1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
|
/*
* HEVC video Decoder
*
* Copyright (C) 2012 - 2013 Guillaume Martres
* Copyright (C) 2013 Seppo Tomperi
* Copyright (C) 2013 Wassim Hamidouche
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/common.h"
#include "libavutil/internal.h"
#include "cabac_functions.h"
#include "golomb.h"
#include "hevc.h"
#include "bit_depth_template.c"
#define LUMA 0
#define CB 1
#define CR 2
static const uint8_t tctable[54] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, // QP 0...18
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, // QP 19...37
5, 5, 6, 6, 7, 8, 9,10,11,13,14,16,18,20,22,24 // QP 38...53
};
static const uint8_t betatable[52] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 7, 8, // QP 0...18
9,10,11,12,13,14,15,16,17,18,20,22,24,26,28,30,32,34,36, // QP 19...37
38,40,42,44,46,48,50,52,54,56,58,60,62,64 // QP 38...51
};
static int chroma_tc(HEVCContext *s, int qp_y, int c_idx, int tc_offset)
{
static const int qp_c[] = { 29, 30, 31, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 37 };
int qp_i, offset;
int qp;
int idxt;
// slice qp offset is not used for deblocking
if (c_idx == 1)
offset = s->pps->cb_qp_offset;
else
offset = s->pps->cr_qp_offset;
qp_i = av_clip_c(qp_y + offset, 0, 57);
if (qp_i < 30)
qp = qp_i;
else if (qp_i > 43)
qp = qp_i - 6;
else
qp = qp_c[qp_i - 30];
idxt = av_clip_c(qp + DEFAULT_INTRA_TC_OFFSET + tc_offset, 0, 53);
return tctable[idxt];
}
static int get_qPy_pred(HEVCContext *s, int xC, int yC, int xBase, int yBase, int log2_cb_size)
{
HEVCLocalContext *lc = &s->HEVClc;
int ctb_size_mask = (1 << s->sps->log2_ctb_size) - 1;
int MinCuQpDeltaSizeMask = (1 << (s->sps->log2_ctb_size - s->pps->diff_cu_qp_delta_depth)) - 1;
int xQgBase = xBase - ( xBase & MinCuQpDeltaSizeMask );
int yQgBase = yBase - ( yBase & MinCuQpDeltaSizeMask );
int pic_width = s->sps->width >> s->sps->log2_min_coding_block_size;
int pic_height = s->sps->height >> s->sps->log2_min_coding_block_size;
int x_cb = xQgBase >> s->sps->log2_min_coding_block_size;
int y_cb = yQgBase >> s->sps->log2_min_coding_block_size;
int availableA = (xBase & ctb_size_mask) && (xQgBase & ctb_size_mask);
int availableB = (yBase & ctb_size_mask) && (yQgBase & ctb_size_mask);
int qPy_pred;
int qPy_a;
int qPy_b;
// qPy_pred
if (lc->first_qp_group) {
lc->first_qp_group = !lc->tu.is_cu_qp_delta_coded;
qPy_pred = s->sh.slice_qp;
} else {
qPy_pred = lc->qp_y;
if (log2_cb_size < s->sps->log2_ctb_size - s->pps->diff_cu_qp_delta_depth) {
static const int offsetX[8][8] = {
{-1, 1, 3, 1, 7, 1, 3, 1},
{ 0, 0, 0, 0, 0, 0, 0, 0},
{ 1, 3, 1, 3, 1, 3, 1, 3},
{ 2, 2, 2, 2, 2, 2, 2, 2},
{ 3, 5, 7, 5, 3, 5, 7, 5},
{ 4, 4, 4, 4, 4, 4, 4, 4},
{ 5, 7, 5, 7, 5, 7, 5, 7},
{ 6, 6, 6, 6, 6, 6, 6, 6}
};
static const int offsetY[8][8] = {
{ 7, 0, 1, 2, 3, 4, 5, 6},
{ 0, 1, 2, 3, 4, 5, 6, 7},
{ 1, 0, 3, 2, 5, 4, 7, 6},
{ 0, 1, 2, 3, 4, 5, 6, 7},
{ 3, 0, 1, 2, 7, 4, 5, 6},
{ 0, 1, 2, 3, 4, 5, 6, 7},
{ 1, 0, 3, 2, 5, 4, 7, 6},
{ 0, 1, 2, 3, 4, 5, 6, 7}
};
int xC0b = (xC - (xC & ctb_size_mask)) >> s->sps->log2_min_coding_block_size;
int yC0b = (yC - (yC & ctb_size_mask)) >> s->sps->log2_min_coding_block_size;
int idxX = (xQgBase & ctb_size_mask) >> s->sps->log2_min_coding_block_size;
int idxY = (yQgBase & ctb_size_mask) >> s->sps->log2_min_coding_block_size;
int idx_mask = ctb_size_mask >> s->sps->log2_min_coding_block_size;
int x, y;
x = FFMIN(xC0b + offsetX[idxX][idxY], pic_width - 1);
y = FFMIN(yC0b + (offsetY[idxX][idxY] & idx_mask), pic_height - 1);
if (xC0b == (lc->start_of_tiles_x >> s->sps->log2_min_coding_block_size) &&
offsetX[idxX][idxY] == -1) {
x = (lc->end_of_tiles_x >> s->sps->log2_min_coding_block_size) - 1;
y = yC0b - 1;
}
qPy_pred = s->qp_y_tab[y * pic_width + x];
}
}
// qPy_a
if (availableA == 0)
qPy_a = qPy_pred;
else
qPy_a = s->qp_y_tab[(x_cb - 1) + y_cb * pic_width];
// qPy_b
if (availableB == 0)
qPy_b = qPy_pred;
else
qPy_b = s->qp_y_tab[x_cb + (y_cb - 1) * pic_width];
return (qPy_a + qPy_b + 1) >> 1;
}
void ff_hevc_set_qPy(HEVCContext *s, int xC, int yC, int xBase, int yBase, int log2_cb_size)
{
int qp_y = get_qPy_pred(s, xC, yC, xBase, yBase, log2_cb_size);
if (s->HEVClc.tu.cu_qp_delta != 0) {
int off = s->sps->qp_bd_offset;
s->HEVClc.qp_y = ((qp_y + s->HEVClc.tu.cu_qp_delta + 52 + 2 * off) % (52 + off)) - off;
} else
s->HEVClc.qp_y = qp_y;
}
static int get_qPy(HEVCContext *s, int xC, int yC)
{
int log2_min_cb_size = s->sps->log2_min_coding_block_size;
int pic_width = s->sps->width>>log2_min_cb_size;
int x = xC >> log2_min_cb_size;
int y = yC >> log2_min_cb_size;
return s->qp_y_tab[x + y * pic_width];
}
static void copy_CTB(uint8_t *dst, uint8_t *src, int width, int height, int stride)
{
int i;
for(i=0; i< height; i++){
memcpy(dst, src, width);
dst += stride;
src += stride;
}
}
#define CTB(tab, x, y) ((tab)[(y) * s->sps->ctb_width + (x)])
static void sao_filter_CTB(HEVCContext *s, int x, int y, int c_idx_min, int c_idx_max)
{
// TODO: This should be easily parallelizable
// TODO: skip CBs when (cu_transquant_bypass_flag || (pcm_loop_filter_disable_flag && pcm_flag))
int c_idx = 0;
int class = 1, class_index;
int edges[4]; // 0 left 1 top 2 right 3 bottom
SAOParams *sao[4];
int classes[4];
int x_shift = 0, y_shift = 0;
int x_ctb = x>>s->sps->log2_ctb_size;
int y_ctb = y>>s->sps->log2_ctb_size;
int ctb_addr_rs = y_ctb * s->sps->ctb_width + x_ctb;
int ctb_addr_ts = s->pps->ctb_addr_rs_to_ts[ctb_addr_rs];
// flags indicating unfilterable edges
uint8_t vert_edge[] = {0,0,0,0};
uint8_t horiz_edge[] = {0,0,0,0};
uint8_t diag_edge[] = {0,0,0,0};
uint8_t lfase[3]; // current, above, left
uint8_t no_tile_filter = s->pps->tiles_enabled_flag && !s->pps->loop_filter_across_tiles_enabled_flag;
uint8_t left_tile_edge = 0;
uint8_t up_tile_edge = 0;
sao[0] = &CTB(s->sao, x_ctb, y_ctb);
edges[0] = x_ctb == 0;
edges[1] = y_ctb == 0;
edges[2] = x_ctb == (s->sps->ctb_width - 1);
edges[3] = y_ctb == (s->sps->ctb_height - 1);
lfase[0] = CTB(s->filter_slice_edges, x_ctb, y_ctb);
classes[0] = 0;
if (!edges[0]) {
left_tile_edge = no_tile_filter && s->pps->tile_id[ctb_addr_ts] != s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs-1]];
sao[class] = &CTB(s->sao, x_ctb - 1, y_ctb);
vert_edge[0] = (!lfase[0] && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb - 1, y_ctb)) || left_tile_edge;
vert_edge[2] = vert_edge[0];
lfase[2] = CTB(s->filter_slice_edges, x_ctb - 1, y_ctb);
classes[class] = 2;
class++;
x_shift = 8;
}
if (!edges[1]) {
up_tile_edge = no_tile_filter && s->pps->tile_id[ctb_addr_ts] != s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs - s->sps->ctb_width]];
sao[class] = &CTB(s->sao, x_ctb, y_ctb - 1);
horiz_edge[0] = (!lfase[0] && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb, y_ctb - 1)) || up_tile_edge;
horiz_edge[1] = horiz_edge[0];
lfase[1] = CTB(s->filter_slice_edges, x_ctb, y_ctb - 1);
classes[class] = 1;
class++;
y_shift = 4;
if (!edges[0]) {
classes[class] = 3;
sao[class] = &CTB(s->sao, x_ctb - 1, y_ctb - 1);
class++;
// Tile check here is done current CTB row/col, not above/left like you'd expect,
//but that is because the tile boundary always extends through the whole pic
vert_edge[1] = (!lfase[1] && CTB(s->tab_slice_address, x_ctb, y_ctb - 1) != CTB(s->tab_slice_address, x_ctb - 1, y_ctb - 1)) || left_tile_edge;
vert_edge[3] = vert_edge[1];
horiz_edge[2] = (!lfase[2] && CTB(s->tab_slice_address, x_ctb - 1, y_ctb) != CTB(s->tab_slice_address, x_ctb - 1, y_ctb - 1)) || up_tile_edge;
horiz_edge[3] = horiz_edge[2];
diag_edge[0] = (!lfase[0] && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb - 1, y_ctb - 1)) || left_tile_edge || up_tile_edge;
diag_edge[3] = diag_edge[0];
// Does left CTB comes after above CTB?
if(CTB(s->tab_slice_address, x_ctb - 1, y_ctb) > CTB(s->tab_slice_address, x_ctb, y_ctb - 1)) {
diag_edge[2] = !lfase[2] || left_tile_edge || up_tile_edge;
diag_edge[1] = diag_edge[2];
} else if(CTB(s->tab_slice_address, x_ctb - 1, y_ctb) < CTB(s->tab_slice_address, x_ctb, y_ctb - 1)) {
diag_edge[1] = !lfase[1] || left_tile_edge || up_tile_edge;
diag_edge[2] = diag_edge[1];
} else {
// Same slice, only consider tiles
diag_edge[2] = left_tile_edge || up_tile_edge;
diag_edge[1] = diag_edge[2];
}
}
}
for (c_idx = 0; c_idx < 3; c_idx++) {
int chroma = c_idx ? 1 : 0;
int x0 = x >> chroma;
int y0 = y >> chroma;
int stride = s->frame->linesize[c_idx];
int ctb_size = (1 << (s->sps->log2_ctb_size)) >> s->sps->hshift[c_idx];
int width = FFMIN(ctb_size,
(s->sps->width >> s->sps->hshift[c_idx]) - x0);
int height = FFMIN(ctb_size,
(s->sps->height >> s->sps->vshift[c_idx]) - y0);
uint8_t *src = &s->frame->data[c_idx][y0 * stride + (x0 << s->sps->pixel_shift)];
uint8_t *dst = &s->sao_frame->data[c_idx][y0 * stride + (x0 << s->sps->pixel_shift)];
int offset = (y_shift >> chroma) * stride + ((x_shift >> chroma) << s->sps->pixel_shift);
copy_CTB(dst - offset, src - offset,
(edges[2] ? width + (x_shift >> chroma) : width) << s->sps->pixel_shift,
(edges[3] ? height + (y_shift >> chroma) : height), stride);
for (class_index = 0; class_index < class && c_idx >= c_idx_min &&
c_idx < c_idx_max; class_index++) {
switch (sao[class_index]->type_idx[c_idx]) {
case SAO_BAND:
s->hevcdsp.sao_band_filter[classes[class_index]](dst, src, stride, sao[class_index], edges, width, height, c_idx);
break;
case SAO_EDGE:
s->hevcdsp.sao_edge_filter[classes[class_index]](dst, src, stride, sao[class_index], edges, width, height, c_idx, vert_edge[classes[class_index]], horiz_edge[classes[class_index]], diag_edge[classes[class_index]]);
break;
}
}
}
}
static int get_pcm(HEVCContext *s, int x, int y)
{
int log2_min_pu_size = s->sps->log2_min_pu_size;
int pic_width_in_min_pu = s->sps->width >> s->sps->log2_min_pu_size;
int pic_height_in_min_pu = s->sps->height >> s->sps->log2_min_pu_size;
int x_pu = x >> log2_min_pu_size;
int y_pu = y >> log2_min_pu_size;
if (x < 0 || x_pu >= pic_width_in_min_pu || y < 0 || y_pu >= pic_height_in_min_pu)
return 2;
return s->is_pcm[y_pu * pic_width_in_min_pu + x_pu];
}
#define TC_CALC(qp, bs) tctable[av_clip((qp) + DEFAULT_INTRA_TC_OFFSET * ((bs) - 1) + ((tc_offset >> 1) << 1), 0, MAX_QP + DEFAULT_INTRA_TC_OFFSET)]
static void deblocking_filter_CTB(HEVCContext *s, int x0, int y0)
{
uint8_t *src;
int x, y;
int chroma;
int c_tc[2];
int beta[2];
int tc[2];
uint8_t no_p[2] = {0};
uint8_t no_q[2] = {0};
int log2_ctb_size = s->sps->log2_ctb_size;
int x_end, y_end;
int ctb_size = 1<<log2_ctb_size;
int ctb = (x0 >> log2_ctb_size) + (y0 >> log2_ctb_size) * s->sps->ctb_width;
int cur_tc_offset = s->deblock[ctb].tc_offset;
int cur_beta_offset = s->deblock[ctb].beta_offset;
int left_tc_offset, left_beta_offset;
int tc_offset, beta_offset;
int pcmf = (s->sps->pcm_enabled_flag && s->sps->pcm.loop_filter_disable_flag) ||
s->pps->transquant_bypass_enable_flag;
if (s->deblock[ctb].disable)
return;
if (x0) {
left_tc_offset = s->deblock[ctb-1].tc_offset;
left_beta_offset = s->deblock[ctb-1].beta_offset;
}
x_end = x0+ctb_size;
if (x_end > s->sps->width)
x_end = s->sps->width;
y_end = y0+ctb_size;
if (y_end > s->sps->height)
y_end = s->sps->height;
tc_offset = cur_tc_offset;
beta_offset = cur_beta_offset;
// vertical filtering luma
for (y = y0; y < y_end; y += 8) {
for (x = x0 ? x0 : 8; x < x_end; x += 8) {
const int bs0 = s->vertical_bs[(x >> 3) + (y >> 2) * s->bs_width];
const int bs1 = s->vertical_bs[(x >> 3) + ((y + 4) >> 2) * s->bs_width];
if (bs0 || bs1) {
const int qp0 = (get_qPy(s, x - 1, y) + get_qPy(s, x, y) + 1) >> 1;
const int qp1 = (get_qPy(s, x - 1, y + 4) + get_qPy(s, x, y + 4) + 1) >> 1;
beta[0] = betatable[av_clip(qp0 + ((beta_offset >> 1) << 1), 0, MAX_QP)];
beta[1] = betatable[av_clip(qp1 + ((beta_offset >> 1) << 1), 0, MAX_QP)];
tc[0] = bs0 ? TC_CALC(qp0, bs0) : 0;
tc[1] = bs1 ? TC_CALC(qp1, bs1) : 0;
src = &s->frame->data[LUMA][y * s->frame->linesize[LUMA] + (x << s->sps->pixel_shift)];
if (pcmf) {
no_p[0] = get_pcm(s, x - 1, y);
no_p[1] = get_pcm(s, x - 1, y + 4);
no_q[0] = get_pcm(s, x, y);
no_q[1] = get_pcm(s, x, y + 4);
s->hevcdsp.hevc_v_loop_filter_luma_c(src, s->frame->linesize[LUMA], beta, tc, no_p, no_q);
} else
s->hevcdsp.hevc_v_loop_filter_luma(src, s->frame->linesize[LUMA], beta, tc, no_p, no_q);
}
}
}
// vertical filtering chroma
for (chroma = 1; chroma <= 2; chroma++) {
for (y = y0; y < y_end; y += 16) {
for (x = x0 ? x0:16; x < x_end; x += 16) {
const int bs0 = s->vertical_bs[(x >> 3) + (y >> 2) * s->bs_width];
const int bs1 = s->vertical_bs[(x >> 3) + ((y + 8) >> 2) * s->bs_width];
if ((bs0 == 2) || (bs1 == 2)) {
const int qp0 = (get_qPy(s, x - 1, y) + get_qPy(s, x, y) + 1) >> 1;
const int qp1 = (get_qPy(s, x - 1, y + 8) + get_qPy(s, x, y + 8) + 1) >> 1;
c_tc[0] = (bs0 == 2) ? chroma_tc(s, qp0, chroma, tc_offset) : 0;
c_tc[1] = (bs1 == 2) ? chroma_tc(s, qp1, chroma, tc_offset) : 0;
src = &s->frame->data[chroma][(y / 2) * s->frame->linesize[chroma] + ((x / 2) << s->sps->pixel_shift)];
if (pcmf) {
no_p[0] = get_pcm(s, x - 1, y);
no_p[1] = get_pcm(s, x - 1, y + 8);
no_q[0] = get_pcm(s, x, y);
no_q[1] = get_pcm(s, x, y + 8);
s->hevcdsp.hevc_v_loop_filter_chroma_c(src, s->frame->linesize[chroma], c_tc, no_p, no_q);
} else
s->hevcdsp.hevc_v_loop_filter_chroma(src, s->frame->linesize[chroma], c_tc, no_p, no_q);
}
}
}
}
// horizontal filtering luma
if (x_end != s->sps->width)
x_end -= 8;
for (y = y0 ? y0 : 8; y < y_end; y += 8) {
for (x = x0 ? x0 - 8 : 0; x < x_end; x += 8) {
const int bs0 = s->horizontal_bs[(x + y * s->bs_width) >> 2];
const int bs1 = s->horizontal_bs[(x + 4 + y * s->bs_width) >> 2];
if (bs0 || bs1) {
const int qp0 = (get_qPy(s, x, y - 1) + get_qPy(s, x, y) + 1) >> 1;
const int qp1 = (get_qPy(s, x + 4, y - 1) + get_qPy(s, x + 4, y) + 1) >> 1;
tc_offset = x >= x0 ? cur_tc_offset : left_tc_offset;
beta_offset = x >= x0 ? cur_beta_offset : left_beta_offset;
beta[0] = betatable[av_clip(qp0 + ((beta_offset >> 1) << 1), 0, MAX_QP)];
beta[1] = betatable[av_clip(qp1 + ((beta_offset >> 1) << 1), 0, MAX_QP)];
tc[0] = bs0 ? TC_CALC(qp0, bs0) : 0;
tc[1] = bs1 ? TC_CALC(qp1, bs1) : 0;
src = &s->frame->data[LUMA][y * s->frame->linesize[LUMA] + (x << s->sps->pixel_shift)];
if (pcmf) {
no_p[0] = get_pcm(s, x, y - 1);
no_p[1] = get_pcm(s, x + 4, y - 1);
no_q[0] = get_pcm(s, x, y);
no_q[1] = get_pcm(s, x + 4, y);
s->hevcdsp.hevc_h_loop_filter_luma_c(src, s->frame->linesize[LUMA], beta, tc, no_p, no_q);
} else
s->hevcdsp.hevc_h_loop_filter_luma(src, s->frame->linesize[LUMA], beta, tc, no_p, no_q);
}
}
}
// horizontal filtering chroma
for (chroma = 1; chroma <= 2; chroma++) {
for (y = y0 ? y0 : 16; y < y_end; y += 16) {
for (x = x0 - 8; x < x_end; x += 16) {
int bs0, bs1;
// to make sure no memory access over boundary when x = -8
// TODO: simplify with row based deblocking
if (x < 0) {
bs0 = 0;
bs1 = s->horizontal_bs[(x + 8 + y * s->bs_width) >> 2];
} else if (x >= x_end - 8) {
bs0 = s->horizontal_bs[(x + y * s->bs_width) >> 2];
bs1 = 0;
} else {
bs0 = s->horizontal_bs[(x + y * s->bs_width) >> 2];
bs1 = s->horizontal_bs[(x + 8 + y * s->bs_width) >> 2];
}
if ((bs0 == 2) || (bs1 == 2)) {
const int qp0 = (bs0 == 2) ? ((get_qPy(s, x, y - 1) + get_qPy(s, x, y) + 1) >> 1) : 0;
const int qp1 = (bs1 == 2) ? ((get_qPy(s, x + 8, y - 1) + get_qPy(s, x + 8, y) + 1) >> 1) : 0;
tc_offset = x >= x0 ? cur_tc_offset : left_tc_offset;
c_tc[0] = (bs0 == 2) ? chroma_tc(s, qp0, chroma, tc_offset) : 0;
c_tc[1] = (bs1 == 2) ? chroma_tc(s, qp1, chroma, cur_tc_offset) : 0;
src = &s->frame->data[chroma][(y / 2) * s->frame->linesize[chroma] + ((x / 2) << s->sps->pixel_shift)];
if (pcmf) {
no_p[0] = get_pcm(s, x, y - 1);
no_p[1] = get_pcm(s, x + 8, y - 1);
no_q[0] = get_pcm(s, x, y);
no_q[1] = get_pcm(s, x + 8, y);
s->hevcdsp.hevc_h_loop_filter_chroma_c(src, s->frame->linesize[chroma], c_tc, no_p, no_q);
} else
s->hevcdsp.hevc_h_loop_filter_chroma(src, s->frame->linesize[chroma], c_tc, no_p, no_q);
}
}
}
}
}
static int boundary_strength(HEVCContext *s, MvField *curr,
uint8_t curr_cbf_luma, MvField *neigh,
uint8_t neigh_cbf_luma, RefPicList *neigh_refPicList,
int tu_border)
{
int mvs = curr->pred_flag[0] + curr->pred_flag[1];
if (tu_border) {
if (curr->is_intra || neigh->is_intra)
return 2;
if (curr_cbf_luma || neigh_cbf_luma)
return 1;
}
if (mvs == neigh->pred_flag[0] + neigh->pred_flag[1]) {
if (mvs == 2) {
// same L0 and L1
if (s->ref->refPicList[0].list[curr->ref_idx[0]] == neigh_refPicList[0].list[neigh->ref_idx[0]] &&
s->ref->refPicList[0].list[curr->ref_idx[0]] == s->ref->refPicList[1].list[curr->ref_idx[1]] &&
neigh_refPicList[0].list[neigh->ref_idx[0]] == neigh_refPicList[1].list[neigh->ref_idx[1]]) {
if ((abs(neigh->mv[0].x - curr->mv[0].x) >= 4 || abs(neigh->mv[0].y - curr->mv[0].y) >= 4 ||
abs(neigh->mv[1].x - curr->mv[1].x) >= 4 || abs(neigh->mv[1].y - curr->mv[1].y) >= 4) &&
(abs(neigh->mv[1].x - curr->mv[0].x) >= 4 || abs(neigh->mv[1].y - curr->mv[0].y) >= 4 ||
abs(neigh->mv[0].x - curr->mv[1].x) >= 4 || abs(neigh->mv[0].y - curr->mv[1].y) >= 4))
return 1;
else
return 0;
} else if (neigh_refPicList[0].list[neigh->ref_idx[0]] == s->ref->refPicList[0].list[curr->ref_idx[0]] &&
neigh_refPicList[1].list[neigh->ref_idx[1]] == s->ref->refPicList[1].list[curr->ref_idx[1]]) {
if (abs(neigh->mv[0].x - curr->mv[0].x) >= 4 || abs(neigh->mv[0].y - curr->mv[0].y) >= 4 ||
abs(neigh->mv[1].x - curr->mv[1].x) >= 4 || abs(neigh->mv[1].y - curr->mv[1].y) >= 4)
return 1;
else
return 0;
} else if (neigh_refPicList[1].list[neigh->ref_idx[1]] == s->ref->refPicList[0].list[curr->ref_idx[0]] &&
neigh_refPicList[0].list[neigh->ref_idx[0]] == s->ref->refPicList[1].list[curr->ref_idx[1]]) {
if (abs(neigh->mv[1].x - curr->mv[0].x) >= 4 || abs(neigh->mv[1].y - curr->mv[0].y) >= 4 ||
abs(neigh->mv[0].x - curr->mv[1].x) >= 4 || abs(neigh->mv[0].y - curr->mv[1].y) >= 4)
return 1;
else
return 0;
} else {
return 1;
}
} else { // 1 MV
Mv A, B;
int ref_A;
int ref_B;
if (curr->pred_flag[0]) {
A = curr->mv[0];
ref_A = s->ref->refPicList[0].list[curr->ref_idx[0]];
} else {
A = curr->mv[1];
ref_A = s->ref->refPicList[1].list[curr->ref_idx[1]];
}
if (neigh->pred_flag[0]) {
B = neigh->mv[0];
ref_B = neigh_refPicList[0].list[neigh->ref_idx[0]];
} else {
B = neigh->mv[1];
ref_B = neigh_refPicList[1].list[neigh->ref_idx[1]];
}
if (ref_A == ref_B) {
if (abs(A.x - B.x) >= 4 || abs(A.y - B.y) >= 4)
return 1;
else
return 0;
} else
return 1;
}
}
return 1;
}
void ff_hevc_deblocking_boundary_strengths(HEVCContext *s, int x0, int y0, int log2_trafo_size,
int slice_or_tiles_up_boundary, int slice_or_tiles_left_boundary)
{
MvField *tab_mvf = s->ref->tab_mvf;
int log2_min_pu_size = s->sps->log2_min_pu_size;
int log2_min_tu_size = s->sps->log2_min_transform_block_size;
int pic_width_in_min_pu = s->sps->width >> log2_min_pu_size;
int pic_width_in_min_tu = s->sps->width >> log2_min_tu_size;
int is_intra = tab_mvf[(y0 >> log2_min_pu_size) * pic_width_in_min_pu + (x0 >> log2_min_pu_size)].is_intra;
int i, j;
int bs;
if (y0 > 0 && (y0 & 7) == 0) {
int yp_pu = (y0 - 1) >> log2_min_pu_size;
int yq_pu = y0 >> log2_min_pu_size;
int yp_tu = (y0 - 1) >> log2_min_tu_size;
int yq_tu = y0 >> log2_min_tu_size;
for (i = 0; i < (1 << log2_trafo_size); i += 4) {
int x_pu = (x0 + i) >> log2_min_pu_size;
int x_tu = (x0 + i) >> log2_min_tu_size;
MvField *top = &tab_mvf[yp_pu * pic_width_in_min_pu + x_pu];
MvField *curr = &tab_mvf[yq_pu * pic_width_in_min_pu + x_pu];
uint8_t top_cbf_luma = s->cbf_luma[yp_tu * pic_width_in_min_tu + x_tu];
uint8_t curr_cbf_luma = s->cbf_luma[yq_tu * pic_width_in_min_tu + x_tu];
RefPicList* top_refPicList = ff_hevc_get_ref_list(s, s->ref, x0 + i, y0 - 1);
bs = boundary_strength(s, curr, curr_cbf_luma, top, top_cbf_luma, top_refPicList, 1);
if (!s->sh.slice_loop_filter_across_slices_enabled_flag && (slice_or_tiles_up_boundary & 1) && (y0 % (1 << s->sps->log2_ctb_size)) == 0)
bs = 0;
else if (!s->pps->loop_filter_across_tiles_enabled_flag && (slice_or_tiles_up_boundary & 2) && (y0 % (1 << s->sps->log2_ctb_size)) == 0)
bs = 0;
if (y0 == 0 || s->sh.disable_deblocking_filter_flag == 1)
bs = 0;
if (bs)
s->horizontal_bs[((x0 + i) + y0 * s->bs_width) >> 2] = bs;
}
}
// bs for TU internal horizontal PU boundaries
if (log2_trafo_size > s->sps->log2_min_pu_size && !is_intra)
for (j = 8; j < (1 << log2_trafo_size); j += 8) {
int yp_pu = (y0 + j - 1) >> log2_min_pu_size;
int yq_pu = (y0 + j) >> log2_min_pu_size;
int yp_tu = (y0 + j - 1) >> log2_min_tu_size;
int yq_tu = (y0 + j) >> log2_min_tu_size;
for (i = 0; i < (1<<log2_trafo_size); i += 4) {
int x_pu = (x0 + i) >> log2_min_pu_size;
int x_tu = (x0 + i) >> log2_min_tu_size;
MvField *top = &tab_mvf[yp_pu * pic_width_in_min_pu + x_pu];
MvField *curr = &tab_mvf[yq_pu * pic_width_in_min_pu + x_pu];
uint8_t top_cbf_luma = s->cbf_luma[yp_tu * pic_width_in_min_tu + x_tu];
uint8_t curr_cbf_luma = s->cbf_luma[yq_tu * pic_width_in_min_tu + x_tu];
RefPicList* top_refPicList = ff_hevc_get_ref_list(s, s->ref, x0 + i, y0 + j - 1);
bs = boundary_strength(s, curr, curr_cbf_luma, top, top_cbf_luma, top_refPicList, 0);
if (s->sh.disable_deblocking_filter_flag == 1)
bs = 0;
if (bs)
s->horizontal_bs[((x0 + i) + (y0 + j) * s->bs_width) >> 2] = bs;
}
}
// bs for vertical TU boundaries
if (x0 > 0 && (x0 & 7) == 0) {
int xp_pu = (x0 - 1) >> log2_min_pu_size;
int xq_pu = x0 >> log2_min_pu_size;
int xp_tu = (x0 - 1) >> log2_min_tu_size;
int xq_tu = x0 >> log2_min_tu_size;
for (i = 0; i < (1 << log2_trafo_size); i += 4) {
int y_pu = (y0 + i) >> log2_min_pu_size;
int y_tu = (y0 + i) >> log2_min_tu_size;
MvField *left = &tab_mvf[y_pu * pic_width_in_min_pu + xp_pu];
MvField *curr = &tab_mvf[y_pu * pic_width_in_min_pu + xq_pu];
uint8_t left_cbf_luma = s->cbf_luma[y_tu * pic_width_in_min_tu + xp_tu];
uint8_t curr_cbf_luma = s->cbf_luma[y_tu * pic_width_in_min_tu + xq_tu];
RefPicList* left_refPicList = ff_hevc_get_ref_list(s, s->ref, x0 - 1, y0 + i);
bs = boundary_strength(s, curr, curr_cbf_luma, left, left_cbf_luma, left_refPicList, 1);
if (!s->sh.slice_loop_filter_across_slices_enabled_flag && (slice_or_tiles_left_boundary & 1) && (x0 % (1 << s->sps->log2_ctb_size)) == 0)
bs = 0;
else if (!s->pps->loop_filter_across_tiles_enabled_flag && (slice_or_tiles_left_boundary & 2) && (x0 % (1 << s->sps->log2_ctb_size)) == 0)
bs = 0;
if (x0 == 0 || s->sh.disable_deblocking_filter_flag == 1)
bs = 0;
if (bs)
s->vertical_bs[(x0 >> 3) + ((y0 + i) >> 2) * s->bs_width] = bs;
}
}
// bs for TU internal vertical PU boundaries
if (log2_trafo_size > s->sps->log2_min_pu_size && !is_intra)
for (j = 0; j < (1 << log2_trafo_size); j += 4) {
int y_pu = (y0 + j) >> log2_min_pu_size;
int y_tu = (y0 + j) >> log2_min_tu_size;
for (i = 8; i < (1 << log2_trafo_size); i += 8) {
int xp_pu = (x0 + i - 1) >> log2_min_pu_size;
int xq_pu = (x0 + i) >> log2_min_pu_size;
int xp_tu = (x0 + i - 1) >> log2_min_tu_size;
int xq_tu = (x0 + i) >> log2_min_tu_size;
MvField *left = &tab_mvf[y_pu * pic_width_in_min_pu + xp_pu];
MvField *curr = &tab_mvf[y_pu * pic_width_in_min_pu + xq_pu];
uint8_t left_cbf_luma = s->cbf_luma[y_tu * pic_width_in_min_tu + xp_tu];
uint8_t curr_cbf_luma = s->cbf_luma[y_tu * pic_width_in_min_tu + xq_tu];
RefPicList* left_refPicList = ff_hevc_get_ref_list(s, s->ref, x0 + i - 1, y0 + j);
bs = boundary_strength(s, curr, curr_cbf_luma, left, left_cbf_luma, left_refPicList, 0);
if (s->sh.disable_deblocking_filter_flag == 1)
bs = 0;
if (bs)
s->vertical_bs[((x0 + i) >> 3) + ((y0 + j) >> 2) * s->bs_width] = bs;
}
}
}
#undef LUMA
#undef CB
#undef CR
void ff_hevc_hls_filter(HEVCContext *s, int x, int y)
{
int c_idx_min = s->sh.slice_sample_adaptive_offset_flag[0] != 0 ? 0 : 1;
int c_idx_max = s->sh.slice_sample_adaptive_offset_flag[1] != 0 ? 3 : 1;
deblocking_filter_CTB(s, x, y);
if (s->sps->sao_enabled)
sao_filter_CTB(s, x, y, c_idx_min, c_idx_max);
}
void ff_hevc_hls_filters(HEVCContext *s, int x_ctb, int y_ctb, int ctb_size)
{
if (y_ctb && x_ctb)
ff_hevc_hls_filter(s, x_ctb - ctb_size, y_ctb - ctb_size);
if (y_ctb && x_ctb >= s->sps->width - ctb_size)
ff_hevc_hls_filter(s, x_ctb, y_ctb - ctb_size);
if (x_ctb && y_ctb >= s->sps->height - ctb_size)
ff_hevc_hls_filter(s, x_ctb - ctb_size, y_ctb);
}
|