aboutsummaryrefslogtreecommitdiffstats
path: root/libavcodec/mdct.c
blob: 5c3e7b3b19e96caa39acb5732a495f3d88dce0e7 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
/*
 * MDCT/IMDCT transforms
 * Copyright (c) 2002 Fabrice Bellard.
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */
#include "dsputil.h"

/**
 * @file mdct.c
 * MDCT/IMDCT transforms.
 */

/**
 * init MDCT or IMDCT computation.
 */
int ff_mdct_init(MDCTContext *s, int nbits, int inverse)
{
    int n, n4, i;
    float alpha;

    memset(s, 0, sizeof(*s));
    n = 1 << nbits;
    s->nbits = nbits;
    s->n = n;
    n4 = n >> 2;
    s->tcos = av_malloc(n4 * sizeof(FFTSample));
    if (!s->tcos)
        goto fail;
    s->tsin = av_malloc(n4 * sizeof(FFTSample));
    if (!s->tsin)
        goto fail;

    for(i=0;i<n4;i++) {
        alpha = 2 * M_PI * (i + 1.0 / 8.0) / n;
        s->tcos[i] = -cos(alpha);
        s->tsin[i] = -sin(alpha);
    }
    if (ff_fft_init(&s->fft, s->nbits - 2, inverse) < 0)
        goto fail;
    return 0;
 fail:
    av_freep(&s->tcos);
    av_freep(&s->tsin);
    return -1;
}

/* complex multiplication: p = a * b */
#define CMUL(pre, pim, are, aim, bre, bim) \
{\
    float _are = (are);\
    float _aim = (aim);\
    float _bre = (bre);\
    float _bim = (bim);\
    (pre) = _are * _bre - _aim * _bim;\
    (pim) = _are * _bim + _aim * _bre;\
}

/**
 * Compute inverse MDCT of size N = 2^nbits
 * @param output N samples
 * @param input N/2 samples
 * @param tmp N/2 samples
 */
void ff_imdct_calc(MDCTContext *s, FFTSample *output,
                   const FFTSample *input, FFTSample *tmp)
{
    int k, n8, n4, n2, n, j;
    const uint16_t *revtab = s->fft.revtab;
    const FFTSample *tcos = s->tcos;
    const FFTSample *tsin = s->tsin;
    const FFTSample *in1, *in2;
    FFTComplex *z = (FFTComplex *)tmp;

    n = 1 << s->nbits;
    n2 = n >> 1;
    n4 = n >> 2;
    n8 = n >> 3;

    /* pre rotation */
    in1 = input;
    in2 = input + n2 - 1;
    for(k = 0; k < n4; k++) {
        j=revtab[k];
        CMUL(z[j].re, z[j].im, *in2, *in1, tcos[k], tsin[k]);
        in1 += 2;
        in2 -= 2;
    }
    ff_fft_calc(&s->fft, z);

    /* post rotation + reordering */
    /* XXX: optimize */
    for(k = 0; k < n4; k++) {
        CMUL(z[k].re, z[k].im, z[k].re, z[k].im, tcos[k], tsin[k]);
    }
    for(k = 0; k < n8; k++) {
        output[2*k] = -z[n8 + k].im;
        output[n2-1-2*k] = z[n8 + k].im;

        output[2*k+1] = z[n8-1-k].re;
        output[n2-1-2*k-1] = -z[n8-1-k].re;

        output[n2 + 2*k]=-z[k+n8].re;
        output[n-1- 2*k]=-z[k+n8].re;

        output[n2 + 2*k+1]=z[n8-k-1].im;
        output[n-2 - 2 * k] = z[n8-k-1].im;
    }
}

/**
 * Compute MDCT of size N = 2^nbits
 * @param input N samples
 * @param out N/2 samples
 * @param tmp temporary storage of N/2 samples
 */
void ff_mdct_calc(MDCTContext *s, FFTSample *out,
                  const FFTSample *input, FFTSample *tmp)
{
    int i, j, n, n8, n4, n2, n3;
    FFTSample re, im, re1, im1;
    const uint16_t *revtab = s->fft.revtab;
    const FFTSample *tcos = s->tcos;
    const FFTSample *tsin = s->tsin;
    FFTComplex *x = (FFTComplex *)tmp;

    n = 1 << s->nbits;
    n2 = n >> 1;
    n4 = n >> 2;
    n8 = n >> 3;
    n3 = 3 * n4;

    /* pre rotation */
    for(i=0;i<n8;i++) {
        re = -input[2*i+3*n4] - input[n3-1-2*i];
        im = -input[n4+2*i] + input[n4-1-2*i];
        j = revtab[i];
        CMUL(x[j].re, x[j].im, re, im, -tcos[i], tsin[i]);

        re = input[2*i] - input[n2-1-2*i];
        im = -(input[n2+2*i] + input[n-1-2*i]);
        j = revtab[n8 + i];
        CMUL(x[j].re, x[j].im, re, im, -tcos[n8 + i], tsin[n8 + i]);
    }

    ff_fft_calc(&s->fft, x);

    /* post rotation */
    for(i=0;i<n4;i++) {
        re = x[i].re;
        im = x[i].im;
        CMUL(re1, im1, re, im, -tsin[i], -tcos[i]);
        out[2*i] = im1;
        out[n2-1-2*i] = re1;
    }
}

void ff_mdct_end(MDCTContext *s)
{
    av_freep(&s->tcos);
    av_freep(&s->tsin);
    ff_fft_end(&s->fft);
}