aboutsummaryrefslogtreecommitdiffstats
path: root/libavcodec/opusenc.c
blob: 4de0a5f5f0867e0bb02172a0b5c3ec099ebf8779 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
/*
 * Opus encoder
 * Copyright (c) 2017 Rostislav Pehlivanov <atomnuker@gmail.com>
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

#include <float.h>

#include "encode.h"
#include "opusenc.h"
#include "opus_pvq.h"
#include "opusenc_psy.h"
#include "opustab.h"

#include "libavutil/channel_layout.h"
#include "libavutil/float_dsp.h"
#include "libavutil/mem_internal.h"
#include "libavutil/opt.h"
#include "bytestream.h"
#include "audio_frame_queue.h"
#include "codec_internal.h"

typedef struct OpusEncContext {
    AVClass *av_class;
    OpusEncOptions options;
    OpusPsyContext psyctx;
    AVCodecContext *avctx;
    AudioFrameQueue afq;
    AVFloatDSPContext *dsp;
    AVTXContext *tx[CELT_BLOCK_NB];
    av_tx_fn tx_fn[CELT_BLOCK_NB];
    CeltPVQ *pvq;
    struct FFBufQueue bufqueue;

    uint8_t enc_id[64];
    int enc_id_bits;

    OpusPacketInfo packet;

    int channels;

    CeltFrame *frame;
    OpusRangeCoder *rc;

    /* Actual energy the decoder will have */
    float last_quantized_energy[OPUS_MAX_CHANNELS][CELT_MAX_BANDS];

    DECLARE_ALIGNED(32, float, scratch)[2048];
} OpusEncContext;

static void opus_write_extradata(AVCodecContext *avctx)
{
    uint8_t *bs = avctx->extradata;

    bytestream_put_buffer(&bs, "OpusHead", 8);
    bytestream_put_byte  (&bs, 0x1);
    bytestream_put_byte  (&bs, avctx->ch_layout.nb_channels);
    bytestream_put_le16  (&bs, avctx->initial_padding);
    bytestream_put_le32  (&bs, avctx->sample_rate);
    bytestream_put_le16  (&bs, 0x0);
    bytestream_put_byte  (&bs, 0x0); /* Default layout */
}

static int opus_gen_toc(OpusEncContext *s, uint8_t *toc, int *size, int *fsize_needed)
{
    int tmp = 0x0, extended_toc = 0;
    static const int toc_cfg[][OPUS_MODE_NB][OPUS_BANDWITH_NB] = {
        /*  Silk                    Hybrid                  Celt                    Layer     */
        /*  NB  MB  WB SWB  FB      NB  MB  WB SWB  FB      NB  MB  WB SWB  FB      Bandwidth */
        { {  0,  0,  0,  0,  0 }, {  0,  0,  0,  0,  0 }, { 17,  0, 21, 25, 29 } }, /* 2.5 ms */
        { {  0,  0,  0,  0,  0 }, {  0,  0,  0,  0,  0 }, { 18,  0, 22, 26, 30 } }, /*   5 ms */
        { {  1,  5,  9,  0,  0 }, {  0,  0,  0, 13, 15 }, { 19,  0, 23, 27, 31 } }, /*  10 ms */
        { {  2,  6, 10,  0,  0 }, {  0,  0,  0, 14, 16 }, { 20,  0, 24, 28, 32 } }, /*  20 ms */
        { {  3,  7, 11,  0,  0 }, {  0,  0,  0,  0,  0 }, {  0,  0,  0,  0,  0 } }, /*  40 ms */
        { {  4,  8, 12,  0,  0 }, {  0,  0,  0,  0,  0 }, {  0,  0,  0,  0,  0 } }, /*  60 ms */
    };
    int cfg = toc_cfg[s->packet.framesize][s->packet.mode][s->packet.bandwidth];
    *fsize_needed = 0;
    if (!cfg)
        return 1;
    if (s->packet.frames == 2) {                                       /* 2 packets */
        if (s->frame[0].framebits == s->frame[1].framebits) {          /* same size */
            tmp = 0x1;
        } else {                                                  /* different size */
            tmp = 0x2;
            *fsize_needed = 1;                     /* put frame sizes in the packet */
        }
    } else if (s->packet.frames > 2) {
        tmp = 0x3;
        extended_toc = 1;
    }
    tmp |= (s->channels > 1) << 2;                                /* Stereo or mono */
    tmp |= (cfg - 1)         << 3;                           /* codec configuration */
    *toc++ = tmp;
    if (extended_toc) {
        for (int i = 0; i < (s->packet.frames - 1); i++)
            *fsize_needed |= (s->frame[i].framebits != s->frame[i + 1].framebits);
        tmp = (*fsize_needed) << 7;                                /* vbr flag */
        tmp |= (0) << 6;                                       /* padding flag */
        tmp |= s->packet.frames;
        *toc++ = tmp;
    }
    *size = 1 + extended_toc;
    return 0;
}

static void celt_frame_setup_input(OpusEncContext *s, CeltFrame *f)
{
    AVFrame *cur = NULL;
    const int subframesize = s->avctx->frame_size;
    int subframes = OPUS_BLOCK_SIZE(s->packet.framesize) / subframesize;

    cur = ff_bufqueue_get(&s->bufqueue);

    for (int ch = 0; ch < f->channels; ch++) {
        CeltBlock *b = &f->block[ch];
        const void *input = cur->extended_data[ch];
        size_t bps = av_get_bytes_per_sample(cur->format);
        memcpy(b->overlap, input, bps*cur->nb_samples);
    }

    av_frame_free(&cur);

    for (int sf = 0; sf < subframes; sf++) {
        if (sf != (subframes - 1))
            cur = ff_bufqueue_get(&s->bufqueue);
        else
            cur = ff_bufqueue_peek(&s->bufqueue, 0);

        for (int ch = 0; ch < f->channels; ch++) {
            CeltBlock *b = &f->block[ch];
            const void *input = cur->extended_data[ch];
            const size_t bps  = av_get_bytes_per_sample(cur->format);
            const size_t left = (subframesize - cur->nb_samples)*bps;
            const size_t len  = FFMIN(subframesize, cur->nb_samples)*bps;
            memcpy(&b->samples[sf*subframesize], input, len);
            memset(&b->samples[cur->nb_samples], 0, left);
        }

        /* Last frame isn't popped off and freed yet - we need it for overlap */
        if (sf != (subframes - 1))
            av_frame_free(&cur);
    }
}

/* Apply the pre emphasis filter */
static void celt_apply_preemph_filter(OpusEncContext *s, CeltFrame *f)
{
    const int subframesize = s->avctx->frame_size;
    const int subframes = OPUS_BLOCK_SIZE(s->packet.framesize) / subframesize;

    /* Filter overlap */
    for (int ch = 0; ch < f->channels; ch++) {
        CeltBlock *b = &f->block[ch];
        float m = b->emph_coeff;
        for (int i = 0; i < CELT_OVERLAP; i++) {
            float sample = b->overlap[i];
            b->overlap[i] = sample - m;
            m = sample * CELT_EMPH_COEFF;
        }
        b->emph_coeff = m;
    }

    /* Filter the samples but do not update the last subframe's coeff - overlap ^^^ */
    for (int sf = 0; sf < subframes; sf++) {
        for (int ch = 0; ch < f->channels; ch++) {
            CeltBlock *b = &f->block[ch];
            float m = b->emph_coeff;
            for (int i = 0; i < subframesize; i++) {
                float sample = b->samples[sf*subframesize + i];
                b->samples[sf*subframesize + i] = sample - m;
                m = sample * CELT_EMPH_COEFF;
            }
            if (sf != (subframes - 1))
                b->emph_coeff = m;
        }
    }
}

/* Create the window and do the mdct */
static void celt_frame_mdct(OpusEncContext *s, CeltFrame *f)
{
    float *win = s->scratch, *temp = s->scratch + 1920;

    if (f->transient) {
        for (int ch = 0; ch < f->channels; ch++) {
            CeltBlock *b = &f->block[ch];
            float *src1 = b->overlap;
            for (int t = 0; t < f->blocks; t++) {
                float *src2 = &b->samples[CELT_OVERLAP*t];
                s->dsp->vector_fmul(win, src1, ff_celt_window, 128);
                s->dsp->vector_fmul_reverse(&win[CELT_OVERLAP], src2,
                                            ff_celt_window_padded, 128);
                src1 = src2;
                s->tx_fn[0](s->tx[0], b->coeffs + t, win, sizeof(float)*f->blocks);
            }
        }
    } else {
        int blk_len = OPUS_BLOCK_SIZE(f->size), wlen = OPUS_BLOCK_SIZE(f->size + 1);
        int rwin = blk_len - CELT_OVERLAP, lap_dst = (wlen - blk_len - CELT_OVERLAP) >> 1;
        memset(win, 0, wlen*sizeof(float));
        for (int ch = 0; ch < f->channels; ch++) {
            CeltBlock *b = &f->block[ch];

            /* Overlap */
            s->dsp->vector_fmul(temp, b->overlap, ff_celt_window, 128);
            memcpy(win + lap_dst, temp, CELT_OVERLAP*sizeof(float));

            /* Samples, flat top window */
            memcpy(&win[lap_dst + CELT_OVERLAP], b->samples, rwin*sizeof(float));

            /* Samples, windowed */
            s->dsp->vector_fmul_reverse(temp, b->samples + rwin,
                                        ff_celt_window_padded, 128);
            memcpy(win + lap_dst + blk_len, temp, CELT_OVERLAP*sizeof(float));

            s->tx_fn[f->size](s->tx[f->size], b->coeffs, win, sizeof(float));
        }
    }

    for (int ch = 0; ch < f->channels; ch++) {
        CeltBlock *block = &f->block[ch];
        for (int i = 0; i < CELT_MAX_BANDS; i++) {
            float ener = 0.0f;
            int band_offset = ff_celt_freq_bands[i] << f->size;
            int band_size   = ff_celt_freq_range[i] << f->size;
            float *coeffs   = &block->coeffs[band_offset];

            for (int j = 0; j < band_size; j++)
                ener += coeffs[j]*coeffs[j];

            block->lin_energy[i] = sqrtf(ener) + FLT_EPSILON;
            ener = 1.0f/block->lin_energy[i];

            for (int j = 0; j < band_size; j++)
                coeffs[j] *= ener;

            block->energy[i] = log2f(block->lin_energy[i]) - ff_celt_mean_energy[i];

            /* CELT_ENERGY_SILENCE is what the decoder uses and its not -infinity */
            block->energy[i] = FFMAX(block->energy[i], CELT_ENERGY_SILENCE);
        }
    }
}

static void celt_enc_tf(CeltFrame *f, OpusRangeCoder *rc)
{
    int tf_select = 0, diff = 0, tf_changed = 0, tf_select_needed;
    int bits = f->transient ? 2 : 4;

    tf_select_needed = ((f->size && (opus_rc_tell(rc) + bits + 1) <= f->framebits));

    for (int i = f->start_band; i < f->end_band; i++) {
        if ((opus_rc_tell(rc) + bits + tf_select_needed) <= f->framebits) {
            const int tbit = (diff ^ 1) == f->tf_change[i];
            ff_opus_rc_enc_log(rc, tbit, bits);
            diff ^= tbit;
            tf_changed |= diff;
        }
        bits = f->transient ? 4 : 5;
    }

    if (tf_select_needed && ff_celt_tf_select[f->size][f->transient][0][tf_changed] !=
                            ff_celt_tf_select[f->size][f->transient][1][tf_changed]) {
        ff_opus_rc_enc_log(rc, f->tf_select, 1);
        tf_select = f->tf_select;
    }

    for (int i = f->start_band; i < f->end_band; i++)
        f->tf_change[i] = ff_celt_tf_select[f->size][f->transient][tf_select][f->tf_change[i]];
}

static void celt_enc_quant_pfilter(OpusRangeCoder *rc, CeltFrame *f)
{
    float gain = f->pf_gain;
    int txval, octave = f->pf_octave, period = f->pf_period, tapset = f->pf_tapset;

    ff_opus_rc_enc_log(rc, f->pfilter, 1);
    if (!f->pfilter)
        return;

    /* Octave */
    txval = FFMIN(octave, 6);
    ff_opus_rc_enc_uint(rc, txval, 6);
    octave = txval;
    /* Period */
    txval = av_clip(period - (16 << octave) + 1, 0, (1 << (4 + octave)) - 1);
    ff_opus_rc_put_raw(rc, period, 4 + octave);
    period = txval + (16 << octave) - 1;
    /* Gain */
    txval = FFMIN(((int)(gain / 0.09375f)) - 1, 7);
    ff_opus_rc_put_raw(rc, txval, 3);
    gain   = 0.09375f * (txval + 1);
    /* Tapset */
    if ((opus_rc_tell(rc) + 2) <= f->framebits)
        ff_opus_rc_enc_cdf(rc, tapset, ff_celt_model_tapset);
    else
        tapset = 0;
    /* Finally create the coeffs */
    for (int i = 0; i < 2; i++) {
        CeltBlock *block = &f->block[i];

        block->pf_period_new = FFMAX(period, CELT_POSTFILTER_MINPERIOD);
        block->pf_gains_new[0] = gain * ff_celt_postfilter_taps[tapset][0];
        block->pf_gains_new[1] = gain * ff_celt_postfilter_taps[tapset][1];
        block->pf_gains_new[2] = gain * ff_celt_postfilter_taps[tapset][2];
    }
}

static void exp_quant_coarse(OpusRangeCoder *rc, CeltFrame *f,
                             float last_energy[][CELT_MAX_BANDS], int intra)
{
    float alpha, beta, prev[2] = { 0, 0 };
    const uint8_t *pmod = ff_celt_coarse_energy_dist[f->size][intra];

    /* Inter is really just differential coding */
    if (opus_rc_tell(rc) + 3 <= f->framebits)
        ff_opus_rc_enc_log(rc, intra, 3);
    else
        intra = 0;

    if (intra) {
        alpha = 0.0f;
        beta  = 1.0f - (4915.0f/32768.0f);
    } else {
        alpha = ff_celt_alpha_coef[f->size];
        beta  = ff_celt_beta_coef[f->size];
    }

    for (int i = f->start_band; i < f->end_band; i++) {
        for (int ch = 0; ch < f->channels; ch++) {
            CeltBlock *block = &f->block[ch];
            const int left = f->framebits - opus_rc_tell(rc);
            const float last = FFMAX(-9.0f, last_energy[ch][i]);
            float diff = block->energy[i] - prev[ch] - last*alpha;
            int q_en = lrintf(diff);
            if (left >= 15) {
                ff_opus_rc_enc_laplace(rc, &q_en, pmod[i << 1] << 7, pmod[(i << 1) + 1] << 6);
            } else if (left >= 2) {
                q_en = av_clip(q_en, -1, 1);
                ff_opus_rc_enc_cdf(rc, 2*q_en + 3*(q_en < 0), ff_celt_model_energy_small);
            } else if (left >= 1) {
                q_en = av_clip(q_en, -1, 0);
                ff_opus_rc_enc_log(rc, (q_en & 1), 1);
            } else q_en = -1;

            block->error_energy[i] = q_en - diff;
            prev[ch] += beta * q_en;
        }
    }
}

static void celt_quant_coarse(CeltFrame *f, OpusRangeCoder *rc,
                              float last_energy[][CELT_MAX_BANDS])
{
    uint32_t inter, intra;
    OPUS_RC_CHECKPOINT_SPAWN(rc);

    exp_quant_coarse(rc, f, last_energy, 1);
    intra = OPUS_RC_CHECKPOINT_BITS(rc);

    OPUS_RC_CHECKPOINT_ROLLBACK(rc);

    exp_quant_coarse(rc, f, last_energy, 0);
    inter = OPUS_RC_CHECKPOINT_BITS(rc);

    if (inter > intra) { /* Unlikely */
        OPUS_RC_CHECKPOINT_ROLLBACK(rc);
        exp_quant_coarse(rc, f, last_energy, 1);
    }
}

static void celt_quant_fine(CeltFrame *f, OpusRangeCoder *rc)
{
    for (int i = f->start_band; i < f->end_band; i++) {
        if (!f->fine_bits[i])
            continue;
        for (int ch = 0; ch < f->channels; ch++) {
            CeltBlock *block = &f->block[ch];
            int quant, lim = (1 << f->fine_bits[i]);
            float offset, diff = 0.5f - block->error_energy[i];
            quant = av_clip(floor(diff*lim), 0, lim - 1);
            ff_opus_rc_put_raw(rc, quant, f->fine_bits[i]);
            offset = 0.5f - ((quant + 0.5f) * (1 << (14 - f->fine_bits[i])) / 16384.0f);
            block->error_energy[i] -= offset;
        }
    }
}

static void celt_quant_final(OpusEncContext *s, OpusRangeCoder *rc, CeltFrame *f)
{
    for (int priority = 0; priority < 2; priority++) {
        for (int i = f->start_band; i < f->end_band && (f->framebits - opus_rc_tell(rc)) >= f->channels; i++) {
            if (f->fine_priority[i] != priority || f->fine_bits[i] >= CELT_MAX_FINE_BITS)
                continue;
            for (int ch = 0; ch < f->channels; ch++) {
                CeltBlock *block = &f->block[ch];
                const float err = block->error_energy[i];
                const float offset = 0.5f * (1 << (14 - f->fine_bits[i] - 1)) / 16384.0f;
                const int sign = FFABS(err + offset) < FFABS(err - offset);
                ff_opus_rc_put_raw(rc, sign, 1);
                block->error_energy[i] -= offset*(1 - 2*sign);
            }
        }
    }
}

static void celt_encode_frame(OpusEncContext *s, OpusRangeCoder *rc,
                              CeltFrame *f, int index)
{
    ff_opus_rc_enc_init(rc);

    ff_opus_psy_celt_frame_init(&s->psyctx, f, index);

    celt_frame_setup_input(s, f);

    if (f->silence) {
        if (f->framebits >= 16)
            ff_opus_rc_enc_log(rc, 1, 15); /* Silence (if using explicit singalling) */
        for (int ch = 0; ch < s->channels; ch++)
            memset(s->last_quantized_energy[ch], 0.0f, sizeof(float)*CELT_MAX_BANDS);
        return;
    }

    /* Filters */
    celt_apply_preemph_filter(s, f);
    if (f->pfilter) {
        ff_opus_rc_enc_log(rc, 0, 15);
        celt_enc_quant_pfilter(rc, f);
    }

    /* Transform */
    celt_frame_mdct(s, f);

    /* Need to handle transient/non-transient switches at any point during analysis */
    while (ff_opus_psy_celt_frame_process(&s->psyctx, f, index))
        celt_frame_mdct(s, f);

    ff_opus_rc_enc_init(rc);

    /* Silence */
    ff_opus_rc_enc_log(rc, 0, 15);

    /* Pitch filter */
    if (!f->start_band && opus_rc_tell(rc) + 16 <= f->framebits)
        celt_enc_quant_pfilter(rc, f);

    /* Transient flag */
    if (f->size && opus_rc_tell(rc) + 3 <= f->framebits)
        ff_opus_rc_enc_log(rc, f->transient, 3);

    /* Main encoding */
    celt_quant_coarse  (f, rc, s->last_quantized_energy);
    celt_enc_tf        (f, rc);
    ff_celt_bitalloc   (f, rc, 1);
    celt_quant_fine    (f, rc);
    ff_celt_quant_bands(f, rc);

    /* Anticollapse bit */
    if (f->anticollapse_needed)
        ff_opus_rc_put_raw(rc, f->anticollapse, 1);

    /* Final per-band energy adjustments from leftover bits */
    celt_quant_final(s, rc, f);

    for (int ch = 0; ch < f->channels; ch++) {
        CeltBlock *block = &f->block[ch];
        for (int i = 0; i < CELT_MAX_BANDS; i++)
            s->last_quantized_energy[ch][i] = block->energy[i] + block->error_energy[i];
    }
}

static inline int write_opuslacing(uint8_t *dst, int v)
{
    dst[0] = FFMIN(v - FFALIGN(v - 255, 4), v);
    dst[1] = v - dst[0] >> 2;
    return 1 + (v >= 252);
}

static void opus_packet_assembler(OpusEncContext *s, AVPacket *avpkt)
{
    int offset, fsize_needed;

    /* Write toc */
    opus_gen_toc(s, avpkt->data, &offset, &fsize_needed);

    /* Frame sizes if needed */
    if (fsize_needed) {
        for (int i = 0; i < s->packet.frames - 1; i++) {
            offset += write_opuslacing(avpkt->data + offset,
                                       s->frame[i].framebits >> 3);
        }
    }

    /* Packets */
    for (int i = 0; i < s->packet.frames; i++) {
        ff_opus_rc_enc_end(&s->rc[i], avpkt->data + offset,
                           s->frame[i].framebits >> 3);
        offset += s->frame[i].framebits >> 3;
    }

    avpkt->size = offset;
}

/* Used as overlap for the first frame and padding for the last encoded packet */
static AVFrame *spawn_empty_frame(OpusEncContext *s)
{
    AVFrame *f = av_frame_alloc();
    int ret;
    if (!f)
        return NULL;
    f->format         = s->avctx->sample_fmt;
    f->nb_samples     = s->avctx->frame_size;
    ret = av_channel_layout_copy(&f->ch_layout, &s->avctx->ch_layout);
    if (ret < 0) {
        av_frame_free(&f);
        return NULL;
    }
    if (av_frame_get_buffer(f, 4)) {
        av_frame_free(&f);
        return NULL;
    }
    for (int i = 0; i < s->channels; i++) {
        size_t bps = av_get_bytes_per_sample(f->format);
        memset(f->extended_data[i], 0, bps*f->nb_samples);
    }
    return f;
}

static int opus_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
                             const AVFrame *frame, int *got_packet_ptr)
{
    OpusEncContext *s = avctx->priv_data;
    int ret, frame_size, alloc_size = 0;

    if (frame) { /* Add new frame to queue */
        if ((ret = ff_af_queue_add(&s->afq, frame)) < 0)
            return ret;
        ff_bufqueue_add(avctx, &s->bufqueue, av_frame_clone(frame));
    } else {
        ff_opus_psy_signal_eof(&s->psyctx);
        if (!s->afq.remaining_samples || !avctx->frame_num)
            return 0; /* We've been flushed and there's nothing left to encode */
    }

    /* Run the psychoacoustic system */
    if (ff_opus_psy_process(&s->psyctx, &s->packet))
        return 0;

    frame_size = OPUS_BLOCK_SIZE(s->packet.framesize);

    if (!frame) {
        /* This can go negative, that's not a problem, we only pad if positive */
        int pad_empty = s->packet.frames*(frame_size/s->avctx->frame_size) - s->bufqueue.available + 1;
        /* Pad with empty 2.5 ms frames to whatever framesize was decided,
         * this should only happen at the very last flush frame. The frames
         * allocated here will be freed (because they have no other references)
         * after they get used by celt_frame_setup_input() */
        for (int i = 0; i < pad_empty; i++) {
            AVFrame *empty = spawn_empty_frame(s);
            if (!empty)
                return AVERROR(ENOMEM);
            ff_bufqueue_add(avctx, &s->bufqueue, empty);
        }
    }

    for (int i = 0; i < s->packet.frames; i++) {
        celt_encode_frame(s, &s->rc[i], &s->frame[i], i);
        alloc_size += s->frame[i].framebits >> 3;
    }

    /* Worst case toc + the frame lengths if needed */
    alloc_size += 2 + s->packet.frames*2;

    if ((ret = ff_alloc_packet(avctx, avpkt, alloc_size)) < 0)
        return ret;

    /* Assemble packet */
    opus_packet_assembler(s, avpkt);

    /* Update the psychoacoustic system */
    ff_opus_psy_postencode_update(&s->psyctx, s->frame);

    /* Remove samples from queue and skip if needed */
    ff_af_queue_remove(&s->afq, s->packet.frames*frame_size, &avpkt->pts, &avpkt->duration);
    if (s->packet.frames*frame_size > avpkt->duration) {
        uint8_t *side = av_packet_new_side_data(avpkt, AV_PKT_DATA_SKIP_SAMPLES, 10);
        if (!side)
            return AVERROR(ENOMEM);
        AV_WL32(&side[4], s->packet.frames*frame_size - avpkt->duration + 120);
    }

    *got_packet_ptr = 1;

    return 0;
}

static av_cold int opus_encode_end(AVCodecContext *avctx)
{
    OpusEncContext *s = avctx->priv_data;

    for (int i = 0; i < CELT_BLOCK_NB; i++)
        av_tx_uninit(&s->tx[i]);

    ff_celt_pvq_uninit(&s->pvq);
    av_freep(&s->dsp);
    av_freep(&s->frame);
    av_freep(&s->rc);
    ff_af_queue_close(&s->afq);
    ff_opus_psy_end(&s->psyctx);
    ff_bufqueue_discard_all(&s->bufqueue);

    return 0;
}

static av_cold int opus_encode_init(AVCodecContext *avctx)
{
    int ret, max_frames;
    OpusEncContext *s = avctx->priv_data;

    s->avctx = avctx;
    s->channels = avctx->ch_layout.nb_channels;

    /* Opus allows us to change the framesize on each packet (and each packet may
     * have multiple frames in it) but we can't change the codec's frame size on
     * runtime, so fix it to the lowest possible number of samples and use a queue
     * to accumulate AVFrames until we have enough to encode whatever the encoder
     * decides is the best */
    avctx->frame_size = 120;
    /* Initial padding will change if SILK is ever supported */
    avctx->initial_padding = 120;

    if (!avctx->bit_rate) {
        int coupled = ff_opus_default_coupled_streams[s->channels - 1];
        avctx->bit_rate = coupled*(96000) + (s->channels - coupled*2)*(48000);
    } else if (avctx->bit_rate < 6000 || avctx->bit_rate > 255000 * s->channels) {
        int64_t clipped_rate = av_clip(avctx->bit_rate, 6000, 255000 * s->channels);
        av_log(avctx, AV_LOG_ERROR, "Unsupported bitrate %"PRId64" kbps, clipping to %"PRId64" kbps\n",
               avctx->bit_rate/1000, clipped_rate/1000);
        avctx->bit_rate = clipped_rate;
    }

    /* Extradata */
    avctx->extradata_size = 19;
    avctx->extradata = av_malloc(avctx->extradata_size + AV_INPUT_BUFFER_PADDING_SIZE);
    if (!avctx->extradata)
        return AVERROR(ENOMEM);
    opus_write_extradata(avctx);

    ff_af_queue_init(avctx, &s->afq);

    if ((ret = ff_celt_pvq_init(&s->pvq, 1)) < 0)
        return ret;

    if (!(s->dsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT)))
        return AVERROR(ENOMEM);

    /* I have no idea why a base scaling factor of 68 works, could be the twiddles */
    for (int i = 0; i < CELT_BLOCK_NB; i++) {
        const float scale = 68 << (CELT_BLOCK_NB - 1 - i);
        if ((ret = av_tx_init(&s->tx[i], &s->tx_fn[i], AV_TX_FLOAT_MDCT, 0, 15 << (i + 3), &scale, 0)))
            return AVERROR(ENOMEM);
    }

    /* Zero out previous energy (matters for inter first frame) */
    for (int ch = 0; ch < s->channels; ch++)
        memset(s->last_quantized_energy[ch], 0.0f, sizeof(float)*CELT_MAX_BANDS);

    /* Allocate an empty frame to use as overlap for the first frame of audio */
    ff_bufqueue_add(avctx, &s->bufqueue, spawn_empty_frame(s));
    if (!ff_bufqueue_peek(&s->bufqueue, 0))
        return AVERROR(ENOMEM);

    if ((ret = ff_opus_psy_init(&s->psyctx, s->avctx, &s->bufqueue, &s->options)))
        return ret;

    /* Frame structs and range coder buffers */
    max_frames = ceilf(FFMIN(s->options.max_delay_ms, 120.0f)/2.5f);
    s->frame = av_malloc(max_frames*sizeof(CeltFrame));
    if (!s->frame)
        return AVERROR(ENOMEM);
    s->rc = av_malloc(max_frames*sizeof(OpusRangeCoder));
    if (!s->rc)
        return AVERROR(ENOMEM);

    for (int i = 0; i < max_frames; i++) {
        s->frame[i].dsp = s->dsp;
        s->frame[i].avctx = s->avctx;
        s->frame[i].seed = 0;
        s->frame[i].pvq = s->pvq;
        s->frame[i].apply_phase_inv = s->options.apply_phase_inv;
        s->frame[i].block[0].emph_coeff = s->frame[i].block[1].emph_coeff = 0.0f;
    }

    return 0;
}

#define OPUSENC_FLAGS AV_OPT_FLAG_ENCODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM
static const AVOption opusenc_options[] = {
    { "opus_delay", "Maximum delay in milliseconds", offsetof(OpusEncContext, options.max_delay_ms), AV_OPT_TYPE_FLOAT, { .dbl = OPUS_MAX_LOOKAHEAD }, 2.5f, OPUS_MAX_LOOKAHEAD, OPUSENC_FLAGS, .unit = "max_delay_ms" },
    { "apply_phase_inv", "Apply intensity stereo phase inversion", offsetof(OpusEncContext, options.apply_phase_inv), AV_OPT_TYPE_BOOL, { .i64 = 1 }, 0, 1, OPUSENC_FLAGS, .unit = "apply_phase_inv" },
    { NULL },
};

static const AVClass opusenc_class = {
    .class_name = "Opus encoder",
    .item_name  = av_default_item_name,
    .option     = opusenc_options,
    .version    = LIBAVUTIL_VERSION_INT,
};

static const FFCodecDefault opusenc_defaults[] = {
    { "b", "0" },
    { "compression_level", "10" },
    { NULL },
};

const FFCodec ff_opus_encoder = {
    .p.name         = "opus",
    CODEC_LONG_NAME("Opus"),
    .p.type         = AVMEDIA_TYPE_AUDIO,
    .p.id           = AV_CODEC_ID_OPUS,
    .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DELAY |
                      AV_CODEC_CAP_SMALL_LAST_FRAME | AV_CODEC_CAP_EXPERIMENTAL,
    .defaults       = opusenc_defaults,
    .p.priv_class   = &opusenc_class,
    .priv_data_size = sizeof(OpusEncContext),
    .init           = opus_encode_init,
    FF_CODEC_ENCODE_CB(opus_encode_frame),
    .close          = opus_encode_end,
    .caps_internal  = FF_CODEC_CAP_INIT_CLEANUP,
    .p.supported_samplerates = (const int []){ 48000, 0 },
    CODEC_OLD_CHANNEL_LAYOUTS(AV_CH_LAYOUT_MONO, AV_CH_LAYOUT_STEREO)
    .p.ch_layouts    = (const AVChannelLayout []){ AV_CHANNEL_LAYOUT_MONO,
                                                   AV_CHANNEL_LAYOUT_STEREO, { 0 } },
    .p.sample_fmts  = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_FLTP,
                                                     AV_SAMPLE_FMT_NONE },
};