aboutsummaryrefslogtreecommitdiffstats
path: root/libavcodec/mss4.c
blob: dceb42da25dc3298e60d5c668ab6c4273247049f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
/*
 * Microsoft Screen 4 (aka Microsoft Expression Encoder Screen) decoder
 * Copyright (c) 2012 Konstantin Shishkov
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/**
 * @file
 * Microsoft Screen 4 (aka Microsoft Titanium Screen 2,
 * aka Microsoft Expression Encoder Screen) decoder
 */

#include "libavutil/thread.h"
#include "libavutil/imgutils.h"

#include "avcodec.h"
#include "bytestream.h"
#include "codec_internal.h"
#include "decode.h"
#include "get_bits.h"
#include "jpegtables.h"
#include "mss34dsp.h"
#include "unary.h"

#define HEADER_SIZE 8

enum FrameType {
    INTRA_FRAME = 0,
    INTER_FRAME,
    SKIP_FRAME
};

enum BlockType {
    SKIP_BLOCK = 0,
    DCT_BLOCK,
    IMAGE_BLOCK,
};

enum CachePos {
    LEFT = 0,
    TOP_LEFT,
    TOP,
};

static const uint8_t mss4_dc_vlc_lens[2][16] = {
    { 0, 1, 5, 1, 1, 1, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0 },
    { 0, 3, 1, 1, 1, 1, 1, 1, 1, 2, 0, 0, 0, 0, 0, 0 }
};

static const uint8_t vec_len_syms[2][4] = {
    { 4, 2, 3, 1 },
    { 4, 1, 2, 3 }
};

static const uint8_t mss4_vec_entry_vlc_lens[2][16] = {
    { 0, 2, 2, 3, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
    { 0, 1, 5, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }
};

static const uint8_t mss4_vec_entry_vlc_syms[2][9] = {
    { 0, 7, 6, 5, 8, 4, 3, 1, 2 },
    { 0, 2, 3, 4, 5, 6, 7, 1, 8 }
};

#define MAX_ENTRIES  162

typedef struct MSS4Context {
    AVFrame    *pic;

    int        block[64];
    uint8_t    imgbuf[3][16 * 16];

    int        quality;
    uint16_t   quant_mat[2][64];

    int        *prev_dc[3];
    ptrdiff_t  dc_stride[3];
    int        dc_cache[4][4];

    int        prev_vec[3][4];
} MSS4Context;

static VLC dc_vlc[2], ac_vlc[2];
static VLC vec_entry_vlc[2];

static av_cold void mss4_init_vlc(VLC *vlc, unsigned *offset,
                                  const uint8_t *lens, const uint8_t *syms)
{
    static VLCElem vlc_buf[2146];
    uint8_t  bits[MAX_ENTRIES];
    int i, j;
    int idx = 0;

    for (i = 0; i < 16; i++) {
        for (j = 0; j < lens[i]; j++) {
            bits[idx]  = i + 1;
            idx++;
        }
    }

    vlc->table           = &vlc_buf[*offset];
    vlc->table_allocated = FF_ARRAY_ELEMS(vlc_buf) - *offset;
    ff_init_vlc_from_lengths(vlc, FFMIN(bits[idx - 1], 9), idx,
                             bits, 1, syms, 1, 1,
                             0, INIT_VLC_STATIC_OVERLONG, NULL);
    *offset += vlc->table_size;
}

static av_cold void mss4_init_vlcs(void)
{
    for (unsigned i = 0, offset = 0; i < 2; i++) {
        mss4_init_vlc(&dc_vlc[i], &offset, mss4_dc_vlc_lens[i], NULL);
        mss4_init_vlc(&ac_vlc[i], &offset,
                      i ? ff_mjpeg_bits_ac_chrominance + 1
                        : ff_mjpeg_bits_ac_luminance   + 1,
                      i ? ff_mjpeg_val_ac_chrominance
                        : ff_mjpeg_val_ac_luminance);
        mss4_init_vlc(&vec_entry_vlc[i], &offset, mss4_vec_entry_vlc_lens[i],
                      mss4_vec_entry_vlc_syms[i]);
    }
}

/* This function returns values in the range
 * (-range + 1; -range/2] U [range/2; range - 1)
 * i.e.
 * nbits = 0 -> 0
 * nbits = 1 -> -1, 1
 * nbits = 2 -> -3, -2, 2, 3
 */
static av_always_inline int get_coeff_bits(GetBitContext *gb, int nbits)
{
    int val;

    if (!nbits)
        return 0;

    val = get_bits(gb, nbits);
    if (val < (1 << (nbits - 1)))
        val -= (1 << nbits) - 1;

    return val;
}

static inline int get_coeff(GetBitContext *gb, VLC *vlc)
{
    int val = get_vlc2(gb, vlc->table, vlc->bits, 2);

    return get_coeff_bits(gb, val);
}

static int mss4_decode_dct(GetBitContext *gb, VLC *dc_vlc, VLC *ac_vlc,
                           int *block, int *dc_cache,
                           int bx, int by, uint16_t *quant_mat)
{
    int skip, val, pos = 1, zz_pos, dc;

    memset(block, 0, sizeof(*block) * 64);

    dc = get_coeff(gb, dc_vlc);
    // DC prediction is the same as in MSS3
    if (by) {
        if (bx) {
            int l, tl, t;

            l  = dc_cache[LEFT];
            tl = dc_cache[TOP_LEFT];
            t  = dc_cache[TOP];

            if (FFABS(t - tl) <= FFABS(l - tl))
                dc += l;
            else
                dc += t;
        } else {
            dc += dc_cache[TOP];
        }
    } else if (bx) {
        dc += dc_cache[LEFT];
    }
    dc_cache[LEFT] = dc;
    block[0]       = dc * quant_mat[0];

    while (pos < 64) {
        val = get_vlc2(gb, ac_vlc->table, 9, 2);
        if (!val)
            return 0;
        if (val == -1)
            return -1;
        if (val == 0xF0) {
            pos += 16;
            continue;
        }
        skip = val >> 4;
        val  = get_coeff_bits(gb, val & 0xF);
        pos += skip;
        if (pos >= 64)
            return -1;

        zz_pos = ff_zigzag_direct[pos];
        block[zz_pos] = val * quant_mat[zz_pos];
        pos++;
    }

    return pos == 64 ? 0 : -1;
}

static int mss4_decode_dct_block(MSS4Context *c, GetBitContext *gb,
                                 uint8_t *dst[3], int mb_x, int mb_y)
{
    int i, j, k, ret;
    uint8_t *out = dst[0];

    for (j = 0; j < 2; j++) {
        for (i = 0; i < 2; i++) {
            int xpos = mb_x * 2 + i;
            c->dc_cache[j][TOP_LEFT] = c->dc_cache[j][TOP];
            c->dc_cache[j][TOP]      = c->prev_dc[0][mb_x * 2 + i];
            ret = mss4_decode_dct(gb, &dc_vlc[0], &ac_vlc[0], c->block,
                                  c->dc_cache[j],
                                  xpos, mb_y * 2 + j, c->quant_mat[0]);
            if (ret)
                return ret;
            c->prev_dc[0][mb_x * 2 + i] = c->dc_cache[j][LEFT];

            ff_mss34_dct_put(out + xpos * 8, c->pic->linesize[0],
                             c->block);
        }
        out += 8 * c->pic->linesize[0];
    }

    for (i = 1; i < 3; i++) {
        c->dc_cache[i + 1][TOP_LEFT] = c->dc_cache[i + 1][TOP];
        c->dc_cache[i + 1][TOP]      = c->prev_dc[i][mb_x];
        ret = mss4_decode_dct(gb, &dc_vlc[1], &ac_vlc[1],
                              c->block, c->dc_cache[i + 1], mb_x, mb_y,
                              c->quant_mat[1]);
        if (ret)
            return ret;
        c->prev_dc[i][mb_x] = c->dc_cache[i + 1][LEFT];

        ff_mss34_dct_put(c->imgbuf[i], 8, c->block);
        out = dst[i] + mb_x * 16;
        // Since the DCT block is coded as YUV420 and the whole frame as YUV444,
        // we need to scale chroma.
        for (j = 0; j < 16; j++) {
            for (k = 0; k < 8; k++)
                AV_WN16A(out + k * 2, c->imgbuf[i][k + (j & ~1) * 4] * 0x101);
            out += c->pic->linesize[i];
        }
    }

    return 0;
}

static void read_vec_pos(GetBitContext *gb, int *vec_pos, int *sel_flag,
                         int *sel_len, int *prev)
{
    int i, y_flag = 0;

    for (i = 2; i >= 0; i--) {
        if (!sel_flag[i]) {
            vec_pos[i] = 0;
            continue;
        }
        if ((!i && !y_flag) || get_bits1(gb)) {
            if (sel_len[i] > 0) {
                int pval = prev[i];
                vec_pos[i] = get_bits(gb, sel_len[i]);
                if (vec_pos[i] >= pval)
                    vec_pos[i]++;
            } else {
                vec_pos[i] = !prev[i];
            }
            y_flag = 1;
        } else {
            vec_pos[i] = prev[i];
        }
    }
}

static int get_value_cached(GetBitContext *gb, int vec_pos, uint8_t *vec,
                            int vec_size, int component, int shift, int *prev)
{
    if (vec_pos < vec_size)
        return vec[vec_pos];
    if (!get_bits1(gb))
        return prev[component];
    prev[component] = get_bits(gb, 8 - shift) << shift;
    return prev[component];
}

#define MKVAL(vals)  ((vals)[0] | ((vals)[1] << 3) | ((vals)[2] << 6))

/* Image mode - the hardest to comprehend MSS4 coding mode.
 *
 * In this mode all three 16x16 blocks are coded together with a method
 * remotely similar to the methods employed in MSS1-MSS3.
 * The idea is that every component has a vector of 1-4 most common symbols
 * and an escape mode for reading new value from the bitstream. Decoding
 * consists of retrieving pixel values from the vector or reading new ones
 * from the bitstream; depending on flags read from the bitstream, these vector
 * positions can be updated or reused from the state of the previous line
 * or previous pixel.
 */
static int mss4_decode_image_block(MSS4Context *ctx, GetBitContext *gb,
                                   uint8_t *picdst[3], int mb_x, int mb_y)
{
    uint8_t vec[3][4];
    int     vec_len[3];
    int     sel_len[3], sel_flag[3];
    int     i, j, k, mode, split;
    int     prev_vec1 = 0, prev_split = 0;
    int     vals[3] = { 0 };
    int     prev_pix[3] = { 0 };
    int     prev_mode[16] = { 0 };
    uint8_t *dst[3];

    const int val_shift = ctx->quality == 100 ? 0 : 2;

    for (i = 0; i < 3; i++)
        dst[i] = ctx->imgbuf[i];

    for (i = 0; i < 3; i++) {
        vec_len[i] = vec_len_syms[!!i][get_unary(gb, 0, 3)];
        for (j = 0; j < vec_len[i]; j++) {
            vec[i][j]  = get_coeff(gb, &vec_entry_vlc[!!i]);
            vec[i][j] += ctx->prev_vec[i][j];
            ctx->prev_vec[i][j] = vec[i][j];
        }
        sel_flag[i] = vec_len[i] > 1;
        sel_len[i]  = vec_len[i] > 2 ? vec_len[i] - 2 : 0;
    }

    for (j = 0; j < 16; j++) {
        if (get_bits1(gb)) {
            split = 0;
            if (get_bits1(gb)) {
                prev_mode[0] = 0;
                vals[0] = vals[1] = vals[2] = 0;
                mode = 2;
            } else {
                mode = get_bits1(gb);
                if (mode)
                    split = get_bits(gb, 4);
            }
            for (i = 0; i < 16; i++) {
                if (mode <= 1) {
                    vals[0] =  prev_mode[i]       & 7;
                    vals[1] = (prev_mode[i] >> 3) & 7;
                    vals[2] =  prev_mode[i] >> 6;
                    if (mode == 1 && i == split) {
                        read_vec_pos(gb, vals, sel_flag, sel_len, vals);
                    }
                } else if (mode == 2) {
                    if (get_bits1(gb))
                        read_vec_pos(gb, vals, sel_flag, sel_len, vals);
                }
                for (k = 0; k < 3; k++)
                    *dst[k]++ = get_value_cached(gb, vals[k], vec[k],
                                                 vec_len[k], k,
                                                 val_shift, prev_pix);
                prev_mode[i] = MKVAL(vals);
            }
        } else {
            if (get_bits1(gb)) {
                split = get_bits(gb, 4);
                if (split >= prev_split)
                    split++;
                prev_split = split;
            } else {
                split = prev_split;
            }
            if (split) {
                vals[0] =  prev_mode[0]       & 7;
                vals[1] = (prev_mode[0] >> 3) & 7;
                vals[2] =  prev_mode[0] >> 6;
                for (i = 0; i < 3; i++) {
                    for (k = 0; k < split; k++) {
                        *dst[i]++ = get_value_cached(gb, vals[i], vec[i],
                                                     vec_len[i], i, val_shift,
                                                     prev_pix);
                        prev_mode[k] = MKVAL(vals);
                    }
                }
            }

            if (split != 16) {
                vals[0] =  prev_vec1       & 7;
                vals[1] = (prev_vec1 >> 3) & 7;
                vals[2] =  prev_vec1 >> 6;
                if (get_bits1(gb)) {
                    read_vec_pos(gb, vals, sel_flag, sel_len, vals);
                    prev_vec1 = MKVAL(vals);
                }
                for (i = 0; i < 3; i++) {
                    for (k = 0; k < 16 - split; k++) {
                        *dst[i]++ = get_value_cached(gb, vals[i], vec[i],
                                                     vec_len[i], i, val_shift,
                                                     prev_pix);
                        prev_mode[split + k] = MKVAL(vals);
                    }
                }
            }
        }
    }

    for (i = 0; i < 3; i++)
        for (j = 0; j < 16; j++)
            memcpy(picdst[i] + mb_x * 16 + j * ctx->pic->linesize[i],
                   ctx->imgbuf[i] + j * 16, 16);

    return 0;
}

static inline void mss4_update_dc_cache(MSS4Context *c, int mb_x)
{
    int i;

    c->dc_cache[0][TOP]  = c->prev_dc[0][mb_x * 2 + 1];
    c->dc_cache[0][LEFT] = 0;
    c->dc_cache[1][TOP]  = 0;
    c->dc_cache[1][LEFT] = 0;

    for (i = 0; i < 2; i++)
        c->prev_dc[0][mb_x * 2 + i] = 0;

    for (i = 1; i < 3; i++) {
        c->dc_cache[i + 1][TOP]  = c->prev_dc[i][mb_x];
        c->dc_cache[i + 1][LEFT] = 0;
        c->prev_dc[i][mb_x]      = 0;
    }
}

static int mss4_decode_frame(AVCodecContext *avctx, AVFrame *rframe,
                             int *got_frame, AVPacket *avpkt)
{
    const uint8_t *buf = avpkt->data;
    int buf_size = avpkt->size;
    MSS4Context *c = avctx->priv_data;
    GetBitContext gb;
    GetByteContext bc;
    uint8_t *dst[3];
    int width, height, quality, frame_type;
    int x, y, i, mb_width, mb_height, blk_type;
    int ret;

    if (buf_size < HEADER_SIZE) {
        av_log(avctx, AV_LOG_ERROR,
               "Frame should have at least %d bytes, got %d instead\n",
               HEADER_SIZE, buf_size);
        return AVERROR_INVALIDDATA;
    }

    bytestream2_init(&bc, buf, buf_size);
    width      = bytestream2_get_be16(&bc);
    height     = bytestream2_get_be16(&bc);
    bytestream2_skip(&bc, 2);
    quality    = bytestream2_get_byte(&bc);
    frame_type = bytestream2_get_byte(&bc);

    if (width > avctx->width ||
        height != avctx->height) {
        av_log(avctx, AV_LOG_ERROR, "Invalid frame dimensions %dx%d\n",
               width, height);
        return AVERROR_INVALIDDATA;
    }
    if (av_image_check_size2(width, height, avctx->max_pixels, AV_PIX_FMT_NONE, 0, avctx) < 0)
        return AVERROR_INVALIDDATA;

    if (quality < 1 || quality > 100) {
        av_log(avctx, AV_LOG_ERROR, "Invalid quality setting %d\n", quality);
        return AVERROR_INVALIDDATA;
    }
    if ((frame_type & ~3) || frame_type == 3) {
        av_log(avctx, AV_LOG_ERROR, "Invalid frame type %d\n", frame_type);
        return AVERROR_INVALIDDATA;
    }

    if (frame_type != SKIP_FRAME && !bytestream2_get_bytes_left(&bc)) {
        av_log(avctx, AV_LOG_ERROR,
               "Empty frame found but it is not a skip frame.\n");
        return AVERROR_INVALIDDATA;
    }
    mb_width  = FFALIGN(width,  16) >> 4;
    mb_height = FFALIGN(height, 16) >> 4;

    if (frame_type != SKIP_FRAME && 8*buf_size < 8*HEADER_SIZE + mb_width*mb_height)
        return AVERROR_INVALIDDATA;

    if ((ret = ff_reget_buffer(avctx, c->pic, 0)) < 0)
        return ret;
    c->pic->key_frame = (frame_type == INTRA_FRAME);
    c->pic->pict_type = (frame_type == INTRA_FRAME) ? AV_PICTURE_TYPE_I
                                                   : AV_PICTURE_TYPE_P;
    if (frame_type == SKIP_FRAME) {
        *got_frame      = 1;
        if ((ret = av_frame_ref(rframe, c->pic)) < 0)
            return ret;

        return buf_size;
    }

    if (c->quality != quality) {
        c->quality = quality;
        for (i = 0; i < 2; i++)
            ff_mss34_gen_quant_mat(c->quant_mat[i], quality, !i);
    }

    if ((ret = init_get_bits8(&gb, buf + HEADER_SIZE, buf_size - HEADER_SIZE)) < 0)
        return ret;
    dst[0] = c->pic->data[0];
    dst[1] = c->pic->data[1];
    dst[2] = c->pic->data[2];

    memset(c->prev_vec, 0, sizeof(c->prev_vec));
    for (y = 0; y < mb_height; y++) {
        memset(c->dc_cache, 0, sizeof(c->dc_cache));
        for (x = 0; x < mb_width; x++) {
            blk_type = decode012(&gb);
            switch (blk_type) {
            case DCT_BLOCK:
                if (mss4_decode_dct_block(c, &gb, dst, x, y) < 0) {
                    av_log(avctx, AV_LOG_ERROR,
                           "Error decoding DCT block %d,%d\n",
                           x, y);
                    return AVERROR_INVALIDDATA;
                }
                break;
            case IMAGE_BLOCK:
                if (mss4_decode_image_block(c, &gb, dst, x, y) < 0) {
                    av_log(avctx, AV_LOG_ERROR,
                           "Error decoding VQ block %d,%d\n",
                           x, y);
                    return AVERROR_INVALIDDATA;
                }
                break;
            case SKIP_BLOCK:
                if (frame_type == INTRA_FRAME) {
                    av_log(avctx, AV_LOG_ERROR, "Skip block in intra frame\n");
                    return AVERROR_INVALIDDATA;
                }
                break;
            }
            if (blk_type != DCT_BLOCK)
                mss4_update_dc_cache(c, x);
        }
        dst[0] += c->pic->linesize[0] * 16;
        dst[1] += c->pic->linesize[1] * 16;
        dst[2] += c->pic->linesize[2] * 16;
    }

    if ((ret = av_frame_ref(rframe, c->pic)) < 0)
        return ret;

    *got_frame      = 1;

    return buf_size;
}

static av_cold int mss4_decode_end(AVCodecContext *avctx)
{
    MSS4Context * const c = avctx->priv_data;
    int i;

    av_frame_free(&c->pic);
    for (i = 0; i < 3; i++)
        av_freep(&c->prev_dc[i]);

    return 0;
}

static av_cold int mss4_decode_init(AVCodecContext *avctx)
{
    static AVOnce init_static_once = AV_ONCE_INIT;
    MSS4Context * const c = avctx->priv_data;
    int i;

    for (i = 0; i < 3; i++) {
        c->dc_stride[i] = FFALIGN(avctx->width, 16) >> (2 + !!i);
        c->prev_dc[i]   = av_malloc_array(c->dc_stride[i], sizeof(**c->prev_dc));
        if (!c->prev_dc[i]) {
            av_log(avctx, AV_LOG_ERROR, "Cannot allocate buffer\n");
            return AVERROR(ENOMEM);
        }
    }

    c->pic = av_frame_alloc();
    if (!c->pic)
        return AVERROR(ENOMEM);

    avctx->pix_fmt     = AV_PIX_FMT_YUV444P;

    ff_thread_once(&init_static_once, mss4_init_vlcs);

    return 0;
}

const FFCodec ff_mts2_decoder = {
    .p.name         = "mts2",
    CODEC_LONG_NAME("MS Expression Encoder Screen"),
    .p.type         = AVMEDIA_TYPE_VIDEO,
    .p.id           = AV_CODEC_ID_MTS2,
    .priv_data_size = sizeof(MSS4Context),
    .init           = mss4_decode_init,
    .close          = mss4_decode_end,
    FF_CODEC_DECODE_CB(mss4_decode_frame),
    .p.capabilities = AV_CODEC_CAP_DR1,
    .caps_internal  = FF_CODEC_CAP_INIT_CLEANUP,
};