aboutsummaryrefslogtreecommitdiffstats
path: root/libavcodec/opusenc.c
blob: 985b41ccc059ef15d0b9cf4faebf0957ce7bc8bd (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
/*
 * Opus encoder
 * Copyright (c) 2017 Rostislav Pehlivanov <atomnuker@gmail.com>
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

#include "opus_celt.h"
#include "opus_pvq.h"
#include "opustab.h"

#include "libavutil/float_dsp.h"
#include "libavutil/opt.h"
#include "internal.h"
#include "bytestream.h"
#include "audio_frame_queue.h"

/* Determines the maximum delay the psychoacoustic system will use for lookahead */
#define FF_BUFQUEUE_SIZE 145
#include "libavfilter/bufferqueue.h"

#define OPUS_MAX_LOOKAHEAD ((FF_BUFQUEUE_SIZE - 1)*2.5f)

#define OPUS_MAX_CHANNELS 2

/* 120 ms / 2.5 ms = 48 frames (extremely improbable, but the encoder'll work) */
#define OPUS_MAX_FRAMES_PER_PACKET 48

#define OPUS_BLOCK_SIZE(x) (2 * 15 * (1 << (x + 2)))

#define OPUS_SAMPLES_TO_BLOCK_SIZE(x) (ff_log2(x / (2 * 15)) - 2)

typedef struct OpusEncOptions {
    float max_delay_ms;
} OpusEncOptions;

typedef struct OpusEncContext {
    AVClass *av_class;
    OpusEncOptions options;
    AVCodecContext *avctx;
    AudioFrameQueue afq;
    AVFloatDSPContext *dsp;
    MDCT15Context *mdct[CELT_BLOCK_NB];
    struct FFBufQueue bufqueue;

    enum OpusMode mode;
    enum OpusBandwidth bandwidth;
    int pkt_framesize;
    int pkt_frames;

    int channels;

    CeltFrame *frame;
    OpusRangeCoder *rc;

    /* Actual energy the decoder will have */
    float last_quantized_energy[OPUS_MAX_CHANNELS][CELT_MAX_BANDS];

    DECLARE_ALIGNED(32, float, scratch)[2048];
} OpusEncContext;

static void opus_write_extradata(AVCodecContext *avctx)
{
    uint8_t *bs = avctx->extradata;

    bytestream_put_buffer(&bs, "OpusHead", 8);
    bytestream_put_byte  (&bs, 0x1);
    bytestream_put_byte  (&bs, avctx->channels);
    bytestream_put_le16  (&bs, avctx->initial_padding);
    bytestream_put_le32  (&bs, avctx->sample_rate);
    bytestream_put_le16  (&bs, 0x0);
    bytestream_put_byte  (&bs, 0x0); /* Default layout */
}

static int opus_gen_toc(OpusEncContext *s, uint8_t *toc, int *size, int *fsize_needed)
{
    int i, tmp = 0x0, extended_toc = 0;
    static const int toc_cfg[][OPUS_MODE_NB][OPUS_BANDWITH_NB] = {
        /*  Silk                    Hybrid                  Celt                    Layer     */
        /*  NB  MB  WB SWB  FB      NB  MB  WB SWB  FB      NB  MB  WB SWB  FB      Bandwidth */
        { {  0,  0,  0,  0,  0 }, {  0,  0,  0,  0,  0 }, { 17,  0, 21, 25, 29 } }, /* 2.5 ms */
        { {  0,  0,  0,  0,  0 }, {  0,  0,  0,  0,  0 }, { 18,  0, 22, 26, 30 } }, /*   5 ms */
        { {  1,  5,  9,  0,  0 }, {  0,  0,  0, 13, 15 }, { 19,  0, 23, 27, 31 } }, /*  10 ms */
        { {  2,  6, 10,  0,  0 }, {  0,  0,  0, 14, 16 }, { 20,  0, 24, 28, 32 } }, /*  20 ms */
        { {  3,  7, 11,  0,  0 }, {  0,  0,  0,  0,  0 }, {  0,  0,  0,  0,  0 } }, /*  40 ms */
        { {  4,  8, 12,  0,  0 }, {  0,  0,  0,  0,  0 }, {  0,  0,  0,  0,  0 } }, /*  60 ms */
    };
    int cfg = toc_cfg[s->pkt_framesize][s->mode][s->bandwidth];
    *fsize_needed = 0;
    if (!cfg)
        return 1;
    if (s->pkt_frames == 2) {                                          /* 2 packets */
        if (s->frame[0].framebits == s->frame[1].framebits) {          /* same size */
            tmp = 0x1;
        } else {                                                  /* different size */
            tmp = 0x2;
            *fsize_needed = 1;                     /* put frame sizes in the packet */
        }
    } else if (s->pkt_frames > 2) {
        tmp = 0x3;
        extended_toc = 1;
    }
    tmp |= (s->channels > 1) << 2;                                /* Stereo or mono */
    tmp |= (cfg - 1)         << 3;                           /* codec configuration */
    *toc++ = tmp;
    if (extended_toc) {
        for (i = 0; i < (s->pkt_frames - 1); i++)
            *fsize_needed |= (s->frame[i].framebits != s->frame[i + 1].framebits);
        tmp = (*fsize_needed) << 7;                                     /* vbr flag */
        tmp |= s->pkt_frames;                    /* frame number - can be 0 as well */
        *toc++ = tmp;
    }
    *size = 1 + extended_toc;
    return 0;
}

static void celt_frame_setup_input(OpusEncContext *s, CeltFrame *f)
{
    int sf, ch;
    AVFrame *cur = NULL;
    const int subframesize = s->avctx->frame_size;
    int subframes = OPUS_BLOCK_SIZE(s->pkt_framesize) / subframesize;

    cur = ff_bufqueue_get(&s->bufqueue);

    for (ch = 0; ch < f->channels; ch++) {
        CeltBlock *b = &f->block[ch];
        const void *input = cur->extended_data[ch];
        size_t bps = av_get_bytes_per_sample(cur->format);
        memcpy(b->overlap, input, bps*cur->nb_samples);
    }

    av_frame_free(&cur);

    for (sf = 0; sf < subframes; sf++) {
        if (sf != (subframes - 1))
            cur = ff_bufqueue_get(&s->bufqueue);
        else
            cur = ff_bufqueue_peek(&s->bufqueue, 0);

        for (ch = 0; ch < f->channels; ch++) {
            CeltBlock *b = &f->block[ch];
            const void *input = cur->extended_data[ch];
            const size_t bps  = av_get_bytes_per_sample(cur->format);
            const size_t left = (subframesize - cur->nb_samples)*bps;
            const size_t len  = FFMIN(subframesize, cur->nb_samples)*bps;
            memcpy(&b->samples[sf*subframesize], input, len);
            memset(&b->samples[cur->nb_samples], 0, left);
        }

        /* Last frame isn't popped off and freed yet - we need it for overlap */
        if (sf != (subframes - 1))
            av_frame_free(&cur);
    }
}

/* Apply the pre emphasis filter */
static void celt_apply_preemph_filter(OpusEncContext *s, CeltFrame *f)
{
    int i, sf, ch;
    const int subframesize = s->avctx->frame_size;
    const int subframes = OPUS_BLOCK_SIZE(s->pkt_framesize) / subframesize;

    /* Filter overlap */
    for (ch = 0; ch < f->channels; ch++) {
        CeltBlock *b = &f->block[ch];
        float m = b->emph_coeff;
        for (i = 0; i < CELT_OVERLAP; i++) {
            float sample = b->overlap[i];
            b->overlap[i] = sample - m;
            m = sample * CELT_EMPH_COEFF;
        }
        b->emph_coeff = m;
    }

    /* Filter the samples but do not update the last subframe's coeff - overlap ^^^ */
    for (sf = 0; sf < subframes; sf++) {
        for (ch = 0; ch < f->channels; ch++) {
            CeltBlock *b = &f->block[ch];
            float m = b->emph_coeff;
            for (i = 0; i < subframesize; i++) {
                float sample = b->samples[sf*subframesize + i];
                b->samples[sf*subframesize + i] = sample - m;
                m = sample * CELT_EMPH_COEFF;
            }
            if (sf != (subframes - 1))
                b->emph_coeff = m;
        }
    }
}

/* Create the window and do the mdct */
static void celt_frame_mdct(OpusEncContext *s, CeltFrame *f)
{
    int i, t, ch;
    float *win = s->scratch;

    /* I think I can use s->dsp->vector_fmul_window for transients at least */
    if (f->transient) {
        for (ch = 0; ch < f->channels; ch++) {
            CeltBlock *b = &f->block[ch];
            float *src1 = b->overlap;
            for (t = 0; t < f->blocks; t++) {
                float *src2 = &b->samples[CELT_OVERLAP*t];
                for (i = 0; i < CELT_OVERLAP; i++) {
                    win[               i] = src1[i]*ff_celt_window[i];
                    win[CELT_OVERLAP + i] = src2[i]*ff_celt_window[CELT_OVERLAP - i - 1];
                }
                src1 = src2;
                s->mdct[0]->mdct(s->mdct[0], b->coeffs + t, win, f->blocks);
            }
        }
    } else {
        int blk_len = OPUS_BLOCK_SIZE(f->size), wlen = OPUS_BLOCK_SIZE(f->size + 1);
        int rwin = blk_len - CELT_OVERLAP, lap_dst = (wlen - blk_len - CELT_OVERLAP) >> 1;
        for (ch = 0; ch < f->channels; ch++) {
            CeltBlock *b = &f->block[ch];

            memset(win, 0, wlen*sizeof(float));

            memcpy(&win[lap_dst + CELT_OVERLAP], b->samples, rwin*sizeof(float));

            /* Alignment fucks me over */
            //s->dsp->vector_fmul(&dst[lap_dst], b->overlap, ff_celt_window, CELT_OVERLAP);
            //s->dsp->vector_fmul_reverse(&dst[lap_dst + blk_len - CELT_OVERLAP], b->samples, ff_celt_window, CELT_OVERLAP);

            for (i = 0; i < CELT_OVERLAP; i++) {
                win[lap_dst           + i] = b->overlap[i]       *ff_celt_window[i];
                win[lap_dst + blk_len + i] = b->samples[rwin + i]*ff_celt_window[CELT_OVERLAP - i - 1];
            }

            s->mdct[f->size]->mdct(s->mdct[f->size], b->coeffs, win, 1);
        }
    }
}

/* Fills the bands and normalizes them */
static int celt_frame_map_norm_bands(OpusEncContext *s, CeltFrame *f)
{
    int i, j, ch, noise = 0;

    for (ch = 0; ch < f->channels; ch++) {
        CeltBlock *block = &f->block[ch];
        float *start = block->coeffs;
        for (i = 0; i < CELT_MAX_BANDS; i++) {
            float ener = 0.0f;

            /* Calculate band bins */
            block->band_bins[i] = ff_celt_freq_range[i] << f->size;
            block->band_coeffs[i] = start;
            start += block->band_bins[i];

            /* Normalize band energy */
            for (j = 0; j < block->band_bins[i]; j++)
                ener += block->band_coeffs[i][j]*block->band_coeffs[i][j];

            block->lin_energy[i] = sqrtf(ener) + FLT_EPSILON;
            ener = 1.0f/block->lin_energy[i];

            for (j = 0; j < block->band_bins[i]; j++)
                block->band_coeffs[i][j] *= ener;

            block->energy[i] = log2f(block->lin_energy[i]) - ff_celt_mean_energy[i];

            /* CELT_ENERGY_SILENCE is what the decoder uses and its not -infinity */
            block->energy[i] = FFMAX(block->energy[i], CELT_ENERGY_SILENCE);
            noise |= block->energy[i] > CELT_ENERGY_SILENCE;
        }
    }
    return !noise;
}

static void celt_enc_tf(OpusEncContext *s, OpusRangeCoder *rc, CeltFrame *f)
{
    int i, tf_select = 0, diff = 0, tf_changed = 0, tf_select_needed;
    int bits = f->transient ? 2 : 4;

    tf_select_needed = ((f->size && (opus_rc_tell(rc) + bits + 1) <= f->framebits));

    for (i = f->start_band; i < f->end_band; i++) {
        if ((opus_rc_tell(rc) + bits + tf_select_needed) <= f->framebits) {
            const int tbit = (diff ^ 1) == f->tf_change[i];
            ff_opus_rc_enc_log(rc, tbit, bits);
            diff ^= tbit;
            tf_changed |= diff;
        }
        bits = f->transient ? 4 : 5;
    }

    if (tf_select_needed && ff_celt_tf_select[f->size][f->transient][0][tf_changed] !=
                            ff_celt_tf_select[f->size][f->transient][1][tf_changed]) {
        ff_opus_rc_enc_log(rc, f->tf_select, 1);
        tf_select = f->tf_select;
    }

    for (i = f->start_band; i < f->end_band; i++)
        f->tf_change[i] = ff_celt_tf_select[f->size][f->transient][tf_select][f->tf_change[i]];
}

static void celt_bitalloc(OpusEncContext *s, OpusRangeCoder *rc, CeltFrame *f)
{
    int i, j, low, high, total, done, bandbits, remaining, tbits_8ths;
    int skip_startband      = f->start_band;
    int skip_bit            = 0;
    int intensitystereo_bit = 0;
    int dualstereo_bit      = 0;
    int dynalloc            = 6;
    int extrabits           = 0;

    int *cap = f->caps;
    int boost[CELT_MAX_BANDS];
    int trim_offset[CELT_MAX_BANDS];
    int threshold[CELT_MAX_BANDS];
    int bits1[CELT_MAX_BANDS];
    int bits2[CELT_MAX_BANDS];

    /* Tell the spread to the decoder */
    if (opus_rc_tell(rc) + 4 <= f->framebits)
        ff_opus_rc_enc_cdf(rc, f->spread, ff_celt_model_spread);

    /* Generate static allocation caps */
    for (i = 0; i < CELT_MAX_BANDS; i++) {
        cap[i] = (ff_celt_static_caps[f->size][f->channels - 1][i] + 64)
                 * ff_celt_freq_range[i] << (f->channels - 1) << f->size >> 2;
    }

    /* Band boosts */
    tbits_8ths = f->framebits << 3;
    for (i = f->start_band; i < f->end_band; i++) {
        int quanta, b_dynalloc, boost_amount = f->alloc_boost[i];

        boost[i] = 0;

        quanta = ff_celt_freq_range[i] << (f->channels - 1) << f->size;
        quanta = FFMIN(quanta << 3, FFMAX(6 << 3, quanta));
        b_dynalloc = dynalloc;

        while (opus_rc_tell_frac(rc) + (b_dynalloc << 3) < tbits_8ths && boost[i] < cap[i]) {
            int is_boost = boost_amount--;

            ff_opus_rc_enc_log(rc, is_boost, b_dynalloc);
            if (!is_boost)
                break;

            boost[i]   += quanta;
            tbits_8ths -= quanta;

            b_dynalloc = 1;
        }

        if (boost[i])
            dynalloc = FFMAX(2, dynalloc - 1);
    }

    /* Put allocation trim */
    if (opus_rc_tell_frac(rc) + (6 << 3) <= tbits_8ths)
        ff_opus_rc_enc_cdf(rc, f->alloc_trim, ff_celt_model_alloc_trim);

    /* Anti-collapse bit reservation */
    tbits_8ths = (f->framebits << 3) - opus_rc_tell_frac(rc) - 1;
    f->anticollapse_needed = 0;
    if (f->transient && f->size >= 2 && tbits_8ths >= ((f->size + 2) << 3))
        f->anticollapse_needed = 1 << 3;
    tbits_8ths -= f->anticollapse_needed;

    /* Band skip bit reservation */
    if (tbits_8ths >= 1 << 3)
        skip_bit = 1 << 3;
    tbits_8ths -= skip_bit;

    /* Intensity/dual stereo bit reservation */
    if (f->channels == 2) {
        intensitystereo_bit = ff_celt_log2_frac[f->end_band - f->start_band];
        if (intensitystereo_bit <= tbits_8ths) {
            tbits_8ths -= intensitystereo_bit;
            if (tbits_8ths >= 1 << 3) {
                dualstereo_bit = 1 << 3;
                tbits_8ths -= 1 << 3;
            }
        } else {
            intensitystereo_bit = 0;
        }
    }

    /* Trim offsets */
    for (i = f->start_band; i < f->end_band; i++) {
        int trim     = f->alloc_trim - 5 - f->size;
        int band     = ff_celt_freq_range[i] * (f->end_band - i - 1);
        int duration = f->size + 3;
        int scale    = duration + f->channels - 1;

        /* PVQ minimum allocation threshold, below this value the band is
         * skipped */
        threshold[i] = FFMAX(3 * ff_celt_freq_range[i] << duration >> 4,
                             f->channels << 3);

        trim_offset[i] = trim * (band << scale) >> 6;

        if (ff_celt_freq_range[i] << f->size == 1)
            trim_offset[i] -= f->channels << 3;
    }

    /* Bisection */
    low  = 1;
    high = CELT_VECTORS - 1;
    while (low <= high) {
        int center = (low + high) >> 1;
        done = total = 0;

        for (i = f->end_band - 1; i >= f->start_band; i--) {
            bandbits = ff_celt_freq_range[i] * ff_celt_static_alloc[center][i]
                       << (f->channels - 1) << f->size >> 2;

            if (bandbits)
                bandbits = FFMAX(0, bandbits + trim_offset[i]);
            bandbits += boost[i];

            if (bandbits >= threshold[i] || done) {
                done = 1;
                total += FFMIN(bandbits, cap[i]);
            } else if (bandbits >= f->channels << 3)
                total += f->channels << 3;
        }

        if (total > tbits_8ths)
            high = center - 1;
        else
            low = center + 1;
    }
    high = low--;

    /* Bisection */
    for (i = f->start_band; i < f->end_band; i++) {
        bits1[i] = ff_celt_freq_range[i] * ff_celt_static_alloc[low][i]
                   << (f->channels - 1) << f->size >> 2;
        bits2[i] = high >= CELT_VECTORS ? cap[i] :
                   ff_celt_freq_range[i] * ff_celt_static_alloc[high][i]
                   << (f->channels - 1) << f->size >> 2;

        if (bits1[i])
            bits1[i] = FFMAX(0, bits1[i] + trim_offset[i]);
        if (bits2[i])
            bits2[i] = FFMAX(0, bits2[i] + trim_offset[i]);
        if (low)
            bits1[i] += boost[i];
        bits2[i] += boost[i];

        if (boost[i])
            skip_startband = i;
        bits2[i] = FFMAX(0, bits2[i] - bits1[i]);
    }

    /* Bisection */
    low  = 0;
    high = 1 << CELT_ALLOC_STEPS;
    for (i = 0; i < CELT_ALLOC_STEPS; i++) {
        int center = (low + high) >> 1;
        done = total = 0;

        for (j = f->end_band - 1; j >= f->start_band; j--) {
            bandbits = bits1[j] + (center * bits2[j] >> CELT_ALLOC_STEPS);

            if (bandbits >= threshold[j] || done) {
                done = 1;
                total += FFMIN(bandbits, cap[j]);
            } else if (bandbits >= f->channels << 3)
                total += f->channels << 3;
        }
        if (total > tbits_8ths)
            high = center;
        else
            low = center;
    }

    /* Bisection */
    done = total = 0;
    for (i = f->end_band - 1; i >= f->start_band; i--) {
        bandbits = bits1[i] + (low * bits2[i] >> CELT_ALLOC_STEPS);

        if (bandbits >= threshold[i] || done)
            done = 1;
        else
            bandbits = (bandbits >= f->channels << 3) ?
                       f->channels << 3 : 0;

        bandbits     = FFMIN(bandbits, cap[i]);
        f->pulses[i] = bandbits;
        total      += bandbits;
    }

    /* Band skipping */
    for (f->coded_bands = f->end_band; ; f->coded_bands--) {
        int allocation;
        j = f->coded_bands - 1;

        if (j == skip_startband) {
            /* all remaining bands are not skipped */
            tbits_8ths += skip_bit;
            break;
        }

        /* determine the number of bits available for coding "do not skip" markers */
        remaining   = tbits_8ths - total;
        bandbits    = remaining / (ff_celt_freq_bands[j+1] - ff_celt_freq_bands[f->start_band]);
        remaining  -= bandbits  * (ff_celt_freq_bands[j+1] - ff_celt_freq_bands[f->start_band]);
        allocation  = f->pulses[j] + bandbits * ff_celt_freq_range[j]
                      + FFMAX(0, remaining - (ff_celt_freq_bands[j] - ff_celt_freq_bands[f->start_band]));

        /* a "do not skip" marker is only coded if the allocation is
           above the chosen threshold */
        if (allocation >= FFMAX(threshold[j], (f->channels + 1) << 3)) {
            const int do_not_skip = f->coded_bands <= f->skip_band_floor;
            ff_opus_rc_enc_log(rc, do_not_skip, 1);
            if (do_not_skip)
                break;

            total      += 1 << 3;
            allocation -= 1 << 3;
        }

        /* the band is skipped, so reclaim its bits */
        total -= f->pulses[j];
        if (intensitystereo_bit) {
            total -= intensitystereo_bit;
            intensitystereo_bit = ff_celt_log2_frac[j - f->start_band];
            total += intensitystereo_bit;
        }

        total += f->pulses[j] = (allocation >= f->channels << 3) ? f->channels << 3 : 0;
    }

    /* Encode stereo flags */
    if (intensitystereo_bit) {
        f->intensity_stereo = FFMIN(f->intensity_stereo, f->coded_bands);
        ff_opus_rc_enc_uint(rc, f->intensity_stereo, f->coded_bands + 1 - f->start_band);
    }
    if (f->intensity_stereo <= f->start_band)
        tbits_8ths += dualstereo_bit; /* no intensity stereo means no dual stereo */
    else if (dualstereo_bit)
        ff_opus_rc_enc_log(rc, f->dual_stereo, 1);

    /* Supply the remaining bits in this frame to lower bands */
    remaining = tbits_8ths - total;
    bandbits  = remaining / (ff_celt_freq_bands[f->coded_bands] - ff_celt_freq_bands[f->start_band]);
    remaining -= bandbits * (ff_celt_freq_bands[f->coded_bands] - ff_celt_freq_bands[f->start_band]);
    for (i = f->start_band; i < f->coded_bands; i++) {
        int bits = FFMIN(remaining, ff_celt_freq_range[i]);

        f->pulses[i] += bits + bandbits * ff_celt_freq_range[i];
        remaining    -= bits;
    }

    /* Finally determine the allocation */
    for (i = f->start_band; i < f->coded_bands; i++) {
        int N = ff_celt_freq_range[i] << f->size;
        int prev_extra = extrabits;
        f->pulses[i] += extrabits;

        if (N > 1) {
            int dof;        // degrees of freedom
            int temp;       // dof * channels * log(dof)
            int offset;     // fine energy quantization offset, i.e.
                            // extra bits assigned over the standard
                            // totalbits/dof
            int fine_bits, max_bits;

            extrabits = FFMAX(0, f->pulses[i] - cap[i]);
            f->pulses[i] -= extrabits;

            /* intensity stereo makes use of an extra degree of freedom */
            dof = N * f->channels + (f->channels == 2 && N > 2 && !f->dual_stereo && i < f->intensity_stereo);
            temp = dof * (ff_celt_log_freq_range[i] + (f->size << 3));
            offset = (temp >> 1) - dof * CELT_FINE_OFFSET;
            if (N == 2) /* dof=2 is the only case that doesn't fit the model */
                offset += dof << 1;

            /* grant an additional bias for the first and second pulses */
            if (f->pulses[i] + offset < 2 * (dof << 3))
                offset += temp >> 2;
            else if (f->pulses[i] + offset < 3 * (dof << 3))
                offset += temp >> 3;

            fine_bits = (f->pulses[i] + offset + (dof << 2)) / (dof << 3);
            max_bits  = FFMIN((f->pulses[i] >> 3) >> (f->channels - 1), CELT_MAX_FINE_BITS);

            max_bits  = FFMAX(max_bits, 0);

            f->fine_bits[i] = av_clip(fine_bits, 0, max_bits);

            /* if fine_bits was rounded down or capped,
               give priority for the final fine energy pass */
            f->fine_priority[i] = (f->fine_bits[i] * (dof << 3) >= f->pulses[i] + offset);

            /* the remaining bits are assigned to PVQ */
            f->pulses[i] -= f->fine_bits[i] << (f->channels - 1) << 3;
        } else {
            /* all bits go to fine energy except for the sign bit */
            extrabits = FFMAX(0, f->pulses[i] - (f->channels << 3));
            f->pulses[i] -= extrabits;
            f->fine_bits[i] = 0;
            f->fine_priority[i] = 1;
        }

        /* hand back a limited number of extra fine energy bits to this band */
        if (extrabits > 0) {
            int fineextra = FFMIN(extrabits >> (f->channels + 2),
                                  CELT_MAX_FINE_BITS - f->fine_bits[i]);
            f->fine_bits[i] += fineextra;

            fineextra <<= f->channels + 2;
            f->fine_priority[i] = (fineextra >= extrabits - prev_extra);
            extrabits -= fineextra;
        }
    }
    f->remaining = extrabits;

    /* skipped bands dedicate all of their bits for fine energy */
    for (; i < f->end_band; i++) {
        f->fine_bits[i]     = f->pulses[i] >> (f->channels - 1) >> 3;
        f->pulses[i]        = 0;
        f->fine_priority[i] = f->fine_bits[i] < 1;
    }
}

static void celt_quant_coarse(OpusEncContext *s, OpusRangeCoder *rc, CeltFrame *f)
{
    int i, ch;
    float alpha, beta, prev[2] = { 0, 0 };
    const uint8_t *pmod = ff_celt_coarse_energy_dist[f->size][f->intra];

    /* Inter is really just differential coding */
    if (opus_rc_tell(rc) + 3 <= f->framebits)
        ff_opus_rc_enc_log(rc, f->intra, 3);
    else
        f->intra = 0;

    if (f->intra) {
        alpha = 0.0f;
        beta  = 1.0f - 4915.0f/32768.0f;
    } else {
        alpha = ff_celt_alpha_coef[f->size];
        beta  = 1.0f - ff_celt_beta_coef[f->size];
    }

    for (i = f->start_band; i < f->end_band; i++) {
        for (ch = 0; ch < f->channels; ch++) {
            CeltBlock *block = &f->block[ch];
            const int left = f->framebits - opus_rc_tell(rc);
            const float last = FFMAX(-9.0f, s->last_quantized_energy[ch][i]);
            float diff = block->energy[i] - prev[ch] - last*alpha;
            int q_en = lrintf(diff);
            if (left >= 15) {
                ff_opus_rc_enc_laplace(rc, &q_en, pmod[i << 1] << 7, pmod[(i << 1) + 1] << 6);
            } else if (left >= 2) {
                q_en = av_clip(q_en, -1, 1);
                ff_opus_rc_enc_cdf(rc, ((q_en & 1) << 1) | (q_en < 0), ff_celt_model_energy_small);
            } else if (left >= 1) {
                q_en = av_clip(q_en, -1, 0);
                ff_opus_rc_enc_log(rc, (q_en & 1), 1);
            } else q_en = -1;

            block->error_energy[i] = q_en - diff;
            prev[ch] += beta * q_en;
        }
    }
}

static void celt_quant_fine(OpusEncContext *s, OpusRangeCoder *rc, CeltFrame *f)
{
    int i, ch;
    for (i = f->start_band; i < f->end_band; i++) {
        if (!f->fine_bits[i])
            continue;
        for (ch = 0; ch < f->channels; ch++) {
            CeltBlock *block = &f->block[ch];
            int quant, lim = (1 << f->fine_bits[i]);
            float offset, diff = 0.5f - block->error_energy[i];
            quant = av_clip(floor(diff*lim), 0, lim - 1);
            ff_opus_rc_put_raw(rc, quant, f->fine_bits[i]);
            offset = 0.5f - ((quant + 0.5f) * (1 << (14 - f->fine_bits[i])) / 16384.0f);
            block->error_energy[i] -= offset;
        }
    }
}

static void celt_quant_final(OpusEncContext *s, OpusRangeCoder *rc, CeltFrame *f)
{
    int i, ch, priority;
    for (priority = 0; priority < 2; priority++) {
        for (i = f->start_band; i < f->end_band && (f->framebits - opus_rc_tell(rc)) >= f->channels; i++) {
            if (f->fine_priority[i] != priority || f->fine_bits[i] >= CELT_MAX_FINE_BITS)
                continue;
            for (ch = 0; ch < f->channels; ch++) {
                CeltBlock *block = &f->block[ch];
                const float err = block->error_energy[i];
                const float offset = 0.5f * (1 << (14 - f->fine_bits[i] - 1)) / 16384.0f;
                const int sign = FFABS(err + offset) < FFABS(err - offset);
                ff_opus_rc_put_raw(rc, sign, 1);
                block->error_energy[i] -= offset*(1 - 2*sign);
            }
        }
    }
}

static void celt_quant_bands(OpusEncContext *s, OpusRangeCoder *rc, CeltFrame *f)
{
    float lowband_scratch[8 * 22];
    float norm[2 * 8 * 100];

    int totalbits = (f->framebits << 3) - f->anticollapse_needed;

    int update_lowband = 1;
    int lowband_offset = 0;

    int i, j;

    for (i = f->start_band; i < f->end_band; i++) {
        int band_offset = ff_celt_freq_bands[i] << f->size;
        int band_size   = ff_celt_freq_range[i] << f->size;
        float *X = f->block[0].coeffs + band_offset;
        float *Y = (f->channels == 2) ? f->block[1].coeffs + band_offset : NULL;

        int consumed = opus_rc_tell_frac(rc);
        float *norm2 = norm + 8 * 100;
        int effective_lowband = -1;
        unsigned int cm[2];
        int b;

        /* Compute how many bits we want to allocate to this band */
        if (i != f->start_band)
            f->remaining -= consumed;
        f->remaining2 = totalbits - consumed - 1;
        if (i <= f->coded_bands - 1) {
            int curr_balance = f->remaining / FFMIN(3, f->coded_bands-i);
            b = av_clip_uintp2(FFMIN(f->remaining2 + 1, f->pulses[i] + curr_balance), 14);
        } else
            b = 0;

        if (ff_celt_freq_bands[i] - ff_celt_freq_range[i] >= ff_celt_freq_bands[f->start_band] &&
            (update_lowband || lowband_offset == 0))
            lowband_offset = i;

        /* Get a conservative estimate of the collapse_mask's for the bands we're
        going to be folding from. */
        if (lowband_offset != 0 && (f->spread != CELT_SPREAD_AGGRESSIVE ||
                                    f->blocks > 1 || f->tf_change[i] < 0)) {
            int foldstart, foldend;

            /* This ensures we never repeat spectral content within one band */
            effective_lowband = FFMAX(ff_celt_freq_bands[f->start_band],
                                      ff_celt_freq_bands[lowband_offset] - ff_celt_freq_range[i]);
            foldstart = lowband_offset;
            while (ff_celt_freq_bands[--foldstart] > effective_lowband);
            foldend = lowband_offset - 1;
            while (ff_celt_freq_bands[++foldend] < effective_lowband + ff_celt_freq_range[i]);

            cm[0] = cm[1] = 0;
            for (j = foldstart; j < foldend; j++) {
                cm[0] |= f->block[0].collapse_masks[j];
                cm[1] |= f->block[f->channels - 1].collapse_masks[j];
            }
        } else
            /* Otherwise, we'll be using the LCG to fold, so all blocks will (almost
            always) be non-zero.*/
            cm[0] = cm[1] = (1 << f->blocks) - 1;

        if (f->dual_stereo && i == f->intensity_stereo) {
            /* Switch off dual stereo to do intensity */
            f->dual_stereo = 0;
            for (j = ff_celt_freq_bands[f->start_band] << f->size; j < band_offset; j++)
                norm[j] = (norm[j] + norm2[j]) / 2;
        }

        if (f->dual_stereo) {
            cm[0] = ff_celt_encode_band(f, rc, i, X, NULL, band_size, b / 2, f->blocks,
                                        effective_lowband != -1 ? norm + (effective_lowband << f->size) : NULL, f->size,
                                        norm + band_offset, 0, 1.0f, lowband_scratch, cm[0]);

            cm[1] = ff_celt_encode_band(f, rc, i, Y, NULL, band_size, b/2, f->blocks,
                                        effective_lowband != -1 ? norm2 + (effective_lowband << f->size) : NULL, f->size,
                                        norm2 + band_offset, 0, 1.0f, lowband_scratch, cm[1]);
        } else {
            cm[0] = ff_celt_encode_band(f, rc, i, X, Y, band_size, b, f->blocks,
                                        effective_lowband != -1 ? norm + (effective_lowband << f->size) : NULL, f->size,
                                        norm + band_offset, 0, 1.0f, lowband_scratch, cm[0]|cm[1]);
            cm[1] = cm[0];
        }

        f->block[0].collapse_masks[i]               = (uint8_t)cm[0];
        f->block[f->channels - 1].collapse_masks[i] = (uint8_t)cm[1];
        f->remaining += f->pulses[i] + consumed;

        /* Update the folding position only as long as we have 1 bit/sample depth */
        update_lowband = (b > band_size << 3);
    }
}

static void celt_encode_frame(OpusEncContext *s, OpusRangeCoder *rc, CeltFrame *f)
{
    int i, ch;

    celt_frame_setup_input(s, f);
    celt_apply_preemph_filter(s, f);
    if (f->pfilter) {
        /* Not implemented */
    }
    celt_frame_mdct(s, f);
    f->silence = celt_frame_map_norm_bands(s, f);
    if (f->silence) {
        f->framebits = 1;
        return;
    }

    ff_opus_rc_enc_log(rc, f->silence, 15);

    if (!f->start_band && opus_rc_tell(rc) + 16 <= f->framebits)
        ff_opus_rc_enc_log(rc, f->pfilter, 1);

    if (f->pfilter) {
        /* Not implemented */
    }

    if (f->size && opus_rc_tell(rc) + 3 <= f->framebits)
        ff_opus_rc_enc_log(rc, f->transient, 3);

    celt_quant_coarse (s, rc, f);
    celt_enc_tf       (s, rc, f);
    celt_bitalloc     (s, rc, f);
    celt_quant_fine   (s, rc, f);
    celt_quant_bands  (s, rc, f);

    if (f->anticollapse_needed)
        ff_opus_rc_put_raw(rc, f->anticollapse, 1);

    celt_quant_final(s, rc, f);

    for (ch = 0; ch < f->channels; ch++) {
        CeltBlock *block = &f->block[ch];
        for (i = 0; i < CELT_MAX_BANDS; i++)
            s->last_quantized_energy[ch][i] = block->energy[i] + block->error_energy[i];
    }
}

static void ff_opus_psy_process(OpusEncContext *s, int end, int *need_more)
{
    int max_delay_samples = (s->options.max_delay_ms*s->avctx->sample_rate)/1000;
    int max_bsize = FFMIN(OPUS_SAMPLES_TO_BLOCK_SIZE(max_delay_samples), CELT_BLOCK_960);

    s->pkt_frames = 1;
    s->pkt_framesize = max_bsize;
    s->mode = OPUS_MODE_CELT;
    s->bandwidth = OPUS_BANDWIDTH_FULLBAND;

    *need_more = s->bufqueue.available*s->avctx->frame_size < (max_delay_samples + CELT_OVERLAP);
    /* Don't request more if we start being flushed with NULL frames */
    *need_more = !end && *need_more;
}

static void ff_opus_psy_celt_frame_setup(OpusEncContext *s, CeltFrame *f, int index)
{
    int frame_size = OPUS_BLOCK_SIZE(s->pkt_framesize);

    f->avctx = s->avctx;
    f->dsp = s->dsp;
    f->start_band = (s->mode == OPUS_MODE_HYBRID) ? 17 : 0;
    f->end_band = ff_celt_band_end[s->bandwidth];
    f->channels = s->channels;
    f->size = s->pkt_framesize;

    /* Decisions */
    f->silence = 0;
    f->pfilter = 0;
    f->transient = 0;
    f->intra = 1;
    f->tf_select = 0;
    f->anticollapse = 0;
    f->alloc_trim = 5;
    f->skip_band_floor = f->end_band;
    f->intensity_stereo = f->end_band;
    f->dual_stereo = 0;
    f->spread = CELT_SPREAD_NORMAL;
    memset(f->tf_change, 0, sizeof(int)*CELT_MAX_BANDS);
    memset(f->alloc_boost, 0, sizeof(int)*CELT_MAX_BANDS);

    f->blocks = f->transient ? frame_size/CELT_OVERLAP : 1;
    f->framebits = FFALIGN(lrintf((double)s->avctx->bit_rate/(s->avctx->sample_rate/frame_size)), 8);
}

static void opus_packet_assembler(OpusEncContext *s, AVPacket *avpkt)
{
    int i, offset, fsize_needed;

    /* Write toc */
    opus_gen_toc(s, avpkt->data, &offset, &fsize_needed);

    for (i = 0; i < s->pkt_frames; i++) {
        ff_opus_rc_enc_end(&s->rc[i], avpkt->data + offset, s->frame[i].framebits >> 3);
        offset += s->frame[i].framebits >> 3;
    }

    avpkt->size = offset;
}

/* Used as overlap for the first frame and padding for the last encoded packet */
static AVFrame *spawn_empty_frame(OpusEncContext *s)
{
    int i;
    AVFrame *f = av_frame_alloc();
    if (!f)
        return NULL;
    f->format         = s->avctx->sample_fmt;
    f->nb_samples     = s->avctx->frame_size;
    f->channel_layout = s->avctx->channel_layout;
    if (av_frame_get_buffer(f, 4)) {
        av_frame_free(&f);
        return NULL;
    }
    for (i = 0; i < s->channels; i++) {
        size_t bps = av_get_bytes_per_sample(f->format);
        memset(f->extended_data[i], 0, bps*f->nb_samples);
    }
    return f;
}

static int opus_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
                             const AVFrame *frame, int *got_packet_ptr)
{
    OpusEncContext *s = avctx->priv_data;
    int i, ret, frame_size, need_more, alloc_size = 0;

    if (frame) { /* Add new frame to queue */
        if ((ret = ff_af_queue_add(&s->afq, frame)) < 0)
            return ret;
        ff_bufqueue_add(avctx, &s->bufqueue, av_frame_clone(frame));
    } else {
        if (!s->afq.remaining_samples)
            return 0; /* We've been flushed and there's nothing left to encode */
    }

    /* Run the psychoacoustic system */
    ff_opus_psy_process(s, !frame, &need_more);

    /* Get more samples for lookahead/encoding */
    if (need_more)
        return 0;

    frame_size = OPUS_BLOCK_SIZE(s->pkt_framesize);

    if (!frame) {
        /* This can go negative, that's not a problem, we only pad if positive */
        int pad_empty = s->pkt_frames*(frame_size/s->avctx->frame_size) - s->bufqueue.available + 1;
        /* Pad with empty 2.5 ms frames to whatever framesize was decided,
         * this should only happen at the very last flush frame. The frames
         * allocated here will be freed (because they have no other references)
         * after they get used by celt_frame_setup_input() */
        for (i = 0; i < pad_empty; i++) {
            AVFrame *empty = spawn_empty_frame(s);
            if (!empty)
                return AVERROR(ENOMEM);
            ff_bufqueue_add(avctx, &s->bufqueue, empty);
        }
    }

    for (i = 0; i < s->pkt_frames; i++) {
        ff_opus_rc_enc_init(&s->rc[i]);
        ff_opus_psy_celt_frame_setup(s, &s->frame[i], i);
        celt_encode_frame(s, &s->rc[i], &s->frame[i]);
        alloc_size += s->frame[i].framebits >> 3;
    }

    /* Worst case toc + the frame lengths if needed */
    alloc_size += 2 + s->pkt_frames*2;

    if ((ret = ff_alloc_packet2(avctx, avpkt, alloc_size, 0)) < 0)
        return ret;

    /* Assemble packet */
    opus_packet_assembler(s, avpkt);

    /* Remove samples from queue and skip if needed */
    ff_af_queue_remove(&s->afq, s->pkt_frames*frame_size, &avpkt->pts, &avpkt->duration);
    if (s->pkt_frames*frame_size > avpkt->duration) {
        uint8_t *side = av_packet_new_side_data(avpkt, AV_PKT_DATA_SKIP_SAMPLES, 10);
        if (!side)
            return AVERROR(ENOMEM);
        AV_WL32(&side[4], s->pkt_frames*frame_size - avpkt->duration + 120);
    }

    *got_packet_ptr = 1;

    return 0;
}

static av_cold int opus_encode_end(AVCodecContext *avctx)
{
    int i;
    OpusEncContext *s = avctx->priv_data;

    for (i = 0; i < CELT_BLOCK_NB; i++)
        ff_mdct15_uninit(&s->mdct[i]);

    av_freep(&s->dsp);
    av_freep(&s->frame);
    av_freep(&s->rc);
    ff_af_queue_close(&s->afq);
    ff_bufqueue_discard_all(&s->bufqueue);
    av_freep(&avctx->extradata);

    return 0;
}

static av_cold int opus_encode_init(AVCodecContext *avctx)
{
    int i, ch, ret;
    OpusEncContext *s = avctx->priv_data;

    s->avctx = avctx;
    s->channels = avctx->channels;

    /* Opus allows us to change the framesize on each packet (and each packet may
     * have multiple frames in it) but we can't change the codec's frame size on
     * runtime, so fix it to the lowest possible number of samples and use a queue
     * to accumulate AVFrames until we have enough to encode whatever the encoder
     * decides is the best */
    avctx->frame_size = 120;
    /* Initial padding will change if SILK is ever supported */
    avctx->initial_padding = 120;

    avctx->cutoff = !avctx->cutoff ? 20000 : avctx->cutoff;

    if (!avctx->bit_rate) {
        int coupled = ff_opus_default_coupled_streams[s->channels - 1];
        avctx->bit_rate = coupled*(96000) + (s->channels - coupled*2)*(48000);
    } else if (avctx->bit_rate < 6000 || avctx->bit_rate > 255000 * s->channels) {
        int64_t clipped_rate = av_clip(avctx->bit_rate, 6000, 255000 * s->channels);
        av_log(avctx, AV_LOG_ERROR, "Unsupported bitrate %li kbps, clipping to %li kbps\n",
               avctx->bit_rate/1000, clipped_rate/1000);
        avctx->bit_rate = clipped_rate;
    }

    /* Frame structs and range coder buffers */
    s->frame = av_malloc(OPUS_MAX_FRAMES_PER_PACKET*sizeof(CeltFrame));
    if (!s->frame)
        return AVERROR(ENOMEM);
    s->rc = av_malloc(OPUS_MAX_FRAMES_PER_PACKET*sizeof(OpusRangeCoder));
    if (!s->rc)
        return AVERROR(ENOMEM);

    /* Extradata */
    avctx->extradata_size = 19;
    avctx->extradata = av_malloc(avctx->extradata_size + AV_INPUT_BUFFER_PADDING_SIZE);
    if (!avctx->extradata)
        return AVERROR(ENOMEM);
    opus_write_extradata(avctx);

    ff_af_queue_init(avctx, &s->afq);

    if (!(s->dsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT)))
        return AVERROR(ENOMEM);

    /* I have no idea why a base scaling factor of 68 works, could be the twiddles */
    for (i = 0; i < CELT_BLOCK_NB; i++)
        if ((ret = ff_mdct15_init(&s->mdct[i], 0, i + 3, 68 << (CELT_BLOCK_NB - 1 - i))))
            return AVERROR(ENOMEM);

    /* Zero out previous energy (matters for inter first frame) */
    for (ch = 0; ch < s->channels; ch++)
        for (i = 0; i < CELT_MAX_BANDS; i++)
            s->last_quantized_energy[ch][i] = 0.0f;

    /* Allocate an empty frame to use as overlap for the first frame of audio */
    ff_bufqueue_add(avctx, &s->bufqueue, spawn_empty_frame(s));
    if (!ff_bufqueue_peek(&s->bufqueue, 0))
        return AVERROR(ENOMEM);

    return 0;
}

#define OPUSENC_FLAGS AV_OPT_FLAG_ENCODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM
static const AVOption opusenc_options[] = {
    { "opus_delay", "Maximum delay (and lookahead) in milliseconds", offsetof(OpusEncContext, options.max_delay_ms), AV_OPT_TYPE_FLOAT, { .dbl = OPUS_MAX_LOOKAHEAD }, 2.5f, OPUS_MAX_LOOKAHEAD, OPUSENC_FLAGS },
    { NULL },
};

static const AVClass opusenc_class = {
    .class_name = "Opus encoder",
    .item_name  = av_default_item_name,
    .option     = opusenc_options,
    .version    = LIBAVUTIL_VERSION_INT,
};

static const AVCodecDefault opusenc_defaults[] = {
    { "b", "0" },
    { "compression_level", "10" },
    { NULL },
};

AVCodec ff_opus_encoder = {
    .name           = "opus",
    .long_name      = NULL_IF_CONFIG_SMALL("Opus"),
    .type           = AVMEDIA_TYPE_AUDIO,
    .id             = AV_CODEC_ID_OPUS,
    .defaults       = opusenc_defaults,
    .priv_class     = &opusenc_class,
    .priv_data_size = sizeof(OpusEncContext),
    .init           = opus_encode_init,
    .encode2        = opus_encode_frame,
    .close          = opus_encode_end,
    .caps_internal  = FF_CODEC_CAP_INIT_THREADSAFE | FF_CODEC_CAP_INIT_CLEANUP,
    .capabilities   = AV_CODEC_CAP_EXPERIMENTAL | AV_CODEC_CAP_SMALL_LAST_FRAME | AV_CODEC_CAP_DELAY,
    .supported_samplerates = (const int []){ 48000, 0 },
    .channel_layouts = (const uint64_t []){ AV_CH_LAYOUT_MONO,
                                            AV_CH_LAYOUT_STEREO, 0 },
    .sample_fmts    = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_FLTP,
                                                     AV_SAMPLE_FMT_NONE },
};