aboutsummaryrefslogtreecommitdiffstats
path: root/libavcodec/iff.c
blob: 42d29ffb530a93cd8b2b7fc731962a2bed41dcb9 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
/*
 * IFF ACBM/DEEP/ILBM/PBM bitmap decoder
 * Copyright (c) 2010 Peter Ross <pross@xvid.org>
 * Copyright (c) 2010 Sebastian Vater <cdgs.basty@googlemail.com>
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/**
 * @file
 * IFF ACBM/DEEP/ILBM/PBM bitmap decoder
 */

#include <stdint.h>

#include "libavutil/imgutils.h"
#include "bytestream.h"
#include "avcodec.h"
#include "get_bits.h"
#include "internal.h"

// TODO: masking bits
typedef enum {
    MASK_NONE,
    MASK_HAS_MASK,
    MASK_HAS_TRANSPARENT_COLOR,
    MASK_LASSO
} mask_type;

typedef struct IffContext {
    AVFrame *frame;
    int planesize;
    uint8_t * planebuf;
    uint8_t * ham_buf;      ///< temporary buffer for planar to chunky conversation
    uint32_t *ham_palbuf;   ///< HAM decode table
    uint32_t *mask_buf;     ///< temporary buffer for palette indices
    uint32_t *mask_palbuf;  ///< masking palette table
    unsigned  compression;  ///< delta compression method used
    unsigned  bpp;          ///< bits per plane to decode (differs from bits_per_coded_sample if HAM)
    unsigned  ham;          ///< 0 if non-HAM or number of hold bits (6 for bpp > 6, 4 otherwise)
    unsigned  flags;        ///< 1 for EHB, 0 is no extra half darkening
    unsigned  transparency; ///< TODO: transparency color index in palette
    unsigned  masking;      ///< TODO: masking method used
    int init; // 1 if buffer and palette data already initialized, 0 otherwise
    int16_t   tvdc[16];     ///< TVDC lookup table
} IffContext;

#define LUT8_PART(plane, v)                             \
    AV_LE2NE64C(UINT64_C(0x0000000)<<32 | v) << plane,  \
    AV_LE2NE64C(UINT64_C(0x1000000)<<32 | v) << plane,  \
    AV_LE2NE64C(UINT64_C(0x0010000)<<32 | v) << plane,  \
    AV_LE2NE64C(UINT64_C(0x1010000)<<32 | v) << plane,  \
    AV_LE2NE64C(UINT64_C(0x0000100)<<32 | v) << plane,  \
    AV_LE2NE64C(UINT64_C(0x1000100)<<32 | v) << plane,  \
    AV_LE2NE64C(UINT64_C(0x0010100)<<32 | v) << plane,  \
    AV_LE2NE64C(UINT64_C(0x1010100)<<32 | v) << plane,  \
    AV_LE2NE64C(UINT64_C(0x0000001)<<32 | v) << plane,  \
    AV_LE2NE64C(UINT64_C(0x1000001)<<32 | v) << plane,  \
    AV_LE2NE64C(UINT64_C(0x0010001)<<32 | v) << plane,  \
    AV_LE2NE64C(UINT64_C(0x1010001)<<32 | v) << plane,  \
    AV_LE2NE64C(UINT64_C(0x0000101)<<32 | v) << plane,  \
    AV_LE2NE64C(UINT64_C(0x1000101)<<32 | v) << plane,  \
    AV_LE2NE64C(UINT64_C(0x0010101)<<32 | v) << plane,  \
    AV_LE2NE64C(UINT64_C(0x1010101)<<32 | v) << plane

#define LUT8(plane) {                           \
    LUT8_PART(plane, 0x0000000),                \
    LUT8_PART(plane, 0x1000000),                \
    LUT8_PART(plane, 0x0010000),                \
    LUT8_PART(plane, 0x1010000),                \
    LUT8_PART(plane, 0x0000100),                \
    LUT8_PART(plane, 0x1000100),                \
    LUT8_PART(plane, 0x0010100),                \
    LUT8_PART(plane, 0x1010100),                \
    LUT8_PART(plane, 0x0000001),                \
    LUT8_PART(plane, 0x1000001),                \
    LUT8_PART(plane, 0x0010001),                \
    LUT8_PART(plane, 0x1010001),                \
    LUT8_PART(plane, 0x0000101),                \
    LUT8_PART(plane, 0x1000101),                \
    LUT8_PART(plane, 0x0010101),                \
    LUT8_PART(plane, 0x1010101),                \
}

// 8 planes * 8-bit mask
static const uint64_t plane8_lut[8][256] = {
    LUT8(0), LUT8(1), LUT8(2), LUT8(3),
    LUT8(4), LUT8(5), LUT8(6), LUT8(7),
};

#define LUT32(plane) {                                \
             0,          0,          0,          0,   \
             0,          0,          0, 1 << plane,   \
             0,          0, 1 << plane,          0,   \
             0,          0, 1 << plane, 1 << plane,   \
             0, 1 << plane,          0,          0,   \
             0, 1 << plane,          0, 1 << plane,   \
             0, 1 << plane, 1 << plane,          0,   \
             0, 1 << plane, 1 << plane, 1 << plane,   \
    1 << plane,          0,          0,          0,   \
    1 << plane,          0,          0, 1 << plane,   \
    1 << plane,          0, 1 << plane,          0,   \
    1 << plane,          0, 1 << plane, 1 << plane,   \
    1 << plane, 1 << plane,          0,          0,   \
    1 << plane, 1 << plane,          0, 1 << plane,   \
    1 << plane, 1 << plane, 1 << plane,          0,   \
    1 << plane, 1 << plane, 1 << plane, 1 << plane,   \
}

// 32 planes * 4-bit mask * 4 lookup tables each
static const uint32_t plane32_lut[32][16*4] = {
    LUT32( 0), LUT32( 1), LUT32( 2), LUT32( 3),
    LUT32( 4), LUT32( 5), LUT32( 6), LUT32( 7),
    LUT32( 8), LUT32( 9), LUT32(10), LUT32(11),
    LUT32(12), LUT32(13), LUT32(14), LUT32(15),
    LUT32(16), LUT32(17), LUT32(18), LUT32(19),
    LUT32(20), LUT32(21), LUT32(22), LUT32(23),
    LUT32(24), LUT32(25), LUT32(26), LUT32(27),
    LUT32(28), LUT32(29), LUT32(30), LUT32(31),
};

// Gray to RGB, required for palette table of grayscale images with bpp < 8
static av_always_inline uint32_t gray2rgb(const uint32_t x) {
    return x << 16 | x << 8 | x;
}

/**
 * Convert CMAP buffer (stored in extradata) to lavc palette format
 */
static int cmap_read_palette(AVCodecContext *avctx, uint32_t *pal)
{
    IffContext *s = avctx->priv_data;
    int count, i;
    const uint8_t *const palette = avctx->extradata + AV_RB16(avctx->extradata);
    int palette_size = avctx->extradata_size - AV_RB16(avctx->extradata);

    if (avctx->bits_per_coded_sample > 8) {
        av_log(avctx, AV_LOG_ERROR, "bits_per_coded_sample > 8 not supported\n");
        return AVERROR_INVALIDDATA;
    }

    count = 1 << avctx->bits_per_coded_sample;
    // If extradata is smaller than actually needed, fill the remaining with black.
    count = FFMIN(palette_size / 3, count);
    if (count) {
        for (i = 0; i < count; i++)
            pal[i] = 0xFF000000 | AV_RB24(palette + i*3);
        if (s->flags && count >= 32) { // EHB
            for (i = 0; i < 32; i++)
                pal[i + 32] = 0xFF000000 | (AV_RB24(palette + i*3) & 0xFEFEFE) >> 1;
            count = FFMAX(count, 64);
        }
    } else { // Create gray-scale color palette for bps < 8
        count = 1 << avctx->bits_per_coded_sample;

        for (i = 0; i < count; i++)
            pal[i] = 0xFF000000 | gray2rgb((i * 255) >> avctx->bits_per_coded_sample);
    }
    if (s->masking == MASK_HAS_MASK) {
        memcpy(pal + (1 << avctx->bits_per_coded_sample), pal, count * 4);
        for (i = 0; i < count; i++)
            pal[i] &= 0xFFFFFF;
    } else if (s->masking == MASK_HAS_TRANSPARENT_COLOR &&
        s->transparency < 1 << avctx->bits_per_coded_sample)
        pal[s->transparency] &= 0xFFFFFF;
    return 0;
}

/**
 * Extracts the IFF extra context and updates internal
 * decoder structures.
 *
 * @param avctx the AVCodecContext where to extract extra context to
 * @param avpkt the AVPacket to extract extra context from or NULL to use avctx
 * @return >= 0 in case of success, a negative error code otherwise
 */
static int extract_header(AVCodecContext *const avctx,
                          const AVPacket *const avpkt) {
    const uint8_t *buf;
    unsigned buf_size;
    IffContext *s = avctx->priv_data;
    int i, palette_size;

    if (avctx->extradata_size < 2) {
        av_log(avctx, AV_LOG_ERROR, "not enough extradata\n");
        return AVERROR_INVALIDDATA;
    }
    palette_size = avctx->extradata_size - AV_RB16(avctx->extradata);

    if (avpkt) {
        int image_size;
        if (avpkt->size < 2)
            return AVERROR_INVALIDDATA;
        image_size = avpkt->size - AV_RB16(avpkt->data);
        buf = avpkt->data;
        buf_size = bytestream_get_be16(&buf);
        if (buf_size <= 1 || image_size <= 1) {
            av_log(avctx, AV_LOG_ERROR,
                   "Invalid image size received: %u -> image data offset: %d\n",
                   buf_size, image_size);
            return AVERROR_INVALIDDATA;
        }
    } else {
        buf = avctx->extradata;
        buf_size = bytestream_get_be16(&buf);
        if (buf_size <= 1 || palette_size < 0) {
            av_log(avctx, AV_LOG_ERROR,
                   "Invalid palette size received: %u -> palette data offset: %d\n",
                   buf_size, palette_size);
            return AVERROR_INVALIDDATA;
        }
    }

    if (buf_size >= 41) {
        s->compression  = bytestream_get_byte(&buf);
        s->bpp          = bytestream_get_byte(&buf);
        s->ham          = bytestream_get_byte(&buf);
        s->flags        = bytestream_get_byte(&buf);
        s->transparency = bytestream_get_be16(&buf);
        s->masking      = bytestream_get_byte(&buf);
        for (i = 0; i < 16; i++)
            s->tvdc[i] = bytestream_get_be16(&buf);

        if (s->ham) {
            if (s->bpp > 8) {
                av_log(avctx, AV_LOG_ERROR, "Invalid number of hold bits for HAM: %u\n", s->ham);
                return AVERROR_INVALIDDATA;
            } if (s->ham != (s->bpp > 6 ? 6 : 4)) {
                av_log(avctx, AV_LOG_ERROR, "Invalid number of hold bits for HAM: %u, BPP: %u\n", s->ham, s->bpp);
                return AVERROR_INVALIDDATA;
            }
        }

        if (s->masking == MASK_HAS_MASK) {
            if (s->bpp >= 8 && !s->ham) {
                avctx->pix_fmt = AV_PIX_FMT_RGB32;
                av_freep(&s->mask_buf);
                av_freep(&s->mask_palbuf);
                s->mask_buf = av_malloc((s->planesize * 32) + AV_INPUT_BUFFER_PADDING_SIZE);
                if (!s->mask_buf)
                    return AVERROR(ENOMEM);
                if (s->bpp > 16) {
                    av_log(avctx, AV_LOG_ERROR, "bpp %d too large for palette\n", s->bpp);
                    av_freep(&s->mask_buf);
                    return AVERROR(ENOMEM);
                }
                s->mask_palbuf = av_malloc((2 << s->bpp) * sizeof(uint32_t) + AV_INPUT_BUFFER_PADDING_SIZE);
                if (!s->mask_palbuf) {
                    av_freep(&s->mask_buf);
                    return AVERROR(ENOMEM);
                }
            }
            s->bpp++;
        } else if (s->masking != MASK_NONE && s->masking != MASK_HAS_TRANSPARENT_COLOR) {
            av_log(avctx, AV_LOG_ERROR, "Masking not supported\n");
            return AVERROR_PATCHWELCOME;
        }
        if (!s->bpp || s->bpp > 32) {
            av_log(avctx, AV_LOG_ERROR, "Invalid number of bitplanes: %u\n", s->bpp);
            return AVERROR_INVALIDDATA;
        }

        av_freep(&s->ham_buf);
        av_freep(&s->ham_palbuf);

        if (s->ham) {
            int i, count = FFMIN(palette_size / 3, 1 << s->ham);
            int ham_count;
            const uint8_t *const palette = avctx->extradata + AV_RB16(avctx->extradata);

            s->ham_buf = av_malloc((s->planesize * 8) + AV_INPUT_BUFFER_PADDING_SIZE);
            if (!s->ham_buf)
                return AVERROR(ENOMEM);

            ham_count = 8 * (1 << s->ham);
            s->ham_palbuf = av_malloc((ham_count << !!(s->masking == MASK_HAS_MASK)) * sizeof (uint32_t) + AV_INPUT_BUFFER_PADDING_SIZE);
            if (!s->ham_palbuf) {
                av_freep(&s->ham_buf);
                return AVERROR(ENOMEM);
            }

            if (count) { // HAM with color palette attached
                // prefill with black and palette and set HAM take direct value mask to zero
                memset(s->ham_palbuf, 0, (1 << s->ham) * 2 * sizeof (uint32_t));
                for (i=0; i < count; i++) {
                    s->ham_palbuf[i*2+1] = 0xFF000000 | AV_RL24(palette + i*3);
                }
                count = 1 << s->ham;
            } else { // HAM with grayscale color palette
                count = 1 << s->ham;
                for (i=0; i < count; i++) {
                    s->ham_palbuf[i*2]   = 0xFF000000; // take direct color value from palette
                    s->ham_palbuf[i*2+1] = 0xFF000000 | av_le2ne32(gray2rgb((i * 255) >> s->ham));
                }
            }
            for (i=0; i < count; i++) {
                uint32_t tmp = i << (8 - s->ham);
                tmp |= tmp >> s->ham;
                s->ham_palbuf[(i+count)*2]     = 0xFF00FFFF; // just modify blue color component
                s->ham_palbuf[(i+count*2)*2]   = 0xFFFFFF00; // just modify red color component
                s->ham_palbuf[(i+count*3)*2]   = 0xFFFF00FF; // just modify green color component
                s->ham_palbuf[(i+count)*2+1]   = 0xFF000000 | tmp << 16;
                s->ham_palbuf[(i+count*2)*2+1] = 0xFF000000 | tmp;
                s->ham_palbuf[(i+count*3)*2+1] = 0xFF000000 | tmp << 8;
            }
            if (s->masking == MASK_HAS_MASK) {
                for (i = 0; i < ham_count; i++)
                    s->ham_palbuf[(1 << s->bpp) + i] = s->ham_palbuf[i] | 0xFF000000;
            }
        }
    }

    return 0;
}

static av_cold int decode_end(AVCodecContext *avctx)
{
    IffContext *s = avctx->priv_data;
    av_frame_free(&s->frame);
    av_freep(&s->planebuf);
    av_freep(&s->ham_buf);
    av_freep(&s->ham_palbuf);
    return 0;
}

static av_cold int decode_init(AVCodecContext *avctx)
{
    IffContext *s = avctx->priv_data;
    int err;

    if (avctx->bits_per_coded_sample <= 8) {
        int palette_size;

        if (avctx->extradata_size >= 2)
            palette_size = avctx->extradata_size - AV_RB16(avctx->extradata);
        else
            palette_size = 0;
        avctx->pix_fmt = (avctx->bits_per_coded_sample < 8) ||
                         (avctx->extradata_size >= 2 && palette_size) ? AV_PIX_FMT_PAL8 : AV_PIX_FMT_GRAY8;
    } else if (avctx->bits_per_coded_sample <= 32) {
        if (avctx->codec_tag == MKTAG('R', 'G', 'B', '8')) {
            avctx->pix_fmt = AV_PIX_FMT_RGB32;
        } else if (avctx->codec_tag == MKTAG('R', 'G', 'B', 'N')) {
            avctx->pix_fmt = AV_PIX_FMT_RGB444;
        } else if (avctx->codec_tag != MKTAG('D', 'E', 'E', 'P')) {
            if (avctx->bits_per_coded_sample == 24) {
                avctx->pix_fmt = AV_PIX_FMT_0BGR32;
            } else if (avctx->bits_per_coded_sample == 32) {
                avctx->pix_fmt = AV_PIX_FMT_BGR32;
            } else {
                avpriv_request_sample(avctx, "unknown bits_per_coded_sample");
                return AVERROR_PATCHWELCOME;
            }
        }
    } else {
        return AVERROR_INVALIDDATA;
    }

    if ((err = av_image_check_size(avctx->width, avctx->height, 0, avctx)))
        return err;
    s->planesize = FFALIGN(avctx->width, 16) >> 3; // Align plane size in bits to word-boundary
    s->planebuf  = av_malloc(s->planesize + AV_INPUT_BUFFER_PADDING_SIZE);
    if (!s->planebuf)
        return AVERROR(ENOMEM);

    s->bpp = avctx->bits_per_coded_sample;
    s->frame = av_frame_alloc();
    if (!s->frame) {
        decode_end(avctx);
        return AVERROR(ENOMEM);
    }

    if ((err = extract_header(avctx, NULL)) < 0)
        return err;

    return 0;
}

/**
 * Decode interleaved plane buffer up to 8bpp
 * @param dst Destination buffer
 * @param buf Source buffer
 * @param buf_size
 * @param plane plane number to decode as
 */
static void decodeplane8(uint8_t *dst, const uint8_t *buf, int buf_size, int plane)
{
    const uint64_t *lut = plane8_lut[plane];
    if (plane >= 8) {
        av_log(NULL, AV_LOG_WARNING, "Ignoring extra planes beyond 8\n");
        return;
    }
    do {
        uint64_t v = AV_RN64A(dst) | lut[*buf++];
        AV_WN64A(dst, v);
        dst += 8;
    } while (--buf_size);
}

/**
 * Decode interleaved plane buffer up to 24bpp
 * @param dst Destination buffer
 * @param buf Source buffer
 * @param buf_size
 * @param plane plane number to decode as
 */
static void decodeplane32(uint32_t *dst, const uint8_t *buf, int buf_size, int plane)
{
    const uint32_t *lut = plane32_lut[plane];
    do {
        unsigned mask = (*buf >> 2) & ~3;
        dst[0] |= lut[mask++];
        dst[1] |= lut[mask++];
        dst[2] |= lut[mask++];
        dst[3] |= lut[mask];
        mask    = (*buf++ << 2) & 0x3F;
        dst[4] |= lut[mask++];
        dst[5] |= lut[mask++];
        dst[6] |= lut[mask++];
        dst[7] |= lut[mask];
        dst    += 8;
    } while (--buf_size);
}

#define DECODE_HAM_PLANE32(x)       \
    first       = buf[x] << 1;      \
    second      = buf[(x)+1] << 1;  \
    delta      &= pal[first++];     \
    delta      |= pal[first];       \
    dst[x]      = delta;            \
    delta      &= pal[second++];    \
    delta      |= pal[second];      \
    dst[(x)+1]  = delta

/**
 * Converts one line of HAM6/8-encoded chunky buffer to 24bpp.
 *
 * @param dst the destination 24bpp buffer
 * @param buf the source 8bpp chunky buffer
 * @param pal the HAM decode table
 * @param buf_size the plane size in bytes
 */
static void decode_ham_plane32(uint32_t *dst, const uint8_t  *buf,
                               const uint32_t *const pal, unsigned buf_size)
{
    uint32_t delta = pal[1]; /* first palette entry */
    do {
        uint32_t first, second;
        DECODE_HAM_PLANE32(0);
        DECODE_HAM_PLANE32(2);
        DECODE_HAM_PLANE32(4);
        DECODE_HAM_PLANE32(6);
        buf += 8;
        dst += 8;
    } while (--buf_size);
}

static void lookup_pal_indicies(uint32_t *dst, const uint32_t *buf,
                         const uint32_t *const pal, unsigned width)
{
    do {
        *dst++ = pal[*buf++];
    } while (--width);
}

/**
 * Decode one complete byterun1 encoded line.
 *
 * @param dst the destination buffer where to store decompressed bitstream
 * @param dst_size the destination plane size in bytes
 * @param buf the source byterun1 compressed bitstream
 * @param buf_end the EOF of source byterun1 compressed bitstream
 * @return number of consumed bytes in byterun1 compressed bitstream
 */
static int decode_byterun(uint8_t *dst, int dst_size,
                          const uint8_t *buf, const uint8_t *const buf_end)
{
    const uint8_t *const buf_start = buf;
    unsigned x;
    for (x = 0; x < dst_size && buf < buf_end;) {
        unsigned length;
        const int8_t value = *buf++;
        if (value >= 0) {
            length = FFMIN3(value + 1, dst_size - x, buf_end - buf);
            memcpy(dst + x, buf, length);
            buf += length;
        } else if (value > -128) {
            length = FFMIN(-value + 1, dst_size - x);
            memset(dst + x, *buf++, length);
        } else { // noop
            continue;
        }
        x += length;
    }
    if (x < dst_size) {
        av_log(NULL, AV_LOG_WARNING, "decode_byterun ended before plane size\n");
        memset(dst+x, 0, dst_size - x);
    }
    return buf - buf_start;
}

#define DECODE_RGBX_COMMON(type) \
    if (!length) { \
        length = bytestream2_get_byte(gb); \
        if (!length) { \
            length = bytestream2_get_be16(gb); \
            if (!length) \
                return; \
        } \
    } \
    for (i = 0; i < length; i++) { \
        *(type *)(dst + y*linesize + x * sizeof(type)) = pixel; \
        x += 1; \
        if (x >= width) { \
            y += 1; \
            if (y >= height) \
                return; \
            x = 0; \
        } \
    }

/**
 * Decode RGB8 buffer
 * @param[out] dst Destination buffer
 * @param width Width of destination buffer (pixels)
 * @param height Height of destination buffer (pixels)
 * @param linesize Line size of destination buffer (bytes)
 */
static void decode_rgb8(GetByteContext *gb, uint8_t *dst, int width, int height, int linesize)
{
    int x = 0, y = 0, i, length;
    while (bytestream2_get_bytes_left(gb) >= 4) {
        uint32_t pixel = 0xFF000000 | bytestream2_get_be24(gb);
        length = bytestream2_get_byte(gb) & 0x7F;
        DECODE_RGBX_COMMON(uint32_t)
    }
}

/**
 * Decode RGBN buffer
 * @param[out] dst Destination buffer
 * @param width Width of destination buffer (pixels)
 * @param height Height of destination buffer (pixels)
 * @param linesize Line size of destination buffer (bytes)
 */
static void decode_rgbn(GetByteContext *gb, uint8_t *dst, int width, int height, int linesize)
{
    int x = 0, y = 0, i, length;
    while (bytestream2_get_bytes_left(gb) >= 2) {
        uint32_t pixel = bytestream2_get_be16u(gb);
        length = pixel & 0x7;
        pixel >>= 4;
        DECODE_RGBX_COMMON(uint16_t)
    }
}

/**
 * Decode DEEP RLE 32-bit buffer
 * @param[out] dst Destination buffer
 * @param[in] src Source buffer
 * @param src_size Source buffer size (bytes)
 * @param width Width of destination buffer (pixels)
 * @param height Height of destination buffer (pixels)
 * @param linesize Line size of destination buffer (bytes)
 */
static void decode_deep_rle32(uint8_t *dst, const uint8_t *src, int src_size, int width, int height, int linesize)
{
    const uint8_t *src_end = src + src_size;
    int x = 0, y = 0, i;
    while (src + 5 <= src_end) {
        int opcode;
        opcode = *(int8_t *)src++;
        if (opcode >= 0) {
            int size = opcode + 1;
            for (i = 0; i < size; i++) {
                int length = FFMIN(size - i, width);
                memcpy(dst + y*linesize + x * 4, src, length * 4);
                src += length * 4;
                x += length;
                i += length;
                if (x >= width) {
                    x = 0;
                    y += 1;
                    if (y >= height)
                        return;
                }
            }
        } else {
            int size = -opcode + 1;
            uint32_t pixel = AV_RN32(src);
            for (i = 0; i < size; i++) {
                *(uint32_t *)(dst + y*linesize + x * 4) = pixel;
                x += 1;
                if (x >= width) {
                    x = 0;
                    y += 1;
                    if (y >= height)
                        return;
                }
            }
            src += 4;
        }
    }
}

/**
 * Decode DEEP TVDC 32-bit buffer
 * @param[out] dst Destination buffer
 * @param[in] src Source buffer
 * @param src_size Source buffer size (bytes)
 * @param width Width of destination buffer (pixels)
 * @param height Height of destination buffer (pixels)
 * @param linesize Line size of destination buffer (bytes)
 * @param[int] tvdc TVDC lookup table
 */
static void decode_deep_tvdc32(uint8_t *dst, const uint8_t *src, int src_size, int width, int height, int linesize, const int16_t *tvdc)
{
    int x = 0, y = 0, plane = 0;
    int8_t pixel = 0;
    int i, j;

    for (i = 0; i < src_size * 2;) {
#define GETNIBBLE ((i & 1) ?  (src[i>>1] & 0xF) : (src[i>>1] >> 4))
        int d = tvdc[GETNIBBLE];
        i++;
        if (d) {
            pixel += d;
            dst[y * linesize + x*4 + plane] = pixel;
            x++;
        } else {
            if (i >= src_size * 2)
                return;
            d = GETNIBBLE + 1;
            i++;
            d = FFMIN(d, width - x);
            for (j = 0; j < d; j++) {
                dst[y * linesize + x*4 + plane] = pixel;
                x++;
            }
        }
        if (x >= width) {
            plane++;
            if (plane >= 4) {
                y++;
                if (y >= height)
                    return;
                plane = 0;
            }
            x = 0;
            pixel = 0;
            i = (i + 1) & ~1;
        }
    }
}

static int unsupported(AVCodecContext *avctx)
{
    IffContext *s = avctx->priv_data;
    avpriv_request_sample(avctx, "bitmap (compression %i, bpp %i, ham %i)", s->compression, s->bpp, s->ham);
    return AVERROR_INVALIDDATA;
}

static int decode_frame(AVCodecContext *avctx,
                        void *data, int *got_frame,
                        AVPacket *avpkt)
{
    IffContext *s          = avctx->priv_data;
    const uint8_t *buf     = avpkt->size >= 2 ? avpkt->data + AV_RB16(avpkt->data) : NULL;
    const int buf_size     = avpkt->size >= 2 ? avpkt->size - AV_RB16(avpkt->data) : 0;
    const uint8_t *buf_end = buf + buf_size;
    int y, plane, res;
    GetByteContext gb;
    const AVPixFmtDescriptor *desc;

    if ((res = extract_header(avctx, avpkt)) < 0)
        return res;
    if ((res = ff_reget_buffer(avctx, s->frame)) < 0)
        return res;

    desc = av_pix_fmt_desc_get(avctx->pix_fmt);

    if (!s->init && avctx->bits_per_coded_sample <= 8 - (s->masking == MASK_HAS_MASK) &&
        avctx->pix_fmt == AV_PIX_FMT_PAL8) {
        if ((res = cmap_read_palette(avctx, (uint32_t *)s->frame->data[1])) < 0)
            return res;
    } else if (!s->init && avctx->bits_per_coded_sample <= 8 &&
               avctx->pix_fmt == AV_PIX_FMT_RGB32) {
        if ((res = cmap_read_palette(avctx, s->mask_palbuf)) < 0)
            return res;
    }
    s->init = 1;

    switch (s->compression) {
    case 0:
        if (avctx->codec_tag == MKTAG('A', 'C', 'B', 'M')) {
            if (avctx->pix_fmt == AV_PIX_FMT_PAL8 || avctx->pix_fmt == AV_PIX_FMT_GRAY8) {
                memset(s->frame->data[0], 0, avctx->height * s->frame->linesize[0]);
                for (plane = 0; plane < s->bpp; plane++) {
                    for (y = 0; y < avctx->height && buf < buf_end; y++) {
                        uint8_t *row = &s->frame->data[0][y * s->frame->linesize[0]];
                        decodeplane8(row, buf, FFMIN(s->planesize, buf_end - buf), plane);
                        buf += s->planesize;
                    }
                }
            } else if (s->ham) { // HAM to AV_PIX_FMT_BGR32
                memset(s->frame->data[0], 0, avctx->height * s->frame->linesize[0]);
                for (y = 0; y < avctx->height; y++) {
                    uint8_t *row = &s->frame->data[0][y * s->frame->linesize[0]];
                    memset(s->ham_buf, 0, s->planesize * 8);
                    for (plane = 0; plane < s->bpp; plane++) {
                        const uint8_t * start = buf + (plane * avctx->height + y) * s->planesize;
                        if (start >= buf_end)
                            break;
                        decodeplane8(s->ham_buf, start, FFMIN(s->planesize, buf_end - start), plane);
                    }
                    decode_ham_plane32((uint32_t *)row, s->ham_buf, s->ham_palbuf, s->planesize);
                }
            } else
                return unsupported(avctx);
        } else if (avctx->codec_tag == MKTAG('D', 'E', 'E', 'P')) {
            int raw_width = avctx->width * (av_get_bits_per_pixel(desc) >> 3);
            int x;
            for (y = 0; y < avctx->height && buf < buf_end; y++) {
                uint8_t *row = &s->frame->data[0][y * s->frame->linesize[0]];
                memcpy(row, buf, FFMIN(raw_width, buf_end - buf));
                buf += raw_width;
                if (avctx->pix_fmt == AV_PIX_FMT_BGR32) {
                    for (x = 0; x < avctx->width; x++)
                        row[4 * x + 3] = row[4 * x + 3] & 0xF0 | (row[4 * x + 3] >> 4);
                }
            }
        } else if (avctx->codec_tag == MKTAG('I', 'L', 'B', 'M')) { // interleaved
            if (avctx->pix_fmt == AV_PIX_FMT_PAL8 || avctx->pix_fmt == AV_PIX_FMT_GRAY8) {
                for (y = 0; y < avctx->height; y++) {
                    uint8_t *row = &s->frame->data[0][y * s->frame->linesize[0]];
                    memset(row, 0, avctx->width);
                    for (plane = 0; plane < s->bpp && buf < buf_end; plane++) {
                        decodeplane8(row, buf, FFMIN(s->planesize, buf_end - buf), plane);
                        buf += s->planesize;
                    }
                }
            } else if (s->ham) { // HAM to AV_PIX_FMT_BGR32
                for (y = 0; y < avctx->height; y++) {
                    uint8_t *row = &s->frame->data[0][y * s->frame->linesize[0]];
                    memset(s->ham_buf, 0, s->planesize * 8);
                    for (plane = 0; plane < s->bpp && buf < buf_end; plane++) {
                        decodeplane8(s->ham_buf, buf, FFMIN(s->planesize, buf_end - buf), plane);
                        buf += s->planesize;
                    }
                    decode_ham_plane32((uint32_t *)row, s->ham_buf, s->ham_palbuf, s->planesize);
                }
            } else { // AV_PIX_FMT_BGR32
                for (y = 0; y < avctx->height; y++) {
                    uint8_t *row = &s->frame->data[0][y * s->frame->linesize[0]];
                    memset(row, 0, avctx->width << 2);
                    for (plane = 0; plane < s->bpp && buf < buf_end; plane++) {
                        decodeplane32((uint32_t *)row, buf,
                                      FFMIN(s->planesize, buf_end - buf), plane);
                        buf += s->planesize;
                    }
                }
            }
        } else if (avctx->codec_tag == MKTAG('P', 'B', 'M', ' ')) { // IFF-PBM
            if (avctx->pix_fmt == AV_PIX_FMT_PAL8 || avctx->pix_fmt == AV_PIX_FMT_GRAY8) {
                for (y = 0; y < avctx->height && buf_end > buf; y++) {
                    uint8_t *row = &s->frame->data[0][y * s->frame->linesize[0]];
                    memcpy(row, buf, FFMIN(avctx->width, buf_end - buf));
                    buf += avctx->width + (avctx->width % 2); // padding if odd
                }
            } else if (s->ham) { // IFF-PBM: HAM to AV_PIX_FMT_BGR32
                for (y = 0; y < avctx->height && buf_end > buf; y++) {
                    uint8_t *row = &s->frame->data[0][y * s->frame->linesize[0]];
                    memcpy(s->ham_buf, buf, FFMIN(avctx->width, buf_end - buf));
                    buf += avctx->width + (avctx->width & 1); // padding if odd
                    decode_ham_plane32((uint32_t *)row, s->ham_buf, s->ham_palbuf, s->planesize);
                }
            } else
                return unsupported(avctx);
        }
        break;
    case 1:
        if (avctx->codec_tag == MKTAG('I', 'L', 'B', 'M')) { // interleaved
            if (avctx->pix_fmt == AV_PIX_FMT_PAL8 || avctx->pix_fmt == AV_PIX_FMT_GRAY8) {
                for (y = 0; y < avctx->height; y++) {
                    uint8_t *row = &s->frame->data[0][y * s->frame->linesize[0]];
                    memset(row, 0, avctx->width);
                    for (plane = 0; plane < s->bpp; plane++) {
                        buf += decode_byterun(s->planebuf, s->planesize, buf, buf_end);
                        decodeplane8(row, s->planebuf, s->planesize, plane);
                    }
                }
            } else if (avctx->bits_per_coded_sample <= 8) { //8-bit (+ mask) to AV_PIX_FMT_BGR32
                for (y = 0; y < avctx->height; y++) {
                    uint8_t *row = &s->frame->data[0][y * s->frame->linesize[0]];
                    memset(s->mask_buf, 0, avctx->width * sizeof(uint32_t));
                    for (plane = 0; plane < s->bpp; plane++) {
                        buf += decode_byterun(s->planebuf, s->planesize, buf, buf_end);
                        decodeplane32(s->mask_buf, s->planebuf, s->planesize, plane);
                    }
                    lookup_pal_indicies((uint32_t *)row, s->mask_buf, s->mask_palbuf, avctx->width);
                }
            } else if (s->ham) { // HAM to AV_PIX_FMT_BGR32
                for (y = 0; y < avctx->height; y++) {
                    uint8_t *row = &s->frame->data[0][y * s->frame->linesize[0]];
                    memset(s->ham_buf, 0, s->planesize * 8);
                    for (plane = 0; plane < s->bpp; plane++) {
                        buf += decode_byterun(s->planebuf, s->planesize, buf, buf_end);
                        decodeplane8(s->ham_buf, s->planebuf, s->planesize, plane);
                    }
                    decode_ham_plane32((uint32_t *)row, s->ham_buf, s->ham_palbuf, s->planesize);
                }
            } else { // AV_PIX_FMT_BGR32
                for (y = 0; y < avctx->height; y++) {
                    uint8_t *row = &s->frame->data[0][y * s->frame->linesize[0]];
                    memset(row, 0, avctx->width << 2);
                    for (plane = 0; plane < s->bpp; plane++) {
                        buf += decode_byterun(s->planebuf, s->planesize, buf, buf_end);
                        decodeplane32((uint32_t *)row, s->planebuf, s->planesize, plane);
                    }
                }
            }
        } else if (avctx->codec_tag == MKTAG('P', 'B', 'M', ' ')) { // IFF-PBM
            if (avctx->pix_fmt == AV_PIX_FMT_PAL8 || avctx->pix_fmt == AV_PIX_FMT_GRAY8) {
                for (y = 0; y < avctx->height; y++) {
                    uint8_t *row = &s->frame->data[0][y * s->frame->linesize[0]];
                    buf += decode_byterun(row, avctx->width, buf, buf_end);
                }
            } else if (s->ham) { // IFF-PBM: HAM to AV_PIX_FMT_BGR32
                for (y = 0; y < avctx->height; y++) {
                    uint8_t *row = &s->frame->data[0][y * s->frame->linesize[0]];
                    buf += decode_byterun(s->ham_buf, avctx->width, buf, buf_end);
                    decode_ham_plane32((uint32_t *)row, s->ham_buf, s->ham_palbuf, s->planesize);
                }
            } else
                return unsupported(avctx);
        } else if (avctx->codec_tag == MKTAG('D', 'E', 'E', 'P')) { // IFF-DEEP
            if (av_get_bits_per_pixel(desc) == 32)
                decode_deep_rle32(s->frame->data[0], buf, buf_size, avctx->width, avctx->height, s->frame->linesize[0]);
            else
                return unsupported(avctx);
        }
        break;
    case 4:
        bytestream2_init(&gb, buf, buf_size);
        if (avctx->codec_tag == MKTAG('R', 'G', 'B', '8') && avctx->pix_fmt == AV_PIX_FMT_RGB32)
            decode_rgb8(&gb, s->frame->data[0], avctx->width, avctx->height, s->frame->linesize[0]);
        else if (avctx->codec_tag == MKTAG('R', 'G', 'B', 'N') && avctx->pix_fmt == AV_PIX_FMT_RGB444)
            decode_rgbn(&gb, s->frame->data[0], avctx->width, avctx->height, s->frame->linesize[0]);
        else
            return unsupported(avctx);
        break;
    case 5:
        if (avctx->codec_tag == MKTAG('D', 'E', 'E', 'P')) {
            if (av_get_bits_per_pixel(desc) == 32)
                decode_deep_tvdc32(s->frame->data[0], buf, buf_size, avctx->width, avctx->height, s->frame->linesize[0], s->tvdc);
            else
                return unsupported(avctx);
        } else
            return unsupported(avctx);
        break;
    default:
        return unsupported(avctx);
    }

    if ((res = av_frame_ref(data, s->frame)) < 0)
        return res;

    *got_frame = 1;

    return buf_size;
}

#if CONFIG_IFF_ILBM_DECODER
AVCodec ff_iff_ilbm_decoder = {
    .name           = "iff",
    .long_name      = NULL_IF_CONFIG_SMALL("IFF"),
    .type           = AVMEDIA_TYPE_VIDEO,
    .id             = AV_CODEC_ID_IFF_ILBM,
    .priv_data_size = sizeof(IffContext),
    .init           = decode_init,
    .close          = decode_end,
    .decode         = decode_frame,
    .capabilities   = AV_CODEC_CAP_DR1,
};
#endif
#if CONFIG_IFF_BYTERUN1_DECODER
AVCodec ff_iff_byterun1_decoder = {
    .name           = "iff",
    .long_name      = NULL_IF_CONFIG_SMALL("IFF"),
    .type           = AVMEDIA_TYPE_VIDEO,
    .id             = AV_CODEC_ID_IFF_BYTERUN1,
    .priv_data_size = sizeof(IffContext),
    .init           = decode_init,
    .close          = decode_end,
    .decode         = decode_frame,
    .capabilities   = AV_CODEC_CAP_DR1,
};
#endif