aboutsummaryrefslogtreecommitdiffstats
path: root/libavcodec/g722.c
blob: 830877e3365eded53956896590aa365f332cfcb5 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
/*
 * G.722 ADPCM audio encoder/decoder
 *
 * Copyright (c) CMU 1993 Computer Science, Speech Group
 *                        Chengxiang Lu and Alex Hauptmann
 * Copyright (c) 2005 Steve Underwood <steveu at coppice.org>
 * Copyright (c) 2009 Kenan Gillet
 * Copyright (c) 2010 Martin Storsjo
 *
 * This file is part of Libav.
 *
 * Libav is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * Libav is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with Libav; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/**
 * @file
 * G.722 ADPCM audio codec
 *
 * This G.722 decoder is a bit-exact implementation of the ITU G.722
 * specification for all three specified bitrates - 64000bps, 56000bps
 * and 48000bps. It passes the ITU tests.
 *
 * @note For the 56000bps and 48000bps bitrates, the lowest 1 or 2 bits
 *       respectively of each byte are ignored.
 */

#include "mathops.h"
#include "g722.h"

static const int8_t sign_lookup[2] = { -1, 1 };

static const int16_t inv_log2_table[32] = {
    2048, 2093, 2139, 2186, 2233, 2282, 2332, 2383,
    2435, 2489, 2543, 2599, 2656, 2714, 2774, 2834,
    2896, 2960, 3025, 3091, 3158, 3228, 3298, 3371,
    3444, 3520, 3597, 3676, 3756, 3838, 3922, 4008
};
static const int16_t high_log_factor_step[2] = { 798, -214 };
const int16_t ff_g722_high_inv_quant[4] = { -926, -202, 926, 202 };
/**
 * low_log_factor_step[index] == wl[rl42[index]]
 */
static const int16_t low_log_factor_step[16] = {
     -60, 3042, 1198, 538, 334, 172,  58, -30,
    3042, 1198,  538, 334, 172,  58, -30, -60
};
const int16_t ff_g722_low_inv_quant4[16] = {
       0, -2557, -1612, -1121,  -786,  -530,  -323,  -150,
    2557,  1612,  1121,   786,   530,   323,   150,     0
};
const int16_t ff_g722_low_inv_quant6[64] = {
     -17,   -17,   -17,   -17, -3101, -2738, -2376, -2088,
   -1873, -1689, -1535, -1399, -1279, -1170, -1072,  -982,
    -899,  -822,  -750,  -682,  -618,  -558,  -501,  -447,
    -396,  -347,  -300,  -254,  -211,  -170,  -130,   -91,
    3101,  2738,  2376,  2088,  1873,  1689,  1535,  1399,
    1279,  1170,  1072,   982,   899,   822,   750,   682,
     618,   558,   501,   447,   396,   347,   300,   254,
     211,   170,   130,    91,    54,    17,   -54,   -17
};

static inline void s_zero(int cur_diff, struct G722Band *band)
{
    int s_zero = 0;

    #define ACCUM(k, x, d) do { \
            int tmp = x; \
            band->zero_mem[k] = ((band->zero_mem[k] * 255) >> 8) + \
               d*((band->diff_mem[k]^cur_diff) < 0 ? -128 : 128); \
            band->diff_mem[k] = tmp; \
            s_zero += (tmp * band->zero_mem[k]) >> 15; \
        } while (0)
    if (cur_diff) {
        ACCUM(5, band->diff_mem[4], 1);
        ACCUM(4, band->diff_mem[3], 1);
        ACCUM(3, band->diff_mem[2], 1);
        ACCUM(2, band->diff_mem[1], 1);
        ACCUM(1, band->diff_mem[0], 1);
        ACCUM(0, cur_diff << 1, 1);
    } else {
        ACCUM(5, band->diff_mem[4], 0);
        ACCUM(4, band->diff_mem[3], 0);
        ACCUM(3, band->diff_mem[2], 0);
        ACCUM(2, band->diff_mem[1], 0);
        ACCUM(1, band->diff_mem[0], 0);
        ACCUM(0, cur_diff << 1, 0);
    }
    #undef ACCUM
    band->s_zero = s_zero;
}

/**
 * adaptive predictor
 *
 * @param cur_diff the dequantized and scaled delta calculated from the
 *                 current codeword
 */
static void do_adaptive_prediction(struct G722Band *band, const int cur_diff)
{
    int sg[2], limit, cur_qtzd_reconst;

    const int cur_part_reconst = band->s_zero + cur_diff < 0;

    sg[0] = sign_lookup[cur_part_reconst != band->part_reconst_mem[0]];
    sg[1] = sign_lookup[cur_part_reconst == band->part_reconst_mem[1]];
    band->part_reconst_mem[1] = band->part_reconst_mem[0];
    band->part_reconst_mem[0] = cur_part_reconst;

    band->pole_mem[1] = av_clip((sg[0] * av_clip(band->pole_mem[0], -8191, 8191) >> 5) +
                                (sg[1] << 7) + (band->pole_mem[1] * 127 >> 7), -12288, 12288);

    limit = 15360 - band->pole_mem[1];
    band->pole_mem[0] = av_clip(-192 * sg[0] + (band->pole_mem[0] * 255 >> 8), -limit, limit);

    s_zero(cur_diff, band);

    cur_qtzd_reconst = av_clip_int16((band->s_predictor + cur_diff) << 1);
    band->s_predictor = av_clip_int16(band->s_zero +
                                      (band->pole_mem[0] * cur_qtzd_reconst >> 15) +
                                      (band->pole_mem[1] * band->prev_qtzd_reconst >> 15));
    band->prev_qtzd_reconst = cur_qtzd_reconst;
}

static inline int linear_scale_factor(const int log_factor)
{
    const int wd1 = inv_log2_table[(log_factor >> 6) & 31];
    const int shift = log_factor >> 11;
    return shift < 0 ? wd1 >> -shift : wd1 << shift;
}

void ff_g722_update_low_predictor(struct G722Band *band, const int ilow)
{
    do_adaptive_prediction(band,
                           band->scale_factor * ff_g722_low_inv_quant4[ilow] >> 10);

    // quantizer adaptation
    band->log_factor   = av_clip((band->log_factor * 127 >> 7) +
                                 low_log_factor_step[ilow], 0, 18432);
    band->scale_factor = linear_scale_factor(band->log_factor - (8 << 11));
}

void ff_g722_update_high_predictor(struct G722Band *band, const int dhigh,
                                  const int ihigh)
{
    do_adaptive_prediction(band, dhigh);

    // quantizer adaptation
    band->log_factor   = av_clip((band->log_factor * 127 >> 7) +
                                 high_log_factor_step[ihigh&1], 0, 22528);
    band->scale_factor = linear_scale_factor(band->log_factor - (10 << 11));
}