf += qcelp_lspvq[i][q->frame.lspv[i]][0] * 0.0001;
lspf[2 * i + 1] = tmp_lspf += qcelp_lspvq[i][q->frame.lspv[i]][1] * 0.0001;
}
// Check for badly received packets.
if (q->bitrate == RATE_QUARTER) {
if (lspf[9] <= .70 || lspf[9] >= .97)
return -1;
for (i = 3; i < 10; i++)
if (fabs(lspf[i] - lspf[i - 2]) < .08)
return -1;
} else {
if (lspf[9] <= .66 || lspf[9] >= .985)
return -1;
for (i = 4; i < 10; i++)
if (fabs(lspf[i] - lspf[i - 4]) < .0931)
return -1;
}
}
return 0;
}
/**
* Convert codebook transmission codes to GAIN and INDEX.
*
* @param q the context
* @param gain array holding the decoded gain
*
* TIA/EIA/IS-733 2.4.6.2
*/
static void decode_gain_and_index(QCELPContext *q, float *gain)
{
int i, subframes_count, g1[16];
float slope;
if (q->bitrate >= RATE_QUARTER) {
switch (q->bitrate) {
case RATE_FULL: subframes_count = 16; break;
case RATE_HALF: subframes_count = 4; break;
default: subframes_count = 5;
}
for (i = 0; i < subframes_count; i++) {
g1[i] = 4 * q->frame.cbgain[i];
if (q->bitrate == RATE_FULL && !((i + 1) & 3)) {
g1[i] += av_clip((g1[i - 1] + g1[i - 2] + g1[i - 3]) / 3 - 6, 0, 32);
}
gain[i] = qcelp_g12ga[g1[i]];
if (q->frame.cbsign[i]) {
gain[i] = -gain[i];
q->frame.cindex[i] = (q->frame.cindex[i] - 89) & 127;
}
}
q->prev_g1[0] = g1[i - 2];
q->prev_g1[1] = g1[i - 1];
q->last_codebook_gain = qcelp_g12ga[g1[i - 1]];
if (q->bitrate == RATE_QUARTER) {
// Provide smoothing of the unvoiced excitation energy.
gain[7] = gain[4];
gain[6] = 0.4 * gain[3] + 0.6 * gain[4];
gain[5] = gain[3];
gain[4] = 0.8 * gain[2] + 0.2 * gain[3];
gain[3] = 0.2 * gain[1] + 0.8 * gain[2];
gain[2] = gain[1];
gain[1] = 0.6 * gain[0] + 0.4 * gain[1];
}
} else if (q->bitrate != SILENCE) {
if (q->bitrate == RATE_OCTAVE) {
g1[0] = 2 * q->frame.cbgain[0] +
av_clip((q->prev_g1[0] + q->prev_g1[1]) / 2 - 5, 0, 54);
subframes_count = 8;
} else {
av_assert2(q->bitrate == I_F_Q);
g1[0] = q->prev_g1[1];
switch (q->erasure_count) {
case 1 : break;
case 2 : g1[0] -= 1; break;
case 3 : g1[0] -= 2; break;
default: g1[0] -= 6;
}
if (g1[0] < 0)
g1[0] = 0;
subframes_count = 4;
}
// This interpolation is done to produce smoother background noise.
slope = 0.5 * (qcelp_g12ga[g1[0]] - q->last_codebook_gain) / subframes_count;
for (i = 1; i <= subframes_count; i++)
gain[i - 1] = q->last_codebook_gain + slope * i;
q->last_codebook_gain = gain[i - 2];
q->prev_g1[0] = q->prev_g1[1];
q->prev_g1[1] = g1[0];
}
}
/**
* If the received packet is Rate 1/4 a further sanity check is made of the
* codebook gain.
*
* @param cbgain the unpacked cbgain array
* @return -1 if the sanity check fails, 0 otherwise
*
* TIA/EIA/IS-733 2.4.8.7.3
*/
static int codebook_sanity_check_for_rate_quarter(const uint8_t *cbgain)
{
int i, diff, prev_diff = 0;
for (i = 1; i < 5; i++) {
diff = cbgain[i] - cbgain[i-1];
if (FFABS(diff) > 10)
return -1;
else if (FFABS(diff - prev_diff) > 12)
return -1;
prev_diff = diff;
}
return 0;
}
/**
* Compute the scaled codebook vector Cdn From INDEX and GAIN
* for all rates.
*
* The specification lacks some information here.
*
* TIA/EIA/IS-733 has an omission on the codebook index determination
* formula for RATE_FULL and RATE_HALF frames at section 2.4.8.1.1. It says
* you have to subtract the decoded index parameter from the given scaled
* codebook vector index 'n' to get the desired circular codebook index, but
* it does not mention that you have to clamp 'n' to [0-9] in order to get
* RI-compliant results.
*
* The reason for this mistake seems to be the fact they forgot to mention you
* have to do these calculations per codebook subframe and adjust given
* equation values accordingly.
*
* @param q the context
* @param gain array holding the 4 pitch subframe gain values
* @param cdn_vector array for the generated scaled codebook vector
*/
static void compute_svector(QCELPContext *q, const float *gain,
float *cdn_vector)
{
int i, j, k;
uint16_t cbseed, cindex;
float *rnd, tmp_gain, fir_filter_value;
switch (q->bitrate) {
case RATE_FULL:
for (i = 0; i < 16; i++) {
tmp_gain = gain[i] * QCELP_RATE_FULL_CODEBOOK_RATIO;
cindex = -q->frame.cindex[i];
for (j = 0; j < 10; j++)
*cdn_vector++ = tmp_gain *
qcelp_rate_full_codebook[cindex++ & 127];
}
break;
case RATE_HALF:
for (i = 0; i < 4; i++) {
tmp_gain = gain[i] * QCELP_RATE_HALF_CODEBOOK_RATIO;
cindex = -q->frame.cindex[i];
for (j = 0; j < 40; j++)
*cdn_vector++ = tmp_gain *
qcelp_rate_half_codebook[cindex++ & 127];
}
break;
case RATE_QUARTER:
cbseed = (0x0003 & q->frame.lspv[4]) << 14 |
(0x003F & q->frame.lspv[3]) << 8 |
(0x0060 & q->frame.lspv[2]) << 1 |
(0x0007 & q->frame.lspv[1]) << 3 |
(0x0038 & q->frame.lspv[0]) >> 3;
rnd = q->rnd_fir_filter_mem + 20;
for (i = 0; i < 8; i++) {
tmp_gain = gain[i] * (QCELP_SQRT1887 / 32768.0);
for (k = 0; k < 20; k++) {
cbseed = 521 * cbseed + 259;
*rnd = (int16_t) cbseed;
// FIR filter
fir_filter_value = 0.0;
for (j = 0; j < 10; j++)
fir_filter_value += qcelp_rnd_fir_coefs[j] *
(rnd[-j] + rnd[-20+j]);
fir_filter_value += qcelp_rnd_fir_coefs[10] * rnd[-10];
*cdn_vector++ = tmp_gain * fir_filter_value;
rnd++;
}
}
memcpy(q->rnd_fir_filter_mem, q->rnd_fir_filter_mem + 160,
20 * sizeof(float));
break;
case RATE_OCTAVE:
cbseed = q->first16bits;
for (i = 0; i < 8; i++) {
tmp_gain = gain[i] * (QCELP_SQRT1887 / 32768.0);
for (j = 0; j < 20; j++) {
cbseed = 521 * cbseed + 259;
*cdn_vector++ = tmp_gain * (int16_t) cbseed;
}
}
break;
case I_F_Q:
cbseed = -44; // random codebook index
for (i = 0; i < 4; i++) {
tmp_gain = gain[i] * QCELP_RATE_FULL_CODEBOOK_RATIO;
for (j = 0; j < 40; j++)
*cdn_vector++ = tmp_gain *
qcelp_rate_full_codebook[cbseed++ & 127];
}
break;
case SILENCE:
memset(cdn_vector, 0, 160 * sizeof(float));
break;
}
}
/**
* Apply generic gain control.
*
* @param v_out output vector
* @param v_in gain-controlled vector
* @param v_ref vector to control gain of
*
* TIA/EIA/IS-733 2.4.8.3, 2.4.8.6
*/
static void apply_gain_ctrl(float *v_out, const float *v_ref, const float *v_in)
{
int i;
for (i = 0; i < 160; i += 40) {
float res = avpriv_scalarproduct_float_c(v_ref + i, v_ref + i, 40);
ff_scale_vector_to_given_sum_of_squares(v_out + i, v_in + i, res, 40);
}
}
/**
* Apply filter in pitch-subframe steps.
*
* @param memory buffer for the previous state of the filter
* - must be able to contain 303 elements
* - the 143 first elements are from the previous state
* - the next 160 are for output
* @param v_in input filter vector
* @param gain per-subframe gain array, each element is between 0.0 and 2.0
* @param lag per-subframe lag array, each element is
* - between 16 and 143 if its corresponding pfrac is 0,
* - between 16 and 139 otherwise
* @param pfrac per-subframe boolean array, 1 if the lag is fractional, 0
* otherwise
*
* @return filter output vector
*/
static const float *do_pitchfilter(float memory[303], const float v_in[160],
const float gain[4], const uint8_t *lag,
const uint8_t pfrac[4])
{
int i, j;
float *v_lag, *v_out;
const float *v_len;
v_out = memory + 143; // Output vector starts at memory[143].
for (i = 0; i < 4; i++) {
if (gain[i]) {
v_lag = memory + 143 + 40 * i - lag[i];
for (v_len = v_in + 40; v_in < v_len; v_in++) {
if (pfrac[i]) { // If it is a fractional lag...
for (j = 0, *v_out = 0.0; j < 4; j++)
*v_out += qcelp_hammsinc_table[j] *
(v_lag[j - 4] + v_lag[3 - j]);
} else
*v_out = *v_lag;
*v_out = *v_in + gain[i] * *v_out;
v_lag++;
v_out++;
}
} else {
memcpy(v_out, v_in, 40 * sizeof(float));
v_in += 40;
v_out += 40;
}
}
memmove(memory, memory + 160, 143 * sizeof(float));
return memory + 143;
}
/**
* Apply pitch synthesis filter and pitch prefilter to the scaled codebook vector.
* TIA/EIA/IS-733 2.4.5.2, 2.4.8.7.2
*
* @param q the context
* @param cdn_vector the scaled codebook vector
*/
static void apply_pitch_filters(QCELPContext *q, float *cdn_vector)
{
int i;
const float *v_synthesis_filtered, *v_pre_filtered;
if (q->bitrate >= RATE_HALF || q->bitrate == SILENCE ||
(q->bitrate == I_F_Q && (q->prev_bitrate >= RATE_HALF))) {
if (q->bitrate >= RATE_HALF) {
// Compute gain & lag for the whole frame.
for (i = 0; i < 4; i++) {
q->pitch_gain[i] = q->frame.plag[i] ? (q->frame.pgain[i] + 1) * 0.25 : 0.0;
q->pitch_lag[i] = q->frame.plag[i] + 16;
}
} else {
float max_pitch_gain;
if (q->bitrate == I_F_Q) {
if (q->erasure_count < 3)
max_pitch_gain = 0.9 - 0.3 * (q->erasure_count - 1);
else
max_pitch_gain = 0.0;
} else {
av_assert2(q->bitrate == SILENCE);
max_pitch_gain = 1.0;
}
for (i = 0; i < 4; i++)
q->pitch_gain[i] = FFMIN(q->pitch_gain[i], max_pitch_gain);
memset(q->frame.pfrac, 0, sizeof(q->frame.pfrac));
}
// pitch synthesis filter
v_synthesis_filtered = do_pitchfilter(q->pitch_synthesis_filter_mem,
cdn_vector, q->pitch_gain,
q->pitch_lag, q->frame.pfrac);
// pitch prefilter update
for (i = 0; i < 4; i++)
q->pitch_gain[i] = 0.5 * FFMIN(q->pitch_gain[i], 1.0);
v_pre_filtered = do_pitchfilter(q->pitch_pre_filter_mem,
v_synthesis_filtered,
q->pitch_gain, q->pitch_lag,
q->frame.pfrac);
apply_gain_ctrl(cdn_vector, v_synthesis_filtered, v_pre_filtered);
} else {
memcpy(q->pitch_synthesis_filter_mem,
cdn_vector + 17, 143 * sizeof(float));
memcpy(q->pitch_pre_filter_mem, cdn_vector + 17, 143 * sizeof(float));
memset(q->pitch_gain, 0, sizeof(q->pitch_gain));
memset(q->pitch_lag, 0, sizeof(q->pitch_lag));
}
}
/**
* Reconstruct LPC coefficients from the line spectral pair frequencies
* and perform bandwidth expansion.
*
* @param lspf line spectral pair frequencies
* @param lpc linear predictive coding coefficients
*
* @note: bandwidth_expansion_coeff could be precalculated into a table
* but it seems to be slower on x86
*
* TIA/EIA/IS-733 2.4.3.3.5
*/
static void lspf2lpc(const float *lspf, float *lpc)
{
double lsp[10];
double bandwidth_expansion_coeff = QCELP_BANDWIDTH_EXPANSION_COEFF;
int i;
for (i = 0; i < 10; i++)
lsp[i] = cos(M_PI * lspf[i]);
ff_acelp_lspd2lpc(lsp, lpc, 5);
for (i = 0; i < 10; i++) {
lpc[i] *= bandwidth_expansion_coeff;
bandwidth_expansion_coeff *= QCELP_BANDWIDTH_EXPANSION_COEFF;
}
}
/**
* Interpolate LSP frequencies and compute LPC coefficients
* for a given bitrate & pitch subframe.
*
* TIA/EIA/IS-733 2.4.3.3.4, 2.4.8.7.2
*
* @param q the context
* @param curr_lspf LSP frequencies vector of the current frame
* @param lpc float vector for the resulting LPC
* @param subframe_num frame number in decoded stream
*/
static void interpolate_lpc(QCELPContext *q, const float *curr_lspf,
float *lpc, const int subframe_num)
{
float interpolated_lspf[10];
float weight;
if (q->bitrate >= RATE_QUARTER)
weight = 0.25 * (subframe_num + 1);
else if (q->bitrate == RATE_OCTAVE && !subframe_num)
weight = 0.625;
else
weight = 1.0;
if (weight != 1.0) {
ff_weighted_vector_sumf(interpolated_lspf, curr_lspf, q->prev_lspf,
weight, 1.0 - weight, 10);
lspf2lpc(interpolated_lspf, lpc);
} else if (q->bitrate >= RATE_QUARTER ||
(q->bitrate == I_F_Q && !subframe_num))
lspf2lpc(curr_lspf, lpc);
else if (q->bitrate == SILENCE && !subframe_num)
lspf2lpc(q->prev_lspf, lpc);
}
static qcelp_packet_rate buf_size2bitrate(const int buf_size)
{
switch (buf_size) {
case 35: return RATE_FULL;
case 17: return RATE_HALF;
case 8: return RATE_QUARTER;
case 4: return RATE_OCTAVE;
case 1: return SILENCE;
}
return I_F_Q;
}
/**
* Determine the bitrate from the frame size and/or the first byte of the frame.
*
* @param avctx the AV codec context
* @param buf_size length of the buffer
* @param buf the buffer
*
* @return the bitrate on success,
* I_F_Q if the bitrate cannot be satisfactorily determined
*
* TIA/EIA/IS-733 2.4.8.7.1
*/
static qcelp_packet_rate determine_bitrate(AVCodecContext *avctx,
const int buf_size,
const uint8_t **buf)
{
qcelp_packet_rate bitrate;
if ((bitrate = buf_size2bitrate(buf_size)) >= 0) {
if (bitrate > **buf) {
QCELPContext *q = avctx->priv_data;
if (!q->warned_buf_mismatch_bitrate) {
av_log(avctx, AV_LOG_WARNING,
"Claimed bitrate and buffer size mismatch.\n");
q->warned_buf_mismatch_bitrate = 1;
}
bitrate = **buf;
} else if (bitrate < **buf) {
av_log(avctx, AV_LOG_ERROR,
"Buffer is too small for the claimed bitrate.\n");
return I_F_Q;
}
(*buf)++;
} else if ((bitrate = buf_size2bitrate(buf_size + 1)) >= 0) {
av_log(avctx, AV_LOG_WARNING,
"Bitrate byte missing, guessing bitrate from packet size.\n");
} else
return I_F_Q;
if (bitrate == SILENCE) {
// FIXME: Remove this warning when tested with samples.
avpriv_request_sample(avctx, "Blank frame handling");
}
return bitrate;
}
static void warn_insufficient_frame_quality(AVCodecContext *avctx,
const char *message)
{
av_log(avctx, AV_LOG_WARNING, "Frame #%"PRId64", IFQ: %s\n",
avctx->frame_num, message);
}
static void postfilter(QCELPContext *q, float *samples, float *lpc)
{
static const float pow_0_775[10] = {
0.775000, 0.600625, 0.465484, 0.360750, 0.279582,
0.216676, 0.167924, 0.130141, 0.100859, 0.078166
}, pow_0_625[10] = {
0.625000, 0.390625, 0.244141, 0.152588, 0.095367,
0.059605, 0.037253, 0.023283, 0.014552, 0.009095
};
float lpc_s[10], lpc_p[10], pole_out[170], zero_out[160];
int n;
for (n = 0; n < 10; n++) {
lpc_s[n] = lpc[n] * pow_0_625[n];
lpc_p[n] = lpc[n] * pow_0_775[n];
}
ff_celp_lp_zero_synthesis_filterf(zero_out, lpc_s,
q->formant_mem + 10, 160, 10);
memcpy(pole_out, q->postfilter_synth_mem, sizeof(float) * 10);
ff_celp_lp_synthesis_filterf(pole_out + 10, lpc_p, zero_out, 160, 10);
memcpy(q->postfilter_synth_mem, pole_out + 160, sizeof(float) * 10);
ff_tilt_compensation(&q->postfilter_tilt_mem, 0.3, pole_out + 10, 160);
ff_adaptive_gain_control(samples, pole_out + 10,
avpriv_scalarproduct_float_c(q->formant_mem + 10,
q->formant_mem + 10,
160),
160, 0.9375, &q->postfilter_agc_mem);
}
static int qcelp_decode_frame(AVCodecContext *avctx, AVFrame *frame,
int *got_frame_ptr, AVPacket *avpkt)
{
const uint8_t *buf = avpkt->data;
int buf_size = avpkt->size;
QCELPContext *q = avctx->priv_data;
float *outbuffer;
int i, ret;
float quantized_lspf[10], lpc[10];
float gain[16];
float *formant_mem;
/* get output buffer */
frame->nb_samples = 160;
if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
return ret;
outbuffer = (float *)frame->data[0];
if ((q->bitrate = determine_bitrate(avctx, buf_size, &buf)) == I_F_Q) {
warn_insufficient_frame_quality(avctx, "Bitrate cannot be determined.");
goto erasure;
}
if (q->bitrate == RATE_OCTAVE &&
(q->first16bits = AV_RB16(buf)) == 0xFFFF) {
warn_insufficient_frame_quality(avctx, "Bitrate is 1/8 and first 16 bits are on.");
goto erasure;
}
if (q->bitrate > SILENCE) {
const QCELPBitmap *bitmaps = qcelp_unpacking_bitmaps_per_rate[q->bitrate];
const QCELPBitmap *bitmaps_end = qcelp_unpacking_bitmaps_per_rate[q->bitrate] +
qcelp_unpacking_bitmaps_lengths[q->bitrate];
uint8_t *unpacked_data = (uint8_t *)&q->frame;
if ((ret = init_get_bits8(&q->gb, buf, buf_size)) < 0)
return ret;
memset(&q->frame, 0, sizeof(QCELPFrame));
for (; bitmaps < bitmaps_end; bitmaps++)
unpacked_data[bitmaps->index] |= get_bits(&q->gb, bitmaps->bitlen) << bitmaps->bitpos;
// Check for erasures/blanks on rates 1, 1/4 and 1/8.
if (q->frame.reserved) {
warn_insufficient_frame_quality(avctx, "Wrong data in reserved frame area.");
goto erasure;
}
if (q->bitrate == RATE_QUARTER &&
codebook_sanity_check_for_rate_quarter(q->frame.cbgain)) {
warn_insufficient_frame_quality(avctx, "Codebook gain sanity check failed.");
goto erasure;
}
if (q->bitrate >= RATE_HALF) {
for (i = 0; i < 4; i++) {
if (q->frame.pfrac[i] && q->frame.plag[i] >= 124) {
warn_insufficient_frame_quality(avctx, "Cannot initialize pitch filter.");
goto erasure;
}
}
}
}
decode_gain_and_index(q, gain);
compute_svector(q, gain, outbuffer);
if (decode_lspf(q, quantized_lspf) < 0) {
warn_insufficient_frame_quality(avctx, "Badly received packets in frame.");
goto erasure;
}
apply_pitch_filters(q, outbuffer);
if (q->bitrate == I_F_Q) {
erasure:
q->bitrate = I_F_Q;
q->erasure_count++;
decode_gain_and_index(q, gain);
compute_svector(q, gain, outbuffer);
decode_lspf(q, quantized_lspf);
apply_pitch_filters(q, outbuffer);
} else
q->erasure_count = 0;
formant_mem = q->formant_mem + 10;
for (i = 0; i < 4; i++) {
interpolate_lpc(q, quantized_lspf, lpc, i);
ff_celp_lp_synthesis_filterf(formant_mem, lpc,
outbuffer + i * 40, 40, 10);
formant_mem += 40;
}
// postfilter, as per TIA/EIA/IS-733 2.4.8.6
postfilter(q, outbuffer, lpc);
memcpy(q->formant_mem, q->formant_mem + 160, 10 * sizeof(float));
memcpy(q->prev_lspf, quantized_lspf, sizeof(q->prev_lspf));
q->prev_bitrate = q->bitrate;
*got_frame_ptr = 1;
return buf_size;
}
const FFCodec ff_qcelp_decoder = {
.p.name = "qcelp",
CODEC_LONG_NAME("QCELP / PureVoice"),
.p.type = AVMEDIA_TYPE_AUDIO,
.p.id = AV_CODEC_ID_QCELP,
.init = qcelp_decode_init,
FF_CODEC_DECODE_CB(qcelp_decode_frame),
.p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_CHANNEL_CONF,
.priv_data_size = sizeof(QCELPContext),
};
|