aboutsummaryrefslogtreecommitdiffstats
path: root/libavcodec/mdct15.c
blob: e0382091ba941216cbeb1ef5f3587b94d2458a52 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
/*
 * Copyright (c) 2013-2014 Mozilla Corporation
 * Copyright (c) 2017 Rostislav Pehlivanov <atomnuker@gmail.com>
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/**
 * @file
 * Celt non-power of 2 iMDCT
 */

#include <float.h>
#include <math.h>
#include <stddef.h>

#include "config.h"

#include "libavutil/attributes.h"
#include "libavutil/common.h"

#include "avfft.h"
#include "mdct15.h"

// complex c = a * b
#define CMUL3(cre, cim, are, aim, bre, bim)          \
do {                                                 \
    cre = are * bre - aim * bim;                     \
    cim = are * bim + aim * bre;                     \
} while (0)

#define CMUL(c, a, b) CMUL3((c).re, (c).im, (a).re, (a).im, (b).re, (b).im)

av_cold void ff_mdct15_uninit(MDCT15Context **ps)
{
    MDCT15Context *s = *ps;

    if (!s)
        return;

    ff_fft_end(&s->ptwo_fft);

    av_freep(&s->pfa_prereindex);
    av_freep(&s->pfa_postreindex);
    av_freep(&s->twiddle_exptab);
    av_freep(&s->tmp);

    av_freep(ps);
}

static void mdct15(MDCT15Context *s, float *dst, const float *src, ptrdiff_t stride);

static void imdct15_half(MDCT15Context *s, float *dst, const float *src,
                         ptrdiff_t stride, float scale);

static inline int init_pfa_reindex_tabs(MDCT15Context *s)
{
    int i, j;
    const int b_ptwo = s->ptwo_fft.nbits; /* Bits for the power of two FFTs */
    const int l_ptwo = 1 << b_ptwo; /* Total length for the power of two FFTs */
    const int inv_1 = l_ptwo << ((4 - b_ptwo) & 3); /* (2^b_ptwo)^-1 mod 15 */
    const int inv_2 = 0xeeeeeeef & ((1U << b_ptwo) - 1); /* 15^-1 mod 2^b_ptwo */

    s->pfa_prereindex = av_malloc(15 * l_ptwo * sizeof(*s->pfa_prereindex));
    if (!s->pfa_prereindex)
        return 1;

    s->pfa_postreindex = av_malloc(15 * l_ptwo * sizeof(*s->pfa_postreindex));
    if (!s->pfa_postreindex)
        return 1;

    /* Pre/Post-reindex */
    for (i = 0; i < l_ptwo; i++) {
        for (j = 0; j < 15; j++) {
            const int q_pre = ((l_ptwo * j)/15 + i) >> b_ptwo;
            const int q_post = (((j*inv_1)/15) + (i*inv_2)) >> b_ptwo;
            const int k_pre = 15*i + (j - q_pre*15)*(1 << b_ptwo);
            const int k_post = i*inv_2*15 + j*inv_1 - 15*q_post*l_ptwo;
            s->pfa_prereindex[i*15 + j] = k_pre;
            s->pfa_postreindex[k_post] = l_ptwo*j + i;
        }
    }

    return 0;
}

av_cold int ff_mdct15_init(MDCT15Context **ps, int inverse, int N, double scale)
{
    MDCT15Context *s;
    double alpha, theta;
    int len2 = 15 * (1 << N);
    int len  = 2 * len2;
    int i;

    /* Tested and verified to work on everything in between */
    if ((N < 2) || (N > 13))
        return AVERROR(EINVAL);

    s = av_mallocz(sizeof(*s));
    if (!s)
        return AVERROR(ENOMEM);

    s->fft_n = N - 1;
    s->len4 = len2 / 2;
    s->len2 = len2;
    s->inverse = inverse;
    s->mdct = mdct15;
    s->imdct_half = imdct15_half;

    if (ff_fft_init(&s->ptwo_fft, N - 1, s->inverse) < 0)
        goto fail;

    if (init_pfa_reindex_tabs(s))
        goto fail;

    s->tmp  = av_malloc_array(len, 2 * sizeof(*s->tmp));
    if (!s->tmp)
        goto fail;

    s->twiddle_exptab  = av_malloc_array(s->len4, sizeof(*s->twiddle_exptab));
    if (!s->twiddle_exptab)
        goto fail;

    theta = 0.125f + (scale < 0 ? s->len4 : 0);
    scale = sqrt(fabs(scale));
    for (i = 0; i < s->len4; i++) {
        alpha = 2 * M_PI * (i + theta) / len;
        s->twiddle_exptab[i].re = cos(alpha) * scale;
        s->twiddle_exptab[i].im = sin(alpha) * scale;
    }

    /* 15-point FFT exptab */
    for (i = 0; i < 19; i++) {
        if (i < 15) {
            double theta = (2.0f * M_PI * i) / 15.0f;
            if (!s->inverse)
                theta *= -1;
            s->exptab[i].re = cos(theta);
            s->exptab[i].im = sin(theta);
        } else { /* Wrap around to simplify fft15 */
            s->exptab[i] = s->exptab[i - 15];
        }
    }

    /* 5-point FFT exptab */
    s->exptab[19].re = cos(2.0f * M_PI / 5.0f);
    s->exptab[19].im = sin(2.0f * M_PI / 5.0f);
    s->exptab[20].re = cos(1.0f * M_PI / 5.0f);
    s->exptab[20].im = sin(1.0f * M_PI / 5.0f);

    /* Invert the phase for an inverse transform, do nothing for a forward transform */
    if (s->inverse) {
        s->exptab[19].im *= -1;
        s->exptab[20].im *= -1;
    }

    *ps = s;

    return 0;

fail:
    ff_mdct15_uninit(&s);
    return AVERROR(ENOMEM);
}

/* Stride is hardcoded to 3 */
static inline void fft5(const FFTComplex exptab[2], FFTComplex *out,
                        const FFTComplex *in)
{
    FFTComplex z0[4], t[6];

    t[0].re = in[3].re + in[12].re;
    t[0].im = in[3].im + in[12].im;
    t[1].im = in[3].re - in[12].re;
    t[1].re = in[3].im - in[12].im;
    t[2].re = in[6].re + in[ 9].re;
    t[2].im = in[6].im + in[ 9].im;
    t[3].im = in[6].re - in[ 9].re;
    t[3].re = in[6].im - in[ 9].im;

    out[0].re = in[0].re + in[3].re + in[6].re + in[9].re + in[12].re;
    out[0].im = in[0].im + in[3].im + in[6].im + in[9].im + in[12].im;

    t[4].re = exptab[0].re * t[2].re - exptab[1].re * t[0].re;
    t[4].im = exptab[0].re * t[2].im - exptab[1].re * t[0].im;
    t[0].re = exptab[0].re * t[0].re - exptab[1].re * t[2].re;
    t[0].im = exptab[0].re * t[0].im - exptab[1].re * t[2].im;
    t[5].re = exptab[0].im * t[3].re - exptab[1].im * t[1].re;
    t[5].im = exptab[0].im * t[3].im - exptab[1].im * t[1].im;
    t[1].re = exptab[0].im * t[1].re + exptab[1].im * t[3].re;
    t[1].im = exptab[0].im * t[1].im + exptab[1].im * t[3].im;

    z0[0].re = t[0].re - t[1].re;
    z0[0].im = t[0].im - t[1].im;
    z0[1].re = t[4].re + t[5].re;
    z0[1].im = t[4].im + t[5].im;

    z0[2].re = t[4].re - t[5].re;
    z0[2].im = t[4].im - t[5].im;
    z0[3].re = t[0].re + t[1].re;
    z0[3].im = t[0].im + t[1].im;

    out[1].re = in[0].re + z0[3].re;
    out[1].im = in[0].im + z0[0].im;
    out[2].re = in[0].re + z0[2].re;
    out[2].im = in[0].im + z0[1].im;
    out[3].re = in[0].re + z0[1].re;
    out[3].im = in[0].im + z0[2].im;
    out[4].re = in[0].re + z0[0].re;
    out[4].im = in[0].im + z0[3].im;
}

static void fft15(const FFTComplex exptab[22], FFTComplex *out, const FFTComplex *in, size_t stride)
{
    int k;
    FFTComplex tmp1[5], tmp2[5], tmp3[5];

    fft5(exptab + 19, tmp1, in + 0);
    fft5(exptab + 19, tmp2, in + 1);
    fft5(exptab + 19, tmp3, in + 2);

    for (k = 0; k < 5; k++) {
        FFTComplex t[2];

        CMUL(t[0], tmp2[k], exptab[k]);
        CMUL(t[1], tmp3[k], exptab[2 * k]);
        out[stride*k].re = tmp1[k].re + t[0].re + t[1].re;
        out[stride*k].im = tmp1[k].im + t[0].im + t[1].im;

        CMUL(t[0], tmp2[k], exptab[k + 5]);
        CMUL(t[1], tmp3[k], exptab[2 * (k + 5)]);
        out[stride*(k + 5)].re = tmp1[k].re + t[0].re + t[1].re;
        out[stride*(k + 5)].im = tmp1[k].im + t[0].im + t[1].im;

        CMUL(t[0], tmp2[k], exptab[k + 10]);
        CMUL(t[1], tmp3[k], exptab[2 * k + 5]);
        out[stride*(k + 10)].re = tmp1[k].re + t[0].re + t[1].re;
        out[stride*(k + 10)].im = tmp1[k].im + t[0].im + t[1].im;
    }
}

static void mdct15(MDCT15Context *s, float *dst, const float *src, ptrdiff_t stride)
{
    int i, j;
    const int len4 = s->len4, len3 = len4 * 3, len8 = len4 >> 1;
    const int l_ptwo = 1 << s->ptwo_fft.nbits;
    FFTComplex fft15in[15];

    /* Folding and pre-reindexing */
    for (i = 0; i < l_ptwo; i++) {
        for (j = 0; j < 15; j++) {
            float re, im;
            const int k = s->pfa_prereindex[i*15 + j];
            if (k < len8) {
                re = -src[2*k+len3] - src[len3-1-2*k];
                im = -src[len4+2*k] + src[len4-1-2*k];
            } else {
                re =  src[2*k-len4] - src[1*len3-1-2*k];
                im = -src[2*k+len4] - src[5*len4-1-2*k];
            }
            CMUL3(fft15in[j].re, fft15in[j].im, re, im, s->twiddle_exptab[k].re, -s->twiddle_exptab[k].im);
        }
        fft15(s->exptab, s->tmp + s->ptwo_fft.revtab[i], fft15in, l_ptwo);
    }

    /* Then a 15xN FFT (where N is a power of two) */
    for (i = 0; i < 15; i++)
        s->ptwo_fft.fft_calc(&s->ptwo_fft, s->tmp + l_ptwo*i);

    /* Reindex again, apply twiddles and output */
    for (i = 0; i < len8; i++) {
        float re0, im0, re1, im1;
        const int i0 = len8 + i, i1 = len8 - i - 1;
        const int s0 = s->pfa_postreindex[i0], s1 = s->pfa_postreindex[i1];

        CMUL3(im1, re0, s->tmp[s1].re, s->tmp[s1].im, s->twiddle_exptab[i1].im, s->twiddle_exptab[i1].re);
        CMUL3(im0, re1, s->tmp[s0].re, s->tmp[s0].im, s->twiddle_exptab[i0].im, s->twiddle_exptab[i0].re);

        dst[2*i1*stride         ] = re0;
        dst[2*i1*stride + stride] = im0;
        dst[2*i0*stride         ] = re1;
        dst[2*i0*stride + stride] = im1;
    }
}

static void imdct15_half(MDCT15Context *s, float *dst, const float *src,
                         ptrdiff_t stride, float scale)
{
    FFTComplex fft15in[15];
    FFTComplex *z = (FFTComplex *)dst;
    int i, j, len8 = s->len4 >> 1, l_ptwo = 1 << s->ptwo_fft.nbits;
    const float *in1 = src, *in2 = src + (s->len2 - 1) * stride;

    /* Reindex input, putting it into a buffer and doing an Nx15 FFT */
    for (i = 0; i < l_ptwo; i++) {
        for (j = 0; j < 15; j++) {
            const int k = s->pfa_prereindex[i*15 + j];
            FFTComplex tmp = { *(in2 - 2*k*stride), *(in1 + 2*k*stride) };
            CMUL(fft15in[j], tmp, s->twiddle_exptab[k]);
        }
        fft15(s->exptab, s->tmp + s->ptwo_fft.revtab[i], fft15in, l_ptwo);
    }

    /* Then a 15xN FFT (where N is a power of two) */
    for (i = 0; i < 15; i++)
        s->ptwo_fft.fft_calc(&s->ptwo_fft, s->tmp + l_ptwo*i);

    /* Reindex again, apply twiddles and output */
    for (i = 0; i < len8; i++) {
        float re0, im0, re1, im1;
        const int i0 = len8 + i, i1 = len8 - i - 1;
        const int s0 = s->pfa_postreindex[i0], s1 = s->pfa_postreindex[i1];

        CMUL3(re0, im1, s->tmp[s1].im, s->tmp[s1].re,  s->twiddle_exptab[i1].im, s->twiddle_exptab[i1].re);
        CMUL3(re1, im0, s->tmp[s0].im, s->tmp[s0].re,  s->twiddle_exptab[i0].im, s->twiddle_exptab[i0].re);
        z[i1].re = scale * re0;
        z[i1].im = scale * im0;
        z[i0].re = scale * re1;
        z[i0].im = scale * im1;
    }
}