aboutsummaryrefslogtreecommitdiffstats
path: root/libavcodec/jfdctint.c
blob: 41d27499134e659edfb7dd109e1b69d4ac3d9ccd (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
/*
 * jfdctint.c
 *
 * Copyright (C) 1991-1996, Thomas G. Lane.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file contains a slow-but-accurate integer implementation of the
 * forward DCT (Discrete Cosine Transform).
 *
 * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
 * on each column.  Direct algorithms are also available, but they are
 * much more complex and seem not to be any faster when reduced to code.
 *
 * This implementation is based on an algorithm described in
 *   C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
 *   Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
 *   Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
 * The primary algorithm described there uses 11 multiplies and 29 adds.
 * We use their alternate method with 12 multiplies and 32 adds.
 * The advantage of this method is that no data path contains more than one
 * multiplication; this allows a very simple and accurate implementation in
 * scaled fixed-point arithmetic, with a minimal number of shifts.
 */

/**
 * @file jfdctint.c
 * Independent JPEG Group's slow & accurate dct.
 */

#include <stdlib.h>
#include <stdio.h>
#include "common.h"
#include "dsputil.h"

#define SHIFT_TEMPS
#define DCTSIZE 8
#define BITS_IN_JSAMPLE 8
#define GLOBAL(x) x
#define RIGHT_SHIFT(x, n) ((x) >> (n))
#define MULTIPLY16C16(var,const) ((var)*(const))

#if 1 //def USE_ACCURATE_ROUNDING
#define DESCALE(x,n)  RIGHT_SHIFT((x) + (1 << ((n) - 1)), n)
#else
#define DESCALE(x,n)  RIGHT_SHIFT(x, n)
#endif


/*
 * This module is specialized to the case DCTSIZE = 8.
 */

#if DCTSIZE != 8
  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
#endif


/*
 * The poop on this scaling stuff is as follows:
 *
 * Each 1-D DCT step produces outputs which are a factor of sqrt(N)
 * larger than the true DCT outputs.  The final outputs are therefore
 * a factor of N larger than desired; since N=8 this can be cured by
 * a simple right shift at the end of the algorithm.  The advantage of
 * this arrangement is that we save two multiplications per 1-D DCT,
 * because the y0 and y4 outputs need not be divided by sqrt(N).
 * In the IJG code, this factor of 8 is removed by the quantization step
 * (in jcdctmgr.c), NOT in this module.
 *
 * We have to do addition and subtraction of the integer inputs, which
 * is no problem, and multiplication by fractional constants, which is
 * a problem to do in integer arithmetic.  We multiply all the constants
 * by CONST_SCALE and convert them to integer constants (thus retaining
 * CONST_BITS bits of precision in the constants).  After doing a
 * multiplication we have to divide the product by CONST_SCALE, with proper
 * rounding, to produce the correct output.  This division can be done
 * cheaply as a right shift of CONST_BITS bits.  We postpone shifting
 * as long as possible so that partial sums can be added together with
 * full fractional precision.
 *
 * The outputs of the first pass are scaled up by PASS1_BITS bits so that
 * they are represented to better-than-integral precision.  These outputs
 * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
 * with the recommended scaling.  (For 12-bit sample data, the intermediate
 * array is int32_t anyway.)
 *
 * To avoid overflow of the 32-bit intermediate results in pass 2, we must
 * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26.  Error analysis
 * shows that the values given below are the most effective.
 */

#if BITS_IN_JSAMPLE == 8
#define CONST_BITS  13
#define PASS1_BITS  4   /* set this to 2 if 16x16 multiplies are faster */
#else
#define CONST_BITS  13
#define PASS1_BITS  1   /* lose a little precision to avoid overflow */
#endif

/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
 * causing a lot of useless floating-point operations at run time.
 * To get around this we use the following pre-calculated constants.
 * If you change CONST_BITS you may want to add appropriate values.
 * (With a reasonable C compiler, you can just rely on the FIX() macro...)
 */

#if CONST_BITS == 13
#define FIX_0_298631336  ((int32_t)  2446)      /* FIX(0.298631336) */
#define FIX_0_390180644  ((int32_t)  3196)      /* FIX(0.390180644) */
#define FIX_0_541196100  ((int32_t)  4433)      /* FIX(0.541196100) */
#define FIX_0_765366865  ((int32_t)  6270)      /* FIX(0.765366865) */
#define FIX_0_899976223  ((int32_t)  7373)      /* FIX(0.899976223) */
#define FIX_1_175875602  ((int32_t)  9633)      /* FIX(1.175875602) */
#define FIX_1_501321110  ((int32_t)  12299)     /* FIX(1.501321110) */
#define FIX_1_847759065  ((int32_t)  15137)     /* FIX(1.847759065) */
#define FIX_1_961570560  ((int32_t)  16069)     /* FIX(1.961570560) */
#define FIX_2_053119869  ((int32_t)  16819)     /* FIX(2.053119869) */
#define FIX_2_562915447  ((int32_t)  20995)     /* FIX(2.562915447) */
#define FIX_3_072711026  ((int32_t)  25172)     /* FIX(3.072711026) */
#else
#define FIX_0_298631336  FIX(0.298631336)
#define FIX_0_390180644  FIX(0.390180644)
#define FIX_0_541196100  FIX(0.541196100)
#define FIX_0_765366865  FIX(0.765366865)
#define FIX_0_899976223  FIX(0.899976223)
#define FIX_1_175875602  FIX(1.175875602)
#define FIX_1_501321110  FIX(1.501321110)
#define FIX_1_847759065  FIX(1.847759065)
#define FIX_1_961570560  FIX(1.961570560)
#define FIX_2_053119869  FIX(2.053119869)
#define FIX_2_562915447  FIX(2.562915447)
#define FIX_3_072711026  FIX(3.072711026)
#endif


/* Multiply an int32_t variable by an int32_t constant to yield an int32_t result.
 * For 8-bit samples with the recommended scaling, all the variable
 * and constant values involved are no more than 16 bits wide, so a
 * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
 * For 12-bit samples, a full 32-bit multiplication will be needed.
 */

#if BITS_IN_JSAMPLE == 8 && CONST_BITS<=13 && PASS1_BITS<=2
#define MULTIPLY(var,const)  MULTIPLY16C16(var,const)
#else
#define MULTIPLY(var,const)  ((var) * (const))
#endif


static always_inline void row_fdct(DCTELEM * data){
  int_fast32_t tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
  int_fast32_t tmp10, tmp11, tmp12, tmp13;
  int_fast32_t z1, z2, z3, z4, z5;
  DCTELEM *dataptr;
  int ctr;
  SHIFT_TEMPS

  /* Pass 1: process rows. */
  /* Note results are scaled up by sqrt(8) compared to a true DCT; */
  /* furthermore, we scale the results by 2**PASS1_BITS. */

  dataptr = data;
  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
    tmp0 = dataptr[0] + dataptr[7];
    tmp7 = dataptr[0] - dataptr[7];
    tmp1 = dataptr[1] + dataptr[6];
    tmp6 = dataptr[1] - dataptr[6];
    tmp2 = dataptr[2] + dataptr[5];
    tmp5 = dataptr[2] - dataptr[5];
    tmp3 = dataptr[3] + dataptr[4];
    tmp4 = dataptr[3] - dataptr[4];

    /* Even part per LL&M figure 1 --- note that published figure is faulty;
     * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
     */

    tmp10 = tmp0 + tmp3;
    tmp13 = tmp0 - tmp3;
    tmp11 = tmp1 + tmp2;
    tmp12 = tmp1 - tmp2;

    dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS);
    dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);

    z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
    dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
                                   CONST_BITS-PASS1_BITS);
    dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
                                   CONST_BITS-PASS1_BITS);

    /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
     * cK represents cos(K*pi/16).
     * i0..i3 in the paper are tmp4..tmp7 here.
     */

    z1 = tmp4 + tmp7;
    z2 = tmp5 + tmp6;
    z3 = tmp4 + tmp6;
    z4 = tmp5 + tmp7;
    z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */

    tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
    tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
    tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
    tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
    z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
    z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
    z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
    z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */

    z3 += z5;
    z4 += z5;

    dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);
    dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);
    dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);
    dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);

    dataptr += DCTSIZE;         /* advance pointer to next row */
  }
}

/*
 * Perform the forward DCT on one block of samples.
 */

GLOBAL(void)
ff_jpeg_fdct_islow (DCTELEM * data)
{
  int_fast32_t tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
  int_fast32_t tmp10, tmp11, tmp12, tmp13;
  int_fast32_t z1, z2, z3, z4, z5;
  DCTELEM *dataptr;
  int ctr;
  SHIFT_TEMPS

  row_fdct(data);

  /* Pass 2: process columns.
   * We remove the PASS1_BITS scaling, but leave the results scaled up
   * by an overall factor of 8.
   */

  dataptr = data;
  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
    tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
    tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
    tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
    tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
    tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
    tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
    tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
    tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];

    /* Even part per LL&M figure 1 --- note that published figure is faulty;
     * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
     */

    tmp10 = tmp0 + tmp3;
    tmp13 = tmp0 - tmp3;
    tmp11 = tmp1 + tmp2;
    tmp12 = tmp1 - tmp2;

    dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS);
    dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS);

    z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
    dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
                                           CONST_BITS+PASS1_BITS);
    dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
                                           CONST_BITS+PASS1_BITS);

    /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
     * cK represents cos(K*pi/16).
     * i0..i3 in the paper are tmp4..tmp7 here.
     */

    z1 = tmp4 + tmp7;
    z2 = tmp5 + tmp6;
    z3 = tmp4 + tmp6;
    z4 = tmp5 + tmp7;
    z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */

    tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
    tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
    tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
    tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
    z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
    z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
    z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
    z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */

    z3 += z5;
    z4 += z5;

    dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp4 + z1 + z3,
                                           CONST_BITS+PASS1_BITS);
    dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp5 + z2 + z4,
                                           CONST_BITS+PASS1_BITS);
    dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp6 + z2 + z3,
                                           CONST_BITS+PASS1_BITS);
    dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp7 + z1 + z4,
                                           CONST_BITS+PASS1_BITS);

    dataptr++;                  /* advance pointer to next column */
  }
}

/*
 * The secret of DCT2-4-8 is really simple -- you do the usual 1-DCT
 * on the rows and then, instead of doing even and odd, part on the colums
 * you do even part two times.
 */
GLOBAL(void)
ff_fdct248_islow (DCTELEM * data)
{
  int_fast32_t tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
  int_fast32_t tmp10, tmp11, tmp12, tmp13;
  int_fast32_t z1;
  DCTELEM *dataptr;
  int ctr;
  SHIFT_TEMPS

  row_fdct(data);

  /* Pass 2: process columns.
   * We remove the PASS1_BITS scaling, but leave the results scaled up
   * by an overall factor of 8.
   */

  dataptr = data;
  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*1];
     tmp1 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*3];
     tmp2 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*5];
     tmp3 = dataptr[DCTSIZE*6] + dataptr[DCTSIZE*7];
     tmp4 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*1];
     tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*3];
     tmp6 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*5];
     tmp7 = dataptr[DCTSIZE*6] - dataptr[DCTSIZE*7];

     tmp10 = tmp0 + tmp3;
     tmp11 = tmp1 + tmp2;
     tmp12 = tmp1 - tmp2;
     tmp13 = tmp0 - tmp3;

     dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS);
     dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS);

     z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
     dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
                                            CONST_BITS+PASS1_BITS);
     dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
                                            CONST_BITS+PASS1_BITS);

     tmp10 = tmp4 + tmp7;
     tmp11 = tmp5 + tmp6;
     tmp12 = tmp5 - tmp6;
     tmp13 = tmp4 - tmp7;

     dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS);
     dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS);

     z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
     dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
                                            CONST_BITS+PASS1_BITS);
     dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
                                            CONST_BITS+PASS1_BITS);

     dataptr++;                 /* advance pointer to next column */
  }
}