1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
|
/*
* G.722 ADPCM audio encoder/decoder
*
* Copyright (c) CMU 1993 Computer Science, Speech Group
* Chengxiang Lu and Alex Hauptmann
* Copyright (c) 2005 Steve Underwood <steveu at coppice.org>
* Copyright (c) 2009 Kenan Gillet
* Copyright (c) 2010 Martin Storsjo
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
*
* G.722 ADPCM audio codec
*
* This G.722 decoder is a bit-exact implementation of the ITU G.722
* specification for all three specified bitrates - 64000bps, 56000bps
* and 48000bps. It passes the ITU tests.
*
* @note For the 56000bps and 48000bps bitrates, the lowest 1 or 2 bits
* respectively of each byte are ignored.
*/
#include "avcodec.h"
#include "mathops.h"
#include "get_bits.h"
#define PREV_SAMPLES_BUF_SIZE 1024
#define FREEZE_INTERVAL 128
typedef struct {
int16_t prev_samples[PREV_SAMPLES_BUF_SIZE]; ///< memory of past decoded samples
int prev_samples_pos; ///< the number of values in prev_samples
/**
* The band[0] and band[1] correspond respectively to the lower band and higher band.
*/
struct G722Band {
int16_t s_predictor; ///< predictor output value
int32_t s_zero; ///< previous output signal from zero predictor
int8_t part_reconst_mem[2]; ///< signs of previous partially reconstructed signals
int16_t prev_qtzd_reconst; ///< previous quantized reconstructed signal (internal value, using low_inv_quant4)
int16_t pole_mem[2]; ///< second-order pole section coefficient buffer
int32_t diff_mem[6]; ///< quantizer difference signal memory
int16_t zero_mem[6]; ///< Seventh-order zero section coefficient buffer
int16_t log_factor; ///< delayed 2-logarithmic quantizer factor
int16_t scale_factor; ///< delayed quantizer scale factor
} band[2];
struct TrellisNode {
struct G722Band state;
uint32_t ssd;
int path;
} *node_buf[2], **nodep_buf[2];
struct TrellisPath {
int value;
int prev;
} *paths[2];
} G722Context;
static const int8_t sign_lookup[2] = { -1, 1 };
static const int16_t inv_log2_table[32] = {
2048, 2093, 2139, 2186, 2233, 2282, 2332, 2383,
2435, 2489, 2543, 2599, 2656, 2714, 2774, 2834,
2896, 2960, 3025, 3091, 3158, 3228, 3298, 3371,
3444, 3520, 3597, 3676, 3756, 3838, 3922, 4008
};
static const int16_t high_log_factor_step[2] = { 798, -214 };
static const int16_t high_inv_quant[4] = { -926, -202, 926, 202 };
/**
* low_log_factor_step[index] == wl[rl42[index]]
*/
static const int16_t low_log_factor_step[16] = {
-60, 3042, 1198, 538, 334, 172, 58, -30,
3042, 1198, 538, 334, 172, 58, -30, -60
};
static const int16_t low_inv_quant4[16] = {
0, -2557, -1612, -1121, -786, -530, -323, -150,
2557, 1612, 1121, 786, 530, 323, 150, 0
};
/**
* quadrature mirror filter (QMF) coefficients
*
* ITU-T G.722 Table 11
*/
static const int16_t qmf_coeffs[12] = {
3, -11, 12, 32, -210, 951, 3876, -805, 362, -156, 53, -11,
};
/**
* adaptive predictor
*
* @param cur_diff the dequantized and scaled delta calculated from the
* current codeword
*/
static void do_adaptive_prediction(struct G722Band *band, const int cur_diff)
{
int sg[2], limit, i, cur_qtzd_reconst;
const int cur_part_reconst = band->s_zero + cur_diff < 0;
sg[0] = sign_lookup[cur_part_reconst != band->part_reconst_mem[0]];
sg[1] = sign_lookup[cur_part_reconst == band->part_reconst_mem[1]];
band->part_reconst_mem[1] = band->part_reconst_mem[0];
band->part_reconst_mem[0] = cur_part_reconst;
band->pole_mem[1] = av_clip((sg[0] * av_clip(band->pole_mem[0], -8191, 8191) >> 5) +
(sg[1] << 7) + (band->pole_mem[1] * 127 >> 7), -12288, 12288);
limit = 15360 - band->pole_mem[1];
band->pole_mem[0] = av_clip(-192 * sg[0] + (band->pole_mem[0] * 255 >> 8), -limit, limit);
if (cur_diff) {
for (i = 0; i < 6; i++)
band->zero_mem[i] = ((band->zero_mem[i]*255) >> 8) +
((band->diff_mem[i]^cur_diff) < 0 ? -128 : 128);
} else
for (i = 0; i < 6; i++)
band->zero_mem[i] = (band->zero_mem[i]*255) >> 8;
for (i = 5; i > 0; i--)
band->diff_mem[i] = band->diff_mem[i-1];
band->diff_mem[0] = av_clip_int16(cur_diff << 1);
band->s_zero = 0;
for (i = 5; i >= 0; i--)
band->s_zero += (band->zero_mem[i]*band->diff_mem[i]) >> 15;
cur_qtzd_reconst = av_clip_int16((band->s_predictor + cur_diff) << 1);
band->s_predictor = av_clip_int16(band->s_zero +
(band->pole_mem[0] * cur_qtzd_reconst >> 15) +
(band->pole_mem[1] * band->prev_qtzd_reconst >> 15));
band->prev_qtzd_reconst = cur_qtzd_reconst;
}
static int inline linear_scale_factor(const int log_factor)
{
const int wd1 = inv_log2_table[(log_factor >> 6) & 31];
const int shift = log_factor >> 11;
return shift < 0 ? wd1 >> -shift : wd1 << shift;
}
static void update_low_predictor(struct G722Band *band, const int ilow)
{
do_adaptive_prediction(band,
band->scale_factor * low_inv_quant4[ilow] >> 10);
// quantizer adaptation
band->log_factor = av_clip((band->log_factor * 127 >> 7) +
low_log_factor_step[ilow], 0, 18432);
band->scale_factor = linear_scale_factor(band->log_factor - (8 << 11));
}
static void update_high_predictor(struct G722Band *band, const int dhigh,
const int ihigh)
{
do_adaptive_prediction(band, dhigh);
// quantizer adaptation
band->log_factor = av_clip((band->log_factor * 127 >> 7) +
high_log_factor_step[ihigh&1], 0, 22528);
band->scale_factor = linear_scale_factor(band->log_factor - (10 << 11));
}
static void apply_qmf(const int16_t *prev_samples, int *xout1, int *xout2)
{
int i;
*xout1 = 0;
*xout2 = 0;
for (i = 0; i < 12; i++) {
MAC16(*xout2, prev_samples[2*i ], qmf_coeffs[i ]);
MAC16(*xout1, prev_samples[2*i+1], qmf_coeffs[11-i]);
}
}
static av_cold int g722_init(AVCodecContext * avctx)
{
G722Context *c = avctx->priv_data;
if (avctx->channels != 1) {
av_log(avctx, AV_LOG_ERROR, "Only mono tracks are allowed.\n");
return AVERROR_INVALIDDATA;
}
avctx->sample_fmt = AV_SAMPLE_FMT_S16;
switch (avctx->bits_per_coded_sample) {
case 8:
case 7:
case 6:
break;
default:
av_log(avctx, AV_LOG_WARNING, "Unsupported bits_per_coded_sample [%d], "
"assuming 8\n",
avctx->bits_per_coded_sample);
case 0:
avctx->bits_per_coded_sample = 8;
break;
}
c->band[0].scale_factor = 8;
c->band[1].scale_factor = 2;
c->prev_samples_pos = 22;
if (avctx->lowres)
avctx->sample_rate /= 2;
if (avctx->trellis) {
int frontier = 1 << avctx->trellis;
int max_paths = frontier * FREEZE_INTERVAL;
int i;
for (i = 0; i < 2; i++) {
c->paths[i] = av_mallocz(max_paths * sizeof(**c->paths));
c->node_buf[i] = av_mallocz(2 * frontier * sizeof(**c->node_buf));
c->nodep_buf[i] = av_mallocz(2 * frontier * sizeof(**c->nodep_buf));
}
}
return 0;
}
static av_cold int g722_close(AVCodecContext *avctx)
{
G722Context *c = avctx->priv_data;
int i;
for (i = 0; i < 2; i++) {
av_freep(&c->paths[i]);
av_freep(&c->node_buf[i]);
av_freep(&c->nodep_buf[i]);
}
return 0;
}
#if CONFIG_ADPCM_G722_DECODER
static const int16_t low_inv_quant5[32] = {
-35, -35, -2919, -2195, -1765, -1458, -1219, -1023,
-858, -714, -587, -473, -370, -276, -190, -110,
2919, 2195, 1765, 1458, 1219, 1023, 858, 714,
587, 473, 370, 276, 190, 110, 35, -35
};
static const int16_t low_inv_quant6[64] = {
-17, -17, -17, -17, -3101, -2738, -2376, -2088,
-1873, -1689, -1535, -1399, -1279, -1170, -1072, -982,
-899, -822, -750, -682, -618, -558, -501, -447,
-396, -347, -300, -254, -211, -170, -130, -91,
3101, 2738, 2376, 2088, 1873, 1689, 1535, 1399,
1279, 1170, 1072, 982, 899, 822, 750, 682,
618, 558, 501, 447, 396, 347, 300, 254,
211, 170, 130, 91, 54, 17, -54, -17
};
static const int16_t *low_inv_quants[3] = { low_inv_quant6, low_inv_quant5,
low_inv_quant4 };
static int g722_decode_frame(AVCodecContext *avctx, void *data,
int *data_size, AVPacket *avpkt)
{
G722Context *c = avctx->priv_data;
int16_t *out_buf = data;
int j, out_len = 0;
const int skip = 8 - avctx->bits_per_coded_sample;
const int16_t *quantizer_table = low_inv_quants[skip];
GetBitContext gb;
init_get_bits(&gb, avpkt->data, avpkt->size * 8);
for (j = 0; j < avpkt->size; j++) {
int ilow, ihigh, rlow;
ihigh = get_bits(&gb, 2);
ilow = get_bits(&gb, 6 - skip);
skip_bits(&gb, skip);
rlow = av_clip((c->band[0].scale_factor * quantizer_table[ilow] >> 10)
+ c->band[0].s_predictor, -16384, 16383);
update_low_predictor(&c->band[0], ilow >> (2 - skip));
if (!avctx->lowres) {
const int dhigh = c->band[1].scale_factor *
high_inv_quant[ihigh] >> 10;
const int rhigh = av_clip(dhigh + c->band[1].s_predictor,
-16384, 16383);
int xout1, xout2;
update_high_predictor(&c->band[1], dhigh, ihigh);
c->prev_samples[c->prev_samples_pos++] = rlow + rhigh;
c->prev_samples[c->prev_samples_pos++] = rlow - rhigh;
apply_qmf(c->prev_samples + c->prev_samples_pos - 24,
&xout1, &xout2);
out_buf[out_len++] = av_clip_int16(xout1 >> 12);
out_buf[out_len++] = av_clip_int16(xout2 >> 12);
if (c->prev_samples_pos >= PREV_SAMPLES_BUF_SIZE) {
memmove(c->prev_samples,
c->prev_samples + c->prev_samples_pos - 22,
22 * sizeof(c->prev_samples[0]));
c->prev_samples_pos = 22;
}
} else
out_buf[out_len++] = rlow;
}
*data_size = out_len << 1;
return avpkt->size;
}
AVCodec adpcm_g722_decoder = {
.name = "g722",
.type = AVMEDIA_TYPE_AUDIO,
.id = CODEC_ID_ADPCM_G722,
.priv_data_size = sizeof(G722Context),
.init = g722_init,
.decode = g722_decode_frame,
.long_name = NULL_IF_CONFIG_SMALL("G.722 ADPCM"),
.max_lowres = 1,
};
#endif
#if CONFIG_ADPCM_G722_ENCODER
static const int16_t low_quant[33] = {
35, 72, 110, 150, 190, 233, 276, 323,
370, 422, 473, 530, 587, 650, 714, 786,
858, 940, 1023, 1121, 1219, 1339, 1458, 1612,
1765, 1980, 2195, 2557, 2919
};
static inline void filter_samples(G722Context *c, const int16_t *samples,
int *xlow, int *xhigh)
{
int xout1, xout2;
c->prev_samples[c->prev_samples_pos++] = samples[0];
c->prev_samples[c->prev_samples_pos++] = samples[1];
apply_qmf(c->prev_samples + c->prev_samples_pos - 24, &xout1, &xout2);
*xlow = xout1 + xout2 >> 13;
*xhigh = xout1 - xout2 >> 13;
if (c->prev_samples_pos >= PREV_SAMPLES_BUF_SIZE) {
memmove(c->prev_samples,
c->prev_samples + c->prev_samples_pos - 22,
22 * sizeof(c->prev_samples[0]));
c->prev_samples_pos = 22;
}
}
static inline int encode_high(const struct G722Band *state, int xhigh)
{
int diff = av_clip_int16(xhigh - state->s_predictor);
int pred = 141 * state->scale_factor >> 8;
/* = diff >= 0 ? (diff < pred) + 2 : diff >= -pred */
return ((diff ^ (diff >> (sizeof(diff)*8-1))) < pred) + 2*(diff >= 0);
}
static inline int encode_low(const struct G722Band* state, int xlow)
{
int diff = av_clip_int16(xlow - state->s_predictor);
/* = diff >= 0 ? diff : -(diff + 1) */
int limit = diff ^ (diff >> (sizeof(diff)*8-1));
int i = 0;
limit = limit + 1 << 10;
if (limit > low_quant[8] * state->scale_factor)
i = 9;
while (i < 29 && limit > low_quant[i] * state->scale_factor)
i++;
return (diff < 0 ? (i < 2 ? 63 : 33) : 61) - i;
}
static int g722_encode_trellis(AVCodecContext *avctx,
uint8_t *dst, int buf_size, void *data)
{
G722Context *c = avctx->priv_data;
const int16_t *samples = data;
int i, j, k;
int frontier = 1 << avctx->trellis;
struct TrellisNode **nodes[2];
struct TrellisNode **nodes_next[2];
int pathn[2] = {0, 0}, froze = -1;
struct TrellisPath *p[2];
for (i = 0; i < 2; i++) {
nodes[i] = c->nodep_buf[i];
nodes_next[i] = c->nodep_buf[i] + frontier;
memset(c->nodep_buf[i], 0, 2 * frontier * sizeof(*c->nodep_buf));
nodes[i][0] = c->node_buf[i] + frontier;
nodes[i][0]->ssd = 0;
nodes[i][0]->path = 0;
nodes[i][0]->state = c->band[i];
}
for (i = 0; i < buf_size >> 1; i++) {
int xlow, xhigh;
struct TrellisNode *next[2];
int heap_pos[2] = {0, 0};
for (j = 0; j < 2; j++) {
next[j] = c->node_buf[j] + frontier*(i & 1);
memset(nodes_next[j], 0, frontier * sizeof(**nodes_next));
}
filter_samples(c, &samples[2*i], &xlow, &xhigh);
for (j = 0; j < frontier && nodes[0][j]; j++) {
/* Only k >> 2 affects the future adaptive state, therefore testing
* small steps that don't change k >> 2 is useless, the orignal
* value from encode_low is better than them. Since we step k
* in steps of 4, make sure range is a multiple of 4, so that
* we don't miss the original value from encode_low. */
int range = j < frontier/2 ? 4 : 0;
struct TrellisNode *cur_node = nodes[0][j];
int ilow = encode_low(&cur_node->state, xlow);
for (k = ilow - range; k <= ilow + range && k <= 63; k += 4) {
int decoded, dec_diff, pos;
uint32_t ssd;
struct TrellisNode* node;
if (k < 0)
continue;
decoded = av_clip((cur_node->state.scale_factor *
low_inv_quant6[k] >> 10)
+ cur_node->state.s_predictor, -16384, 16383);
dec_diff = xlow - decoded;
#define STORE_NODE(index, UPDATE, VALUE)\
ssd = cur_node->ssd + dec_diff*dec_diff;\
/* Check for wraparound. Using 64 bit ssd counters would \
* be simpler, but is slower on x86 32 bit. */\
if (ssd < cur_node->ssd)\
continue;\
if (heap_pos[index] < frontier) {\
pos = heap_pos[index]++;\
assert(pathn[index] < FREEZE_INTERVAL * frontier);\
node = nodes_next[index][pos] = next[index]++;\
node->path = pathn[index]++;\
} else {\
/* Try to replace one of the leaf nodes with the new \
* one, but not always testing the same leaf position */\
pos = (frontier>>1) + (heap_pos[index] & ((frontier>>1) - 1));\
if (ssd >= nodes_next[index][pos]->ssd)\
continue;\
heap_pos[index]++;\
node = nodes_next[index][pos];\
}\
node->ssd = ssd;\
node->state = cur_node->state;\
UPDATE;\
c->paths[index][node->path].value = VALUE;\
c->paths[index][node->path].prev = cur_node->path;\
/* Sift the newly inserted node up in the heap to restore \
* the heap property */\
while (pos > 0) {\
int parent = (pos - 1) >> 1;\
if (nodes_next[index][parent]->ssd <= ssd)\
break;\
FFSWAP(struct TrellisNode*, nodes_next[index][parent],\
nodes_next[index][pos]);\
pos = parent;\
}
STORE_NODE(0, update_low_predictor(&node->state, k >> 2), k);
}
}
for (j = 0; j < frontier && nodes[1][j]; j++) {
int ihigh;
struct TrellisNode *cur_node = nodes[1][j];
/* We don't try to get any initial guess for ihigh via
* encode_high - since there's only 4 possible values, test
* them all. Testing all of these gives a much, much larger
* gain than testing a larger range around ilow. */
for (ihigh = 0; ihigh < 4; ihigh++) {
int dhigh, decoded, dec_diff, pos;
uint32_t ssd;
struct TrellisNode* node;
dhigh = cur_node->state.scale_factor *
high_inv_quant[ihigh] >> 10;
decoded = av_clip(dhigh + cur_node->state.s_predictor,
-16384, 16383);
dec_diff = xhigh - decoded;
STORE_NODE(1, update_high_predictor(&node->state, dhigh, ihigh), ihigh);
}
}
for (j = 0; j < 2; j++) {
FFSWAP(struct TrellisNode**, nodes[j], nodes_next[j]);
if (nodes[j][0]->ssd > (1 << 16)) {
for (k = 1; k < frontier && nodes[j][k]; k++)
nodes[j][k]->ssd -= nodes[j][0]->ssd;
nodes[j][0]->ssd = 0;
}
}
if (i == froze + FREEZE_INTERVAL) {
p[0] = &c->paths[0][nodes[0][0]->path];
p[1] = &c->paths[1][nodes[1][0]->path];
for (j = i; j > froze; j--) {
dst[j] = p[1]->value << 6 | p[0]->value;
p[0] = &c->paths[0][p[0]->prev];
p[1] = &c->paths[1][p[1]->prev];
}
froze = i;
pathn[0] = pathn[1] = 0;
memset(nodes[0] + 1, 0, (frontier - 1)*sizeof(**nodes));
memset(nodes[1] + 1, 0, (frontier - 1)*sizeof(**nodes));
}
}
p[0] = &c->paths[0][nodes[0][0]->path];
p[1] = &c->paths[1][nodes[1][0]->path];
for (j = i; j > froze; j--) {
dst[j] = p[1]->value << 6 | p[0]->value;
p[0] = &c->paths[0][p[0]->prev];
p[1] = &c->paths[1][p[1]->prev];
}
c->band[0] = nodes[0][0]->state;
c->band[1] = nodes[1][0]->state;
return i;
}
static int g722_encode_frame(AVCodecContext *avctx,
uint8_t *dst, int buf_size, void *data)
{
G722Context *c = avctx->priv_data;
const int16_t *samples = data;
int i;
if (avctx->trellis)
return g722_encode_trellis(avctx, dst, buf_size, data);
for (i = 0; i < buf_size >> 1; i++) {
int xlow, xhigh, ihigh, ilow;
filter_samples(c, &samples[2*i], &xlow, &xhigh);
ihigh = encode_high(&c->band[1], xhigh);
ilow = encode_low(&c->band[0], xlow);
update_high_predictor(&c->band[1], c->band[1].scale_factor *
high_inv_quant[ihigh] >> 10, ihigh);
update_low_predictor(&c->band[0], ilow >> 2);
*dst++ = ihigh << 6 | ilow;
}
return i;
}
AVCodec adpcm_g722_encoder = {
.name = "g722",
.type = AVMEDIA_TYPE_AUDIO,
.id = CODEC_ID_ADPCM_G722,
.priv_data_size = sizeof(G722Context),
.init = g722_init,
.close = g722_close,
.encode = g722_encode_frame,
.long_name = NULL_IF_CONFIG_SMALL("G.722 ADPCM"),
.sample_fmts = (enum AVSampleFormat[]){AV_SAMPLE_FMT_S16,AV_SAMPLE_FMT_NONE},
};
#endif
|