1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
|
/*
* Copyright (c) 2001, 2002 Fabrice Bellard
*
* This file is part of Libav.
*
* Libav is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* Libav is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Libav; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <stdint.h>
#include "libavutil/mem.h"
#include "dct32.h"
#include "mathops.h"
#include "mpegaudiodsp.h"
#include "mpegaudio.h"
#include "mpegaudiodata.h"
#if CONFIG_FLOAT
#define RENAME(n) n##_float
static inline float round_sample(float *sum)
{
float sum1=*sum;
*sum = 0;
return sum1;
}
#define MACS(rt, ra, rb) rt+=(ra)*(rb)
#define MULS(ra, rb) ((ra)*(rb))
#define MULH3(x, y, s) ((s)*(y)*(x))
#define MLSS(rt, ra, rb) rt-=(ra)*(rb)
#define MULLx(x, y, s) ((y)*(x))
#define FIXHR(x) ((float)(x))
#define FIXR(x) ((float)(x))
#define SHR(a,b) ((a)*(1.0f/(1<<(b))))
#else
#define RENAME(n) n##_fixed
#define OUT_SHIFT (WFRAC_BITS + FRAC_BITS - 15)
static inline int round_sample(int64_t *sum)
{
int sum1;
sum1 = (int)((*sum) >> OUT_SHIFT);
*sum &= (1<<OUT_SHIFT)-1;
return av_clip_int16(sum1);
}
# define MULS(ra, rb) MUL64(ra, rb)
# define MACS(rt, ra, rb) MAC64(rt, ra, rb)
# define MLSS(rt, ra, rb) MLS64(rt, ra, rb)
# define MULH3(x, y, s) MULH((s)*(x), y)
# define MULLx(x, y, s) MULL(x,y,s)
# define SHR(a,b) ((a)>>(b))
# define FIXR(a) ((int)((a) * FRAC_ONE + 0.5))
# define FIXHR(a) ((int)((a) * (1LL<<32) + 0.5))
#endif
/** Window for MDCT. */
DECLARE_ALIGNED(16, INTFLOAT, RENAME(ff_mdct_win))[8][36];
DECLARE_ALIGNED(16, MPA_INT, RENAME(ff_mpa_synth_window))[512+256];
#define SUM8(op, sum, w, p) \
{ \
op(sum, (w)[0 * 64], (p)[0 * 64]); \
op(sum, (w)[1 * 64], (p)[1 * 64]); \
op(sum, (w)[2 * 64], (p)[2 * 64]); \
op(sum, (w)[3 * 64], (p)[3 * 64]); \
op(sum, (w)[4 * 64], (p)[4 * 64]); \
op(sum, (w)[5 * 64], (p)[5 * 64]); \
op(sum, (w)[6 * 64], (p)[6 * 64]); \
op(sum, (w)[7 * 64], (p)[7 * 64]); \
}
#define SUM8P2(sum1, op1, sum2, op2, w1, w2, p) \
{ \
INTFLOAT tmp;\
tmp = p[0 * 64];\
op1(sum1, (w1)[0 * 64], tmp);\
op2(sum2, (w2)[0 * 64], tmp);\
tmp = p[1 * 64];\
op1(sum1, (w1)[1 * 64], tmp);\
op2(sum2, (w2)[1 * 64], tmp);\
tmp = p[2 * 64];\
op1(sum1, (w1)[2 * 64], tmp);\
op2(sum2, (w2)[2 * 64], tmp);\
tmp = p[3 * 64];\
op1(sum1, (w1)[3 * 64], tmp);\
op2(sum2, (w2)[3 * 64], tmp);\
tmp = p[4 * 64];\
op1(sum1, (w1)[4 * 64], tmp);\
op2(sum2, (w2)[4 * 64], tmp);\
tmp = p[5 * 64];\
op1(sum1, (w1)[5 * 64], tmp);\
op2(sum2, (w2)[5 * 64], tmp);\
tmp = p[6 * 64];\
op1(sum1, (w1)[6 * 64], tmp);\
op2(sum2, (w2)[6 * 64], tmp);\
tmp = p[7 * 64];\
op1(sum1, (w1)[7 * 64], tmp);\
op2(sum2, (w2)[7 * 64], tmp);\
}
void RENAME(ff_mpadsp_apply_window)(MPA_INT *synth_buf, MPA_INT *window,
int *dither_state, OUT_INT *samples,
int incr)
{
register const MPA_INT *w, *w2, *p;
int j;
OUT_INT *samples2;
#if CONFIG_FLOAT
float sum, sum2;
#else
int64_t sum, sum2;
#endif
/* copy to avoid wrap */
memcpy(synth_buf + 512, synth_buf, 32 * sizeof(*synth_buf));
samples2 = samples + 31 * incr;
w = window;
w2 = window + 31;
sum = *dither_state;
p = synth_buf + 16;
SUM8(MACS, sum, w, p);
p = synth_buf + 48;
SUM8(MLSS, sum, w + 32, p);
*samples = round_sample(&sum);
samples += incr;
w++;
/* we calculate two samples at the same time to avoid one memory
access per two sample */
for(j=1;j<16;j++) {
sum2 = 0;
p = synth_buf + 16 + j;
SUM8P2(sum, MACS, sum2, MLSS, w, w2, p);
p = synth_buf + 48 - j;
SUM8P2(sum, MLSS, sum2, MLSS, w + 32, w2 + 32, p);
*samples = round_sample(&sum);
samples += incr;
sum += sum2;
*samples2 = round_sample(&sum);
samples2 -= incr;
w++;
w2--;
}
p = synth_buf + 32;
SUM8(MLSS, sum, w + 32, p);
*samples = round_sample(&sum);
*dither_state= sum;
}
/* 32 sub band synthesis filter. Input: 32 sub band samples, Output:
32 samples. */
void RENAME(ff_mpa_synth_filter)(MPADSPContext *s, MPA_INT *synth_buf_ptr,
int *synth_buf_offset,
MPA_INT *window, int *dither_state,
OUT_INT *samples, int incr,
MPA_INT *sb_samples)
{
MPA_INT *synth_buf;
int offset;
offset = *synth_buf_offset;
synth_buf = synth_buf_ptr + offset;
s->RENAME(dct32)(synth_buf, sb_samples);
s->RENAME(apply_window)(synth_buf, window, dither_state, samples, incr);
offset = (offset - 32) & 511;
*synth_buf_offset = offset;
}
void av_cold RENAME(ff_mpa_synth_init)(MPA_INT *window)
{
int i, j;
/* max = 18760, max sum over all 16 coefs : 44736 */
for(i=0;i<257;i++) {
INTFLOAT v;
v = ff_mpa_enwindow[i];
#if CONFIG_FLOAT
v *= 1.0 / (1LL<<(16 + FRAC_BITS));
#endif
window[i] = v;
if ((i & 63) != 0)
v = -v;
if (i != 0)
window[512 - i] = v;
}
// Needed for avoiding shuffles in ASM implementations
for(i=0; i < 8; i++)
for(j=0; j < 16; j++)
window[512+16*i+j] = window[64*i+32-j];
for(i=0; i < 8; i++)
for(j=0; j < 16; j++)
window[512+128+16*i+j] = window[64*i+48-j];
}
void RENAME(ff_init_mpadsp_tabs)(void)
{
int i, j;
/* compute mdct windows */
for (i = 0; i < 36; i++) {
for (j = 0; j < 4; j++) {
double d;
if (j == 2 && i % 3 != 1)
continue;
d = sin(M_PI * (i + 0.5) / 36.0);
if (j == 1) {
if (i >= 30) d = 0;
else if (i >= 24) d = sin(M_PI * (i - 18 + 0.5) / 12.0);
else if (i >= 18) d = 1;
} else if (j == 3) {
if (i < 6) d = 0;
else if (i < 12) d = sin(M_PI * (i - 6 + 0.5) / 12.0);
else if (i < 18) d = 1;
}
//merge last stage of imdct into the window coefficients
d *= 0.5 / cos(M_PI * (2 * i + 19) / 72);
if (j == 2)
RENAME(ff_mdct_win)[j][i/3] = FIXHR((d / (1<<5)));
else
RENAME(ff_mdct_win)[j][i ] = FIXHR((d / (1<<5)));
}
}
/* NOTE: we do frequency inversion adter the MDCT by changing
the sign of the right window coefs */
for (j = 0; j < 4; j++) {
for (i = 0; i < 36; i += 2) {
RENAME(ff_mdct_win)[j + 4][i ] = RENAME(ff_mdct_win)[j][i ];
RENAME(ff_mdct_win)[j + 4][i + 1] = -RENAME(ff_mdct_win)[j][i + 1];
}
}
}
/* cos(pi*i/18) */
#define C1 FIXHR(0.98480775301220805936/2)
#define C2 FIXHR(0.93969262078590838405/2)
#define C3 FIXHR(0.86602540378443864676/2)
#define C4 FIXHR(0.76604444311897803520/2)
#define C5 FIXHR(0.64278760968653932632/2)
#define C6 FIXHR(0.5/2)
#define C7 FIXHR(0.34202014332566873304/2)
#define C8 FIXHR(0.17364817766693034885/2)
/* 0.5 / cos(pi*(2*i+1)/36) */
static const INTFLOAT icos36[9] = {
FIXR(0.50190991877167369479),
FIXR(0.51763809020504152469), //0
FIXR(0.55168895948124587824),
FIXR(0.61038729438072803416),
FIXR(0.70710678118654752439), //1
FIXR(0.87172339781054900991),
FIXR(1.18310079157624925896),
FIXR(1.93185165257813657349), //2
FIXR(5.73685662283492756461),
};
/* 0.5 / cos(pi*(2*i+1)/36) */
static const INTFLOAT icos36h[9] = {
FIXHR(0.50190991877167369479/2),
FIXHR(0.51763809020504152469/2), //0
FIXHR(0.55168895948124587824/2),
FIXHR(0.61038729438072803416/2),
FIXHR(0.70710678118654752439/2), //1
FIXHR(0.87172339781054900991/2),
FIXHR(1.18310079157624925896/4),
FIXHR(1.93185165257813657349/4), //2
// FIXHR(5.73685662283492756461),
};
/* using Lee like decomposition followed by hand coded 9 points DCT */
static void imdct36(INTFLOAT *out, INTFLOAT *buf, INTFLOAT *in, INTFLOAT *win)
{
int i, j;
INTFLOAT t0, t1, t2, t3, s0, s1, s2, s3;
INTFLOAT tmp[18], *tmp1, *in1;
for (i = 17; i >= 1; i--)
in[i] += in[i-1];
for (i = 17; i >= 3; i -= 2)
in[i] += in[i-2];
for (j = 0; j < 2; j++) {
tmp1 = tmp + j;
in1 = in + j;
t2 = in1[2*4] + in1[2*8] - in1[2*2];
t3 = in1[2*0] + SHR(in1[2*6],1);
t1 = in1[2*0] - in1[2*6];
tmp1[ 6] = t1 - SHR(t2,1);
tmp1[16] = t1 + t2;
t0 = MULH3(in1[2*2] + in1[2*4] , C2, 2);
t1 = MULH3(in1[2*4] - in1[2*8] , -2*C8, 1);
t2 = MULH3(in1[2*2] + in1[2*8] , -C4, 2);
tmp1[10] = t3 - t0 - t2;
tmp1[ 2] = t3 + t0 + t1;
tmp1[14] = t3 + t2 - t1;
tmp1[ 4] = MULH3(in1[2*5] + in1[2*7] - in1[2*1], -C3, 2);
t2 = MULH3(in1[2*1] + in1[2*5], C1, 2);
t3 = MULH3(in1[2*5] - in1[2*7], -2*C7, 1);
t0 = MULH3(in1[2*3], C3, 2);
t1 = MULH3(in1[2*1] + in1[2*7], -C5, 2);
tmp1[ 0] = t2 + t3 + t0;
tmp1[12] = t2 + t1 - t0;
tmp1[ 8] = t3 - t1 - t0;
}
i = 0;
for (j = 0; j < 4; j++) {
t0 = tmp[i];
t1 = tmp[i + 2];
s0 = t1 + t0;
s2 = t1 - t0;
t2 = tmp[i + 1];
t3 = tmp[i + 3];
s1 = MULH3(t3 + t2, icos36h[ j], 2);
s3 = MULLx(t3 - t2, icos36 [8 - j], FRAC_BITS);
t0 = s0 + s1;
t1 = s0 - s1;
out[(9 + j) * SBLIMIT] = MULH3(t1, win[ 9 + j], 1) + buf[4*(9 + j)];
out[(8 - j) * SBLIMIT] = MULH3(t1, win[ 8 - j], 1) + buf[4*(8 - j)];
buf[4 * ( 9 + j )] = MULH3(t0, win[18 + 9 + j], 1);
buf[4 * ( 8 - j )] = MULH3(t0, win[18 + 8 - j], 1);
t0 = s2 + s3;
t1 = s2 - s3;
out[(9 + 8 - j) * SBLIMIT] = MULH3(t1, win[ 9 + 8 - j], 1) + buf[4*(9 + 8 - j)];
out[ j * SBLIMIT] = MULH3(t1, win[ j], 1) + buf[4*( j)];
buf[4 * ( 9 + 8 - j )] = MULH3(t0, win[18 + 9 + 8 - j], 1);
buf[4 * ( j )] = MULH3(t0, win[18 + j], 1);
i += 4;
}
s0 = tmp[16];
s1 = MULH3(tmp[17], icos36h[4], 2);
t0 = s0 + s1;
t1 = s0 - s1;
out[(9 + 4) * SBLIMIT] = MULH3(t1, win[ 9 + 4], 1) + buf[4*(9 + 4)];
out[(8 - 4) * SBLIMIT] = MULH3(t1, win[ 8 - 4], 1) + buf[4*(8 - 4)];
buf[4 * ( 9 + 4 )] = MULH3(t0, win[18 + 9 + 4], 1);
buf[4 * ( 8 - 4 )] = MULH3(t0, win[18 + 8 - 4], 1);
}
void RENAME(ff_imdct36_blocks)(INTFLOAT *out, INTFLOAT *buf, INTFLOAT *in,
int count, int switch_point, int block_type)
{
int j;
for (j=0 ; j < count; j++) {
/* apply window & overlap with previous buffer */
/* select window */
int win_idx = (switch_point && j < 2) ? 0 : block_type;
INTFLOAT *win = RENAME(ff_mdct_win)[win_idx + (4 & -(j & 1))];
imdct36(out, buf, in, win);
in += 18;
buf += ((j&3) != 3 ? 1 : (72-3));
out++;
}
}
|