aboutsummaryrefslogtreecommitdiffstats
path: root/libavcodec/hevc/filter.c
blob: 68ae0e9ef69f0b598376747c64ce0fb7f70eeb79 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
/*
 * HEVC video decoder
 *
 * Copyright (C) 2012 - 2013 Guillaume Martres
 * Copyright (C) 2013 Seppo Tomperi
 * Copyright (C) 2013 Wassim Hamidouche
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

#include "libavutil/common.h"
#include "libavutil/internal.h"

#include "hevcdec.h"
#include "progressframe.h"

#define LUMA 0
#define CB 1
#define CR 2

static const uint8_t tctable[54] = {
    0, 0, 0, 0, 0, 0, 0,  0,  0,  0,  0,  0,  0,  0,  0,  0, 0, 0, 1, // QP  0...18
    1, 1, 1, 1, 1, 1, 1,  1,  2,  2,  2,  2,  3,  3,  3,  3, 4, 4, 4, // QP 19...37
    5, 5, 6, 6, 7, 8, 9, 10, 11, 13, 14, 16, 18, 20, 22, 24           // QP 38...53
};

static const uint8_t betatable[52] = {
     0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  6,  7,  8, // QP 0...18
     9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, // QP 19...37
    38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64                      // QP 38...51
};

static int chroma_tc(const HEVCPPS *pps, const HEVCSPS *sps,
                     int qp_y, int c_idx, int tc_offset)
{
    static const int qp_c[] = {
        29, 30, 31, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 37
    };
    int qp, qp_i, offset, idxt;

    // slice qp offset is not used for deblocking
    if (c_idx == 1)
        offset = pps->cb_qp_offset;
    else
        offset = pps->cr_qp_offset;

    qp_i = av_clip(qp_y + offset, 0, 57);
    if (sps->chroma_format_idc == 1) {
        if (qp_i < 30)
            qp = qp_i;
        else if (qp_i > 43)
            qp = qp_i - 6;
        else
            qp = qp_c[qp_i - 30];
    } else {
        qp = av_clip(qp_i, 0, 51);
    }

    idxt = av_clip(qp + DEFAULT_INTRA_TC_OFFSET + tc_offset, 0, 53);
    return tctable[idxt];
}

static int get_qPy_pred(HEVCLocalContext *lc, const HEVCContext *s,
                        const HEVCLayerContext *l,
                        const HEVCPPS *pps, const HEVCSPS *sps,
                        int xBase, int yBase, int log2_cb_size)
{
    int ctb_size_mask        = (1 << sps->log2_ctb_size) - 1;
    int MinCuQpDeltaSizeMask = (1 << (sps->log2_ctb_size -
                                      pps->diff_cu_qp_delta_depth)) - 1;
    int xQgBase              = xBase - (xBase & MinCuQpDeltaSizeMask);
    int yQgBase              = yBase - (yBase & MinCuQpDeltaSizeMask);
    int min_cb_width         = sps->min_cb_width;
    int x_cb                 = xQgBase >> sps->log2_min_cb_size;
    int y_cb                 = yQgBase >> sps->log2_min_cb_size;
    int availableA           = (xBase   & ctb_size_mask) &&
                               (xQgBase & ctb_size_mask);
    int availableB           = (yBase   & ctb_size_mask) &&
                               (yQgBase & ctb_size_mask);
    int qPy_pred, qPy_a, qPy_b;

    // qPy_pred
    if (lc->first_qp_group || (!xQgBase && !yQgBase)) {
        lc->first_qp_group = !lc->tu.is_cu_qp_delta_coded;
        qPy_pred = s->sh.slice_qp;
    } else {
        qPy_pred = lc->qPy_pred;
    }

    // qPy_a
    if (availableA == 0)
        qPy_a = qPy_pred;
    else
        qPy_a = l->qp_y_tab[(x_cb - 1) + y_cb * min_cb_width];

    // qPy_b
    if (availableB == 0)
        qPy_b = qPy_pred;
    else
        qPy_b = l->qp_y_tab[x_cb + (y_cb - 1) * min_cb_width];

    av_assert2(qPy_a >= -sps->qp_bd_offset && qPy_a < 52);
    av_assert2(qPy_b >= -sps->qp_bd_offset && qPy_b < 52);

    return (qPy_a + qPy_b + 1) >> 1;
}

void ff_hevc_set_qPy(HEVCLocalContext *lc,
                     const HEVCLayerContext *l, const HEVCPPS *pps,
                     int xBase, int yBase, int log2_cb_size)
{
    const HEVCSPS   *const sps = pps->sps;
    const HEVCContext *const s = lc->parent;
    int qp_y = get_qPy_pred(lc, s, l, pps, sps, xBase, yBase, log2_cb_size);

    if (lc->tu.cu_qp_delta != 0) {
        int off = sps->qp_bd_offset;
        lc->qp_y = FFUMOD(qp_y + lc->tu.cu_qp_delta + 52 + 2 * off,
                                 52 + off) - off;
    } else
        lc->qp_y = qp_y;
}

static int get_qPy(const HEVCSPS *sps, const int8_t *qp_y_tab, int xC, int yC)
{
    int log2_min_cb_size  = sps->log2_min_cb_size;
    int x                 = xC >> log2_min_cb_size;
    int y                 = yC >> log2_min_cb_size;
    return qp_y_tab[x + y * sps->min_cb_width];
}

static void copy_CTB(uint8_t *dst, const uint8_t *src, int width, int height,
                     ptrdiff_t stride_dst, ptrdiff_t stride_src)
{
    int i, j;

    if (((intptr_t)dst | (intptr_t)src | stride_dst | stride_src) & 15) {
        for (i = 0; i < height; i++) {
            for (j = 0; j < width - 7; j+=8)
                AV_COPY64U(dst+j, src+j);
            dst += stride_dst;
            src += stride_src;
        }
        if (width&7) {
            dst += ((width>>3)<<3) - stride_dst * height;
            src += ((width>>3)<<3) - stride_src * height;
            width &= 7;
            for (i = 0; i < height; i++) {
                for (j = 0; j < width; j++)
                    dst[j] = src[j];
                dst += stride_dst;
                src += stride_src;
            }
        }
    } else {
        for (i = 0; i < height; i++) {
            for (j = 0; j < width; j+=16)
                AV_COPY128(dst+j, src+j);
            dst += stride_dst;
            src += stride_src;
        }
    }
}

static void copy_pixel(uint8_t *dst, const uint8_t *src, int pixel_shift)
{
    if (pixel_shift)
        *(uint16_t *)dst = *(uint16_t *)src;
    else
        *dst = *src;
}

static void copy_vert(uint8_t *dst, const uint8_t *src,
                      int pixel_shift, int height,
                      ptrdiff_t stride_dst, ptrdiff_t stride_src)
{
    int i;
    if (pixel_shift == 0) {
        for (i = 0; i < height; i++) {
            *dst = *src;
            dst += stride_dst;
            src += stride_src;
        }
    } else {
        for (i = 0; i < height; i++) {
            *(uint16_t *)dst = *(uint16_t *)src;
            dst += stride_dst;
            src += stride_src;
        }
    }
}

static void copy_CTB_to_hv(const HEVCLayerContext *l, const HEVCSPS *sps,
                           const uint8_t *src,
                           ptrdiff_t stride_src, int x, int y, int width, int height,
                           int c_idx, int x_ctb, int y_ctb)
{
    int sh = sps->pixel_shift;
    int w = sps->width >> sps->hshift[c_idx];
    int h = sps->height >> sps->vshift[c_idx];

    /* copy horizontal edges */
    memcpy(l->sao_pixel_buffer_h[c_idx] + (((2 * y_ctb) * w + x) << sh),
        src, width << sh);
    memcpy(l->sao_pixel_buffer_h[c_idx] + (((2 * y_ctb + 1) * w + x) << sh),
        src + stride_src * (height - 1), width << sh);

    /* copy vertical edges */
    copy_vert(l->sao_pixel_buffer_v[c_idx] + (((2 * x_ctb) * h + y) << sh), src, sh, height, 1 << sh, stride_src);

    copy_vert(l->sao_pixel_buffer_v[c_idx] + (((2 * x_ctb + 1) * h + y) << sh), src + ((width - 1) << sh), sh, height, 1 << sh, stride_src);
}

static void restore_tqb_pixels(const HEVCLayerContext *l,
                               const HEVCPPS *pps, const HEVCSPS *sps,
                               uint8_t *src1, const uint8_t *dst1,
                               ptrdiff_t stride_src, ptrdiff_t stride_dst,
                               int x0, int y0, int width, int height, int c_idx)
{
    if (pps->transquant_bypass_enable_flag ||
        (sps->pcm_loop_filter_disabled && sps->pcm_enabled)) {
        int x, y;
        int min_pu_size  = 1 << sps->log2_min_pu_size;
        int hshift       = sps->hshift[c_idx];
        int vshift       = sps->vshift[c_idx];
        int x_min        = ((x0         ) >> sps->log2_min_pu_size);
        int y_min        = ((y0         ) >> sps->log2_min_pu_size);
        int x_max        = ((x0 + width ) >> sps->log2_min_pu_size);
        int y_max        = ((y0 + height) >> sps->log2_min_pu_size);
        int len          = (min_pu_size >> hshift) << sps->pixel_shift;
        for (y = y_min; y < y_max; y++) {
            for (x = x_min; x < x_max; x++) {
                if (l->is_pcm[y * sps->min_pu_width + x]) {
                    int n;
                    uint8_t *src = src1 +
                         (((y << sps->log2_min_pu_size) - y0) >> vshift) * stride_src +
                        ((((x << sps->log2_min_pu_size) - x0) >> hshift) << sps->pixel_shift);
                    const uint8_t *dst = dst1 +
                         (((y << sps->log2_min_pu_size) - y0) >> vshift) * stride_dst +
                        ((((x << sps->log2_min_pu_size) - x0) >> hshift) << sps->pixel_shift);

                    for (n = 0; n < (min_pu_size >> vshift); n++) {
                        memcpy(src, dst, len);
                        src += stride_src;
                        dst += stride_dst;
                    }
                }
            }
        }
    }
}

#define CTB(tab, x, y) ((tab)[(y) * sps->ctb_width + (x)])

static void sao_filter_CTB(HEVCLocalContext *lc, const HEVCLayerContext *l,
                           const HEVCContext *s,
                           const HEVCPPS *pps, const HEVCSPS *sps,
                           int x, int y)
{
    static const uint8_t sao_tab[8] = { 0, 1, 2, 2, 3, 3, 4, 4 };
    int c_idx;
    int edges[4];  // 0 left 1 top 2 right 3 bottom
    int x_ctb                = x >> sps->log2_ctb_size;
    int y_ctb                = y >> sps->log2_ctb_size;
    int ctb_addr_rs          = y_ctb * sps->ctb_width + x_ctb;
    int ctb_addr_ts          = pps->ctb_addr_rs_to_ts[ctb_addr_rs];
    SAOParams *sao           = &CTB(l->sao, x_ctb, y_ctb);
    // flags indicating unfilterable edges
    uint8_t vert_edge[]      = { 0, 0 };
    uint8_t horiz_edge[]     = { 0, 0 };
    uint8_t diag_edge[]      = { 0, 0, 0, 0 };
    uint8_t lfase            = CTB(l->filter_slice_edges, x_ctb, y_ctb);
    uint8_t no_tile_filter   = pps->tiles_enabled_flag &&
                               !pps->loop_filter_across_tiles_enabled_flag;
    uint8_t restore          = no_tile_filter || !lfase;
    uint8_t left_tile_edge   = 0;
    uint8_t right_tile_edge  = 0;
    uint8_t up_tile_edge     = 0;
    uint8_t bottom_tile_edge = 0;

    edges[0]   = x_ctb == 0;
    edges[1]   = y_ctb == 0;
    edges[2]   = x_ctb == sps->ctb_width  - 1;
    edges[3]   = y_ctb == sps->ctb_height - 1;

    if (restore) {
        if (!edges[0]) {
            left_tile_edge  = no_tile_filter && pps->tile_id[ctb_addr_ts] != pps->tile_id[pps->ctb_addr_rs_to_ts[ctb_addr_rs-1]];
            vert_edge[0]    = (!lfase && CTB(l->tab_slice_address, x_ctb, y_ctb) != CTB(l->tab_slice_address, x_ctb - 1, y_ctb)) || left_tile_edge;
        }
        if (!edges[2]) {
            right_tile_edge = no_tile_filter && pps->tile_id[ctb_addr_ts] != pps->tile_id[pps->ctb_addr_rs_to_ts[ctb_addr_rs+1]];
            vert_edge[1]    = (!lfase && CTB(l->tab_slice_address, x_ctb, y_ctb) != CTB(l->tab_slice_address, x_ctb + 1, y_ctb)) || right_tile_edge;
        }
        if (!edges[1]) {
            up_tile_edge     = no_tile_filter && pps->tile_id[ctb_addr_ts] != pps->tile_id[pps->ctb_addr_rs_to_ts[ctb_addr_rs - sps->ctb_width]];
            horiz_edge[0]    = (!lfase && CTB(l->tab_slice_address, x_ctb, y_ctb) != CTB(l->tab_slice_address, x_ctb, y_ctb - 1)) || up_tile_edge;
        }
        if (!edges[3]) {
            bottom_tile_edge = no_tile_filter && pps->tile_id[ctb_addr_ts] != pps->tile_id[pps->ctb_addr_rs_to_ts[ctb_addr_rs + sps->ctb_width]];
            horiz_edge[1]    = (!lfase && CTB(l->tab_slice_address, x_ctb, y_ctb) != CTB(l->tab_slice_address, x_ctb, y_ctb + 1)) || bottom_tile_edge;
        }
        if (!edges[0] && !edges[1]) {
            diag_edge[0] = (!lfase && CTB(l->tab_slice_address, x_ctb, y_ctb) != CTB(l->tab_slice_address, x_ctb - 1, y_ctb - 1)) || left_tile_edge || up_tile_edge;
        }
        if (!edges[1] && !edges[2]) {
            diag_edge[1] = (!lfase && CTB(l->tab_slice_address, x_ctb, y_ctb) != CTB(l->tab_slice_address, x_ctb + 1, y_ctb - 1)) || right_tile_edge || up_tile_edge;
        }
        if (!edges[2] && !edges[3]) {
            diag_edge[2] = (!lfase && CTB(l->tab_slice_address, x_ctb, y_ctb) != CTB(l->tab_slice_address, x_ctb + 1, y_ctb + 1)) || right_tile_edge || bottom_tile_edge;
        }
        if (!edges[0] && !edges[3]) {
            diag_edge[3] = (!lfase && CTB(l->tab_slice_address, x_ctb, y_ctb) != CTB(l->tab_slice_address, x_ctb - 1, y_ctb + 1)) || left_tile_edge || bottom_tile_edge;
        }
    }

    for (c_idx = 0; c_idx < (sps->chroma_format_idc ? 3 : 1); c_idx++) {
        int x0       = x >> sps->hshift[c_idx];
        int y0       = y >> sps->vshift[c_idx];
        ptrdiff_t stride_src = s->cur_frame->f->linesize[c_idx];
        int ctb_size_h = (1 << (sps->log2_ctb_size)) >> sps->hshift[c_idx];
        int ctb_size_v = (1 << (sps->log2_ctb_size)) >> sps->vshift[c_idx];
        int width    = FFMIN(ctb_size_h, (sps->width  >> sps->hshift[c_idx]) - x0);
        int height   = FFMIN(ctb_size_v, (sps->height >> sps->vshift[c_idx]) - y0);
        int tab      = sao_tab[(FFALIGN(width, 8) >> 3) - 1];
        uint8_t *src = &s->cur_frame->f->data[c_idx][y0 * stride_src + (x0 << sps->pixel_shift)];
        ptrdiff_t stride_dst;
        uint8_t *dst;

        switch (sao->type_idx[c_idx]) {
        case SAO_BAND:
            copy_CTB_to_hv(l, sps, src, stride_src, x0, y0, width, height, c_idx,
                           x_ctb, y_ctb);
            if (pps->transquant_bypass_enable_flag ||
                (sps->pcm_loop_filter_disabled && sps->pcm_enabled)) {
                dst = lc->edge_emu_buffer;
                stride_dst = 2*MAX_PB_SIZE;
                copy_CTB(dst, src, width << sps->pixel_shift, height, stride_dst, stride_src);
                s->hevcdsp.sao_band_filter[tab](src, dst, stride_src, stride_dst,
                                                sao->offset_val[c_idx], sao->band_position[c_idx],
                                                width, height);
                restore_tqb_pixels(l, pps, sps, src, dst, stride_src, stride_dst,
                                   x, y, width, height, c_idx);
            } else {
                s->hevcdsp.sao_band_filter[tab](src, src, stride_src, stride_src,
                                                sao->offset_val[c_idx], sao->band_position[c_idx],
                                                width, height);
            }
            sao->type_idx[c_idx] = SAO_APPLIED;
            break;
        case SAO_EDGE:
        {
            int w = sps->width >> sps->hshift[c_idx];
            int h = sps->height >> sps->vshift[c_idx];
            int left_edge = edges[0];
            int top_edge = edges[1];
            int right_edge = edges[2];
            int bottom_edge = edges[3];
            int sh = sps->pixel_shift;
            int left_pixels, right_pixels;

            stride_dst = 2*MAX_PB_SIZE + AV_INPUT_BUFFER_PADDING_SIZE;
            dst = lc->edge_emu_buffer + stride_dst + AV_INPUT_BUFFER_PADDING_SIZE;

            if (!top_edge) {
                int left = 1 - left_edge;
                int right = 1 - right_edge;
                const uint8_t *src1[2];
                uint8_t *dst1;
                int src_idx, pos;

                dst1 = dst - stride_dst - (left << sh);
                src1[0] = src - stride_src - (left << sh);
                src1[1] = l->sao_pixel_buffer_h[c_idx] + (((2 * y_ctb - 1) * w + x0 - left) << sh);
                pos = 0;
                if (left) {
                    src_idx = (CTB(l->sao, x_ctb-1, y_ctb-1).type_idx[c_idx] ==
                               SAO_APPLIED);
                    copy_pixel(dst1, src1[src_idx], sh);
                    pos += (1 << sh);
                }
                src_idx = (CTB(l->sao, x_ctb, y_ctb-1).type_idx[c_idx] ==
                           SAO_APPLIED);
                memcpy(dst1 + pos, src1[src_idx] + pos, width << sh);
                if (right) {
                    pos += width << sh;
                    src_idx = (CTB(l->sao, x_ctb+1, y_ctb-1).type_idx[c_idx] ==
                               SAO_APPLIED);
                    copy_pixel(dst1 + pos, src1[src_idx] + pos, sh);
                }
            }
            if (!bottom_edge) {
                int left = 1 - left_edge;
                int right = 1 - right_edge;
                const uint8_t *src1[2];
                uint8_t *dst1;
                int src_idx, pos;

                dst1 = dst + height * stride_dst - (left << sh);
                src1[0] = src + height * stride_src - (left << sh);
                src1[1] = l->sao_pixel_buffer_h[c_idx] + (((2 * y_ctb + 2) * w + x0 - left) << sh);
                pos = 0;
                if (left) {
                    src_idx = (CTB(l->sao, x_ctb-1, y_ctb+1).type_idx[c_idx] ==
                               SAO_APPLIED);
                    copy_pixel(dst1, src1[src_idx], sh);
                    pos += (1 << sh);
                }
                src_idx = (CTB(l->sao, x_ctb, y_ctb+1).type_idx[c_idx] ==
                           SAO_APPLIED);
                memcpy(dst1 + pos, src1[src_idx] + pos, width << sh);
                if (right) {
                    pos += width << sh;
                    src_idx = (CTB(l->sao, x_ctb+1, y_ctb+1).type_idx[c_idx] ==
                               SAO_APPLIED);
                    copy_pixel(dst1 + pos, src1[src_idx] + pos, sh);
                }
            }
            left_pixels = 0;
            if (!left_edge) {
                if (CTB(l->sao, x_ctb-1, y_ctb).type_idx[c_idx] == SAO_APPLIED) {
                    copy_vert(dst - (1 << sh),
                              l->sao_pixel_buffer_v[c_idx] + (((2 * x_ctb - 1) * h + y0) << sh),
                              sh, height, stride_dst, 1 << sh);
                } else {
                    left_pixels = 1;
                }
            }
            right_pixels = 0;
            if (!right_edge) {
                if (CTB(l->sao, x_ctb+1, y_ctb).type_idx[c_idx] == SAO_APPLIED) {
                    copy_vert(dst + (width << sh),
                              l->sao_pixel_buffer_v[c_idx] + (((2 * x_ctb + 2) * h + y0) << sh),
                              sh, height, stride_dst, 1 << sh);
                } else {
                    right_pixels = 1;
                }
            }

            copy_CTB(dst - (left_pixels << sh),
                     src - (left_pixels << sh),
                     (width + left_pixels + right_pixels) << sh,
                     height, stride_dst, stride_src);

            copy_CTB_to_hv(l, sps, src, stride_src, x0, y0, width, height, c_idx,
                           x_ctb, y_ctb);
            s->hevcdsp.sao_edge_filter[tab](src, dst, stride_src, sao->offset_val[c_idx],
                                            sao->eo_class[c_idx], width, height);
            s->hevcdsp.sao_edge_restore[restore](src, dst,
                                                stride_src, stride_dst,
                                                sao,
                                                edges, width,
                                                height, c_idx,
                                                vert_edge,
                                                horiz_edge,
                                                diag_edge);
            restore_tqb_pixels(l, pps, sps, src, dst, stride_src, stride_dst,
                               x, y, width, height, c_idx);
            sao->type_idx[c_idx] = SAO_APPLIED;
            break;
        }
        }
    }
}

static int get_pcm(const HEVCSPS *sps, const uint8_t *is_pcm, int x, int y)
{
    int log2_min_pu_size = sps->log2_min_pu_size;
    int x_pu, y_pu;

    if (x < 0 || y < 0)
        return 2;

    x_pu = x >> log2_min_pu_size;
    y_pu = y >> log2_min_pu_size;

    if (x_pu >= sps->min_pu_width || y_pu >= sps->min_pu_height)
        return 2;
    return is_pcm[y_pu * sps->min_pu_width + x_pu];
}

#define TC_CALC(qp, bs)                                                 \
    tctable[av_clip((qp) + DEFAULT_INTRA_TC_OFFSET * ((bs) - 1) +       \
                    (tc_offset & -2),                                   \
                    0, MAX_QP + DEFAULT_INTRA_TC_OFFSET)]

static void deblocking_filter_CTB(const HEVCContext *s, const HEVCLayerContext *l,
                                  const HEVCPPS *pps, const HEVCSPS *sps,
                                  int x0, int y0)
{
    uint8_t **data     = s->cur_frame->f->data;
    int      *linesize = s->cur_frame->f->linesize;

    uint8_t *src;
    int x, y;
    int chroma, beta;
    int32_t c_tc[2], tc[2];
    uint8_t no_p[2] = { 0 };
    uint8_t no_q[2] = { 0 };

    int log2_ctb_size = sps->log2_ctb_size;
    int x_end, x_end2, y_end;
    int ctb_size        = 1 << log2_ctb_size;
    int ctb             = (x0 >> log2_ctb_size) +
                          (y0 >> log2_ctb_size) * sps->ctb_width;
    int cur_tc_offset   = l->deblock[ctb].tc_offset;
    int cur_beta_offset = l->deblock[ctb].beta_offset;
    int left_tc_offset, left_beta_offset;
    int tc_offset, beta_offset;
    int pcmf = (sps->pcm_enabled &&
                sps->pcm_loop_filter_disabled) ||
               pps->transquant_bypass_enable_flag;

    if (x0) {
        left_tc_offset   = l->deblock[ctb - 1].tc_offset;
        left_beta_offset = l->deblock[ctb - 1].beta_offset;
    } else {
        left_tc_offset   = 0;
        left_beta_offset = 0;
    }

    x_end = x0 + ctb_size;
    if (x_end > sps->width)
        x_end = sps->width;
    y_end = y0 + ctb_size;
    if (y_end > sps->height)
        y_end = sps->height;

    tc_offset   = cur_tc_offset;
    beta_offset = cur_beta_offset;

    x_end2 = x_end;
    if (x_end2 != sps->width)
        x_end2 -= 8;
    for (y = y0; y < y_end; y += 8) {
        // vertical filtering luma
        for (x = x0 ? x0 : 8; x < x_end; x += 8) {
            const int bs0 = l->vertical_bs[(x +  y      * l->bs_width) >> 2];
            const int bs1 = l->vertical_bs[(x + (y + 4) * l->bs_width) >> 2];
            if (bs0 || bs1) {
                const int qp = (get_qPy(sps, l->qp_y_tab, x - 1, y) +
                                get_qPy(sps, l->qp_y_tab, x,     y) + 1) >> 1;

                beta = betatable[av_clip(qp + beta_offset, 0, MAX_QP)];

                tc[0]   = bs0 ? TC_CALC(qp, bs0) : 0;
                tc[1]   = bs1 ? TC_CALC(qp, bs1) : 0;
                src     = &data[LUMA][y * linesize[LUMA] + (x << sps->pixel_shift)];
                if (pcmf) {
                    no_p[0] = get_pcm(sps, l->is_pcm, x - 1, y);
                    no_p[1] = get_pcm(sps, l->is_pcm, x - 1, y + 4);
                    no_q[0] = get_pcm(sps, l->is_pcm, x, y);
                    no_q[1] = get_pcm(sps, l->is_pcm, x, y + 4);
                    s->hevcdsp.hevc_v_loop_filter_luma_c(src, linesize[LUMA],
                                                         beta, tc, no_p, no_q);
                } else
                    s->hevcdsp.hevc_v_loop_filter_luma(src, linesize[LUMA],
                                                       beta, tc, no_p, no_q);
            }
        }

        if(!y)
             continue;

        // horizontal filtering luma
        for (x = x0 ? x0 - 8 : 0; x < x_end2; x += 8) {
            const int bs0 = l->horizontal_bs[( x      + y * l->bs_width) >> 2];
            const int bs1 = l->horizontal_bs[((x + 4) + y * l->bs_width) >> 2];
            if (bs0 || bs1) {
                const int qp = (get_qPy(sps, l->qp_y_tab, x, y - 1) +
                                get_qPy(sps, l->qp_y_tab, x, y)     + 1) >> 1;

                tc_offset   = x >= x0 ? cur_tc_offset : left_tc_offset;
                beta_offset = x >= x0 ? cur_beta_offset : left_beta_offset;

                beta = betatable[av_clip(qp + beta_offset, 0, MAX_QP)];
                tc[0]   = bs0 ? TC_CALC(qp, bs0) : 0;
                tc[1]   = bs1 ? TC_CALC(qp, bs1) : 0;
                src     = &data[LUMA][y * linesize[LUMA] + (x << sps->pixel_shift)];
                if (pcmf) {
                    no_p[0] = get_pcm(sps, l->is_pcm, x, y - 1);
                    no_p[1] = get_pcm(sps, l->is_pcm, x + 4, y - 1);
                    no_q[0] = get_pcm(sps, l->is_pcm, x, y);
                    no_q[1] = get_pcm(sps, l->is_pcm, x + 4, y);
                    s->hevcdsp.hevc_h_loop_filter_luma_c(src, linesize[LUMA],
                                                         beta, tc, no_p, no_q);
                } else
                    s->hevcdsp.hevc_h_loop_filter_luma(src, linesize[LUMA],
                                                       beta, tc, no_p, no_q);
            }
        }
    }

    if (sps->chroma_format_idc) {
        for (chroma = 1; chroma <= 2; chroma++) {
            int h = 1 << sps->hshift[chroma];
            int v = 1 << sps->vshift[chroma];

            // vertical filtering chroma
            for (y = y0; y < y_end; y += (8 * v)) {
                for (x = x0 ? x0 : 8 * h; x < x_end; x += (8 * h)) {
                    const int bs0 = l->vertical_bs[(x +  y            * l->bs_width) >> 2];
                    const int bs1 = l->vertical_bs[(x + (y + (4 * v)) * l->bs_width) >> 2];

                    if ((bs0 == 2) || (bs1 == 2)) {
                        const int qp0 = (get_qPy(sps, l->qp_y_tab, x - 1, y) +
                                         get_qPy(sps, l->qp_y_tab, x,     y) + 1) >> 1;
                        const int qp1 = (get_qPy(sps, l->qp_y_tab, x - 1, y + (4 * v)) +
                                         get_qPy(sps, l->qp_y_tab, x,     y + (4 * v)) + 1) >> 1;

                        c_tc[0] = (bs0 == 2) ? chroma_tc(pps, sps, qp0, chroma, tc_offset) : 0;
                        c_tc[1] = (bs1 == 2) ? chroma_tc(pps, sps, qp1, chroma, tc_offset) : 0;
                        src       = &data[chroma][(y >> sps->vshift[chroma]) * linesize[chroma] + ((x >> sps->hshift[chroma]) << sps->pixel_shift)];
                        if (pcmf) {
                            no_p[0] = get_pcm(sps, l->is_pcm, x - 1, y);
                            no_p[1] = get_pcm(sps, l->is_pcm, x - 1, y + (4 * v));
                            no_q[0] = get_pcm(sps, l->is_pcm, x, y);
                            no_q[1] = get_pcm(sps, l->is_pcm, x, y + (4 * v));
                            s->hevcdsp.hevc_v_loop_filter_chroma_c(src, linesize[chroma],
                                                                   c_tc, no_p, no_q);
                        } else
                            s->hevcdsp.hevc_v_loop_filter_chroma(src, linesize[chroma],
                                                                 c_tc, no_p, no_q);
                    }
                }

                if(!y)
                    continue;

                // horizontal filtering chroma
                tc_offset = x0 ? left_tc_offset : cur_tc_offset;
                x_end2 = x_end;
                if (x_end != sps->width)
                    x_end2 = x_end - 8 * h;
                for (x = x0 ? x0 - 8 * h : 0; x < x_end2; x += (8 * h)) {
                    const int bs0 = l->horizontal_bs[( x          + y * l->bs_width) >> 2];
                    const int bs1 = l->horizontal_bs[((x + 4 * h) + y * l->bs_width) >> 2];
                    if ((bs0 == 2) || (bs1 == 2)) {
                        const int qp0 = bs0 == 2 ? (get_qPy(sps, l->qp_y_tab, x,           y - 1) +
                                                    get_qPy(sps, l->qp_y_tab, x,           y)     + 1) >> 1 : 0;
                        const int qp1 = bs1 == 2 ? (get_qPy(sps, l->qp_y_tab, x + (4 * h), y - 1) +
                                                    get_qPy(sps, l->qp_y_tab, x + (4 * h), y)     + 1) >> 1 : 0;

                        c_tc[0]   = bs0 == 2 ? chroma_tc(pps, sps, qp0, chroma, tc_offset)     : 0;
                        c_tc[1]   = bs1 == 2 ? chroma_tc(pps, sps, qp1, chroma, cur_tc_offset) : 0;
                        src       = &data[chroma][(y >> sps->vshift[1]) * linesize[chroma] + ((x >> sps->hshift[1]) << sps->pixel_shift)];
                        if (pcmf) {
                            no_p[0] = get_pcm(sps, l->is_pcm, x,           y - 1);
                            no_p[1] = get_pcm(sps, l->is_pcm, x + (4 * h), y - 1);
                            no_q[0] = get_pcm(sps, l->is_pcm, x,           y);
                            no_q[1] = get_pcm(sps, l->is_pcm, x + (4 * h), y);
                            s->hevcdsp.hevc_h_loop_filter_chroma_c(src, linesize[chroma],
                                                                   c_tc, no_p, no_q);
                        } else
                            s->hevcdsp.hevc_h_loop_filter_chroma(src, linesize[chroma],
                                                                 c_tc, no_p, no_q);
                    }
                }
            }
        }
    }
}

static int boundary_strength(const HEVCContext *s, const MvField *curr, const MvField *neigh,
                             const RefPicList *neigh_refPicList)
{
    if (curr->pred_flag == PF_BI &&  neigh->pred_flag == PF_BI) {
        // same L0 and L1
        if (s->cur_frame->refPicList[0].list[curr->ref_idx[0]] == neigh_refPicList[0].list[neigh->ref_idx[0]]  &&
            s->cur_frame->refPicList[0].list[curr->ref_idx[0]] == s->cur_frame->refPicList[1].list[curr->ref_idx[1]] &&
            neigh_refPicList[0].list[neigh->ref_idx[0]] == neigh_refPicList[1].list[neigh->ref_idx[1]]) {
            if ((FFABS(neigh->mv[0].x - curr->mv[0].x) >= 4 || FFABS(neigh->mv[0].y - curr->mv[0].y) >= 4 ||
                 FFABS(neigh->mv[1].x - curr->mv[1].x) >= 4 || FFABS(neigh->mv[1].y - curr->mv[1].y) >= 4) &&
                (FFABS(neigh->mv[1].x - curr->mv[0].x) >= 4 || FFABS(neigh->mv[1].y - curr->mv[0].y) >= 4 ||
                 FFABS(neigh->mv[0].x - curr->mv[1].x) >= 4 || FFABS(neigh->mv[0].y - curr->mv[1].y) >= 4))
                return 1;
            else
                return 0;
        } else if (neigh_refPicList[0].list[neigh->ref_idx[0]] == s->cur_frame->refPicList[0].list[curr->ref_idx[0]] &&
                   neigh_refPicList[1].list[neigh->ref_idx[1]] == s->cur_frame->refPicList[1].list[curr->ref_idx[1]]) {
            if (FFABS(neigh->mv[0].x - curr->mv[0].x) >= 4 || FFABS(neigh->mv[0].y - curr->mv[0].y) >= 4 ||
                FFABS(neigh->mv[1].x - curr->mv[1].x) >= 4 || FFABS(neigh->mv[1].y - curr->mv[1].y) >= 4)
                return 1;
            else
                return 0;
        } else if (neigh_refPicList[1].list[neigh->ref_idx[1]] == s->cur_frame->refPicList[0].list[curr->ref_idx[0]] &&
                   neigh_refPicList[0].list[neigh->ref_idx[0]] == s->cur_frame->refPicList[1].list[curr->ref_idx[1]]) {
            if (FFABS(neigh->mv[1].x - curr->mv[0].x) >= 4 || FFABS(neigh->mv[1].y - curr->mv[0].y) >= 4 ||
                FFABS(neigh->mv[0].x - curr->mv[1].x) >= 4 || FFABS(neigh->mv[0].y - curr->mv[1].y) >= 4)
                return 1;
            else
                return 0;
        } else {
            return 1;
        }
    } else if ((curr->pred_flag != PF_BI) && (neigh->pred_flag != PF_BI)){ // 1 MV
        Mv A, B;
        int ref_A, ref_B;

        if (curr->pred_flag & 1) {
            A     = curr->mv[0];
            ref_A = s->cur_frame->refPicList[0].list[curr->ref_idx[0]];
        } else {
            A     = curr->mv[1];
            ref_A = s->cur_frame->refPicList[1].list[curr->ref_idx[1]];
        }

        if (neigh->pred_flag & 1) {
            B     = neigh->mv[0];
            ref_B = neigh_refPicList[0].list[neigh->ref_idx[0]];
        } else {
            B     = neigh->mv[1];
            ref_B = neigh_refPicList[1].list[neigh->ref_idx[1]];
        }

        if (ref_A == ref_B) {
            if (FFABS(A.x - B.x) >= 4 || FFABS(A.y - B.y) >= 4)
                return 1;
            else
                return 0;
        } else
            return 1;
    }

    return 1;
}

void ff_hevc_deblocking_boundary_strengths(HEVCLocalContext *lc, const HEVCLayerContext *l,
                                           const HEVCPPS *pps,
                                           int x0, int y0, int log2_trafo_size)
{
    const HEVCSPS *const sps = pps->sps;
    const HEVCContext *s = lc->parent;
    const MvField *tab_mvf = s->cur_frame->tab_mvf;
    int log2_min_pu_size = sps->log2_min_pu_size;
    int log2_min_tu_size = sps->log2_min_tb_size;
    int min_pu_width     = sps->min_pu_width;
    int min_tu_width     = sps->min_tb_width;
    int is_intra = tab_mvf[(y0 >> log2_min_pu_size) * min_pu_width +
                           (x0 >> log2_min_pu_size)].pred_flag == PF_INTRA;
    int boundary_upper, boundary_left;
    int i, j, bs;

    boundary_upper = y0 > 0 && !(y0 & 7);
    if (boundary_upper &&
        ((!s->sh.slice_loop_filter_across_slices_enabled_flag &&
          lc->boundary_flags & BOUNDARY_UPPER_SLICE &&
          (y0 % (1 << sps->log2_ctb_size)) == 0) ||
         (!pps->loop_filter_across_tiles_enabled_flag &&
          lc->boundary_flags & BOUNDARY_UPPER_TILE &&
          (y0 % (1 << sps->log2_ctb_size)) == 0)))
        boundary_upper = 0;

    if (boundary_upper) {
        const RefPicList *rpl_top = (lc->boundary_flags & BOUNDARY_UPPER_SLICE) ?
                                    ff_hevc_get_ref_list(s->cur_frame, x0, y0 - 1) :
                                    s->cur_frame->refPicList;
        int yp_pu = (y0 - 1) >> log2_min_pu_size;
        int yq_pu =  y0      >> log2_min_pu_size;
        int yp_tu = (y0 - 1) >> log2_min_tu_size;
        int yq_tu =  y0      >> log2_min_tu_size;

            for (i = 0; i < (1 << log2_trafo_size); i += 4) {
                int x_pu = (x0 + i) >> log2_min_pu_size;
                int x_tu = (x0 + i) >> log2_min_tu_size;
                const MvField *top  = &tab_mvf[yp_pu * min_pu_width + x_pu];
                const MvField *curr = &tab_mvf[yq_pu * min_pu_width + x_pu];
                uint8_t top_cbf_luma  = l->cbf_luma[yp_tu * min_tu_width + x_tu];
                uint8_t curr_cbf_luma = l->cbf_luma[yq_tu * min_tu_width + x_tu];

                if (curr->pred_flag == PF_INTRA || top->pred_flag == PF_INTRA)
                    bs = 2;
                else if (curr_cbf_luma || top_cbf_luma)
                    bs = 1;
                else
                    bs = boundary_strength(s, curr, top, rpl_top);
                l->horizontal_bs[((x0 + i) + y0 * l->bs_width) >> 2] = bs;
            }
    }

    // bs for vertical TU boundaries
    boundary_left = x0 > 0 && !(x0 & 7);
    if (boundary_left &&
        ((!s->sh.slice_loop_filter_across_slices_enabled_flag &&
          lc->boundary_flags & BOUNDARY_LEFT_SLICE &&
          (x0 % (1 << sps->log2_ctb_size)) == 0) ||
         (!pps->loop_filter_across_tiles_enabled_flag &&
          lc->boundary_flags & BOUNDARY_LEFT_TILE &&
          (x0 % (1 << sps->log2_ctb_size)) == 0)))
        boundary_left = 0;

    if (boundary_left) {
        const RefPicList *rpl_left = (lc->boundary_flags & BOUNDARY_LEFT_SLICE) ?
                                     ff_hevc_get_ref_list(s->cur_frame, x0 - 1, y0) :
                                     s->cur_frame->refPicList;
        int xp_pu = (x0 - 1) >> log2_min_pu_size;
        int xq_pu =  x0      >> log2_min_pu_size;
        int xp_tu = (x0 - 1) >> log2_min_tu_size;
        int xq_tu =  x0      >> log2_min_tu_size;

            for (i = 0; i < (1 << log2_trafo_size); i += 4) {
                int y_pu      = (y0 + i) >> log2_min_pu_size;
                int y_tu      = (y0 + i) >> log2_min_tu_size;
                const MvField *left = &tab_mvf[y_pu * min_pu_width + xp_pu];
                const MvField *curr = &tab_mvf[y_pu * min_pu_width + xq_pu];
                uint8_t left_cbf_luma = l->cbf_luma[y_tu * min_tu_width + xp_tu];
                uint8_t curr_cbf_luma = l->cbf_luma[y_tu * min_tu_width + xq_tu];

                if (curr->pred_flag == PF_INTRA || left->pred_flag == PF_INTRA)
                    bs = 2;
                else if (curr_cbf_luma || left_cbf_luma)
                    bs = 1;
                else
                    bs = boundary_strength(s, curr, left, rpl_left);
                l->vertical_bs[(x0 + (y0 + i) * l->bs_width) >> 2] = bs;
            }
    }

    if (log2_trafo_size > log2_min_pu_size && !is_intra) {
        const RefPicList *rpl = s->cur_frame->refPicList;

        // bs for TU internal horizontal PU boundaries
        for (j = 8; j < (1 << log2_trafo_size); j += 8) {
            int yp_pu = (y0 + j - 1) >> log2_min_pu_size;
            int yq_pu = (y0 + j)     >> log2_min_pu_size;

            for (i = 0; i < (1 << log2_trafo_size); i += 4) {
                int x_pu = (x0 + i) >> log2_min_pu_size;
                const MvField *top  = &tab_mvf[yp_pu * min_pu_width + x_pu];
                const MvField *curr = &tab_mvf[yq_pu * min_pu_width + x_pu];

                bs = boundary_strength(s, curr, top, rpl);
                l->horizontal_bs[((x0 + i) + (y0 + j) * l->bs_width) >> 2] = bs;
            }
        }

        // bs for TU internal vertical PU boundaries
        for (j = 0; j < (1 << log2_trafo_size); j += 4) {
            int y_pu = (y0 + j) >> log2_min_pu_size;

            for (i = 8; i < (1 << log2_trafo_size); i += 8) {
                int xp_pu = (x0 + i - 1) >> log2_min_pu_size;
                int xq_pu = (x0 + i)     >> log2_min_pu_size;
                const MvField *left = &tab_mvf[y_pu * min_pu_width + xp_pu];
                const MvField *curr = &tab_mvf[y_pu * min_pu_width + xq_pu];

                bs = boundary_strength(s, curr, left, rpl);
                l->vertical_bs[((x0 + i) + (y0 + j) * l->bs_width) >> 2] = bs;
            }
        }
    }
}

#undef LUMA
#undef CB
#undef CR

void ff_hevc_hls_filter(HEVCLocalContext *lc, const HEVCLayerContext *l,
                        const HEVCPPS *pps,
                        int x, int y, int ctb_size)
{
    const HEVCSPS   *const sps = pps->sps;
    const HEVCContext *const s = lc->parent;
    int x_end = x >= sps->width  - ctb_size;
    int skip = 0;
    if (s->avctx->skip_loop_filter >= AVDISCARD_ALL ||
        (s->avctx->skip_loop_filter >= AVDISCARD_NONKEY && !IS_IDR(s)) ||
        (s->avctx->skip_loop_filter >= AVDISCARD_NONINTRA &&
         s->sh.slice_type != HEVC_SLICE_I) ||
        (s->avctx->skip_loop_filter >= AVDISCARD_BIDIR &&
         s->sh.slice_type == HEVC_SLICE_B) ||
        (s->avctx->skip_loop_filter >= AVDISCARD_NONREF &&
        ff_hevc_nal_is_nonref(s->nal_unit_type)))
        skip = 1;

    if (!skip)
        deblocking_filter_CTB(s, l, pps, sps, x, y);
    if (sps->sao_enabled && !skip) {
        int y_end = y >= sps->height - ctb_size;
        if (y && x)
            sao_filter_CTB(lc, l, s, pps, sps, x - ctb_size, y - ctb_size);
        if (x && y_end)
            sao_filter_CTB(lc, l, s, pps, sps, x - ctb_size, y);
        if (y && x_end) {
            sao_filter_CTB(lc, l, s, pps, sps, x, y - ctb_size);
            if (s->avctx->active_thread_type & FF_THREAD_FRAME )
                ff_progress_frame_report(&s->cur_frame->tf, y);
        }
        if (x_end && y_end) {
            sao_filter_CTB(lc, l, s, pps, sps, x , y);
            if (s->avctx->active_thread_type & FF_THREAD_FRAME )
                ff_progress_frame_report(&s->cur_frame->tf, y + ctb_size);
        }
    } else if (s->avctx->active_thread_type & FF_THREAD_FRAME && x_end)
        ff_progress_frame_report(&s->cur_frame->tf, y + ctb_size - 4);
}

void ff_hevc_hls_filters(HEVCLocalContext *lc, const HEVCLayerContext *l,
                         const HEVCPPS *pps,
                         int x_ctb, int y_ctb, int ctb_size)
{
    int x_end = x_ctb >= pps->sps->width  - ctb_size;
    int y_end = y_ctb >= pps->sps->height - ctb_size;
    if (y_ctb && x_ctb)
        ff_hevc_hls_filter(lc, l, pps, x_ctb - ctb_size, y_ctb - ctb_size, ctb_size);
    if (y_ctb && x_end)
        ff_hevc_hls_filter(lc, l, pps, x_ctb, y_ctb - ctb_size, ctb_size);
    if (x_ctb && y_end)
        ff_hevc_hls_filter(lc, l, pps, x_ctb - ctb_size, y_ctb, ctb_size);
}