aboutsummaryrefslogtreecommitdiffstats
path: root/libavcodec/flacenc.c
blob: 6f264349b6e26d2787e9a8eae2c06552d2311bfc (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
/**
 * FLAC audio encoder
 * Copyright (c) 2006  Justin Ruggles <jruggle@earthlink.net>
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

#include "avcodec.h"
#include "bitstream.h"
#include "crc.h"
#include "golomb.h"

#define FLAC_MAX_CH  8
#define FLAC_MIN_BLOCKSIZE  16
#define FLAC_MAX_BLOCKSIZE  65535

#define FLAC_SUBFRAME_CONSTANT  0
#define FLAC_SUBFRAME_VERBATIM  1
#define FLAC_SUBFRAME_FIXED     8
#define FLAC_SUBFRAME_LPC      32

#define FLAC_CHMODE_NOT_STEREO      0
#define FLAC_CHMODE_LEFT_RIGHT      1
#define FLAC_CHMODE_LEFT_SIDE       8
#define FLAC_CHMODE_RIGHT_SIDE      9
#define FLAC_CHMODE_MID_SIDE       10

#define ORDER_METHOD_EST     0
#define ORDER_METHOD_2LEVEL  1
#define ORDER_METHOD_4LEVEL  2
#define ORDER_METHOD_8LEVEL  3
#define ORDER_METHOD_SEARCH  4

#define FLAC_STREAMINFO_SIZE  34

#define MIN_LPC_ORDER       1
#define MAX_LPC_ORDER      32
#define MAX_FIXED_ORDER     4
#define MAX_PARTITION_ORDER 8
#define MAX_PARTITIONS     (1 << MAX_PARTITION_ORDER)
#define MAX_LPC_PRECISION  15
#define MAX_LPC_SHIFT      15
#define MAX_RICE_PARAM     14

typedef struct CompressionOptions {
    int compression_level;
    int block_time_ms;
    int use_lpc;
    int lpc_coeff_precision;
    int min_prediction_order;
    int max_prediction_order;
    int prediction_order_method;
    int min_partition_order;
    int max_partition_order;
} CompressionOptions;

typedef struct RiceContext {
    int porder;
    int params[MAX_PARTITIONS];
} RiceContext;

typedef struct FlacSubframe {
    int type;
    int type_code;
    int obits;
    int order;
    int32_t coefs[MAX_LPC_ORDER];
    int shift;
    RiceContext rc;
    int32_t samples[FLAC_MAX_BLOCKSIZE];
    int32_t residual[FLAC_MAX_BLOCKSIZE];
} FlacSubframe;

typedef struct FlacFrame {
    FlacSubframe subframes[FLAC_MAX_CH];
    int blocksize;
    int bs_code[2];
    uint8_t crc8;
    int ch_mode;
} FlacFrame;

typedef struct FlacEncodeContext {
    PutBitContext pb;
    int channels;
    int ch_code;
    int samplerate;
    int sr_code[2];
    int blocksize;
    int max_framesize;
    uint32_t frame_count;
    FlacFrame frame;
    CompressionOptions options;
    AVCodecContext *avctx;
} FlacEncodeContext;

static const int flac_samplerates[16] = {
    0, 0, 0, 0,
    8000, 16000, 22050, 24000, 32000, 44100, 48000, 96000,
    0, 0, 0, 0
};

static const int flac_blocksizes[16] = {
    0,
    192,
    576, 1152, 2304, 4608,
    0, 0,
    256, 512, 1024, 2048, 4096, 8192, 16384, 32768
};

/**
 * Writes streaminfo metadata block to byte array
 */
static void write_streaminfo(FlacEncodeContext *s, uint8_t *header)
{
    PutBitContext pb;

    memset(header, 0, FLAC_STREAMINFO_SIZE);
    init_put_bits(&pb, header, FLAC_STREAMINFO_SIZE);

    /* streaminfo metadata block */
    put_bits(&pb, 16, s->blocksize);
    put_bits(&pb, 16, s->blocksize);
    put_bits(&pb, 24, 0);
    put_bits(&pb, 24, s->max_framesize);
    put_bits(&pb, 20, s->samplerate);
    put_bits(&pb, 3, s->channels-1);
    put_bits(&pb, 5, 15);       /* bits per sample - 1 */
    flush_put_bits(&pb);
    /* total samples = 0 */
    /* MD5 signature = 0 */
}

/**
 * Sets blocksize based on samplerate
 * Chooses the closest predefined blocksize >= BLOCK_TIME_MS milliseconds
 */
static int select_blocksize(int samplerate, int block_time_ms)
{
    int i;
    int target;
    int blocksize;

    assert(samplerate > 0);
    blocksize = flac_blocksizes[1];
    target = (samplerate * block_time_ms) / 1000;
    for(i=0; i<16; i++) {
        if(target >= flac_blocksizes[i] && flac_blocksizes[i] > blocksize) {
            blocksize = flac_blocksizes[i];
        }
    }
    return blocksize;
}

static int flac_encode_init(AVCodecContext *avctx)
{
    int freq = avctx->sample_rate;
    int channels = avctx->channels;
    FlacEncodeContext *s = avctx->priv_data;
    int i, level;
    uint8_t *streaminfo;

    s->avctx = avctx;

    if(avctx->sample_fmt != SAMPLE_FMT_S16) {
        return -1;
    }

    if(channels < 1 || channels > FLAC_MAX_CH) {
        return -1;
    }
    s->channels = channels;
    s->ch_code = s->channels-1;

    /* find samplerate in table */
    if(freq < 1)
        return -1;
    for(i=4; i<12; i++) {
        if(freq == flac_samplerates[i]) {
            s->samplerate = flac_samplerates[i];
            s->sr_code[0] = i;
            s->sr_code[1] = 0;
            break;
        }
    }
    /* if not in table, samplerate is non-standard */
    if(i == 12) {
        if(freq % 1000 == 0 && freq < 255000) {
            s->sr_code[0] = 12;
            s->sr_code[1] = freq / 1000;
        } else if(freq % 10 == 0 && freq < 655350) {
            s->sr_code[0] = 14;
            s->sr_code[1] = freq / 10;
        } else if(freq < 65535) {
            s->sr_code[0] = 13;
            s->sr_code[1] = freq;
        } else {
            return -1;
        }
        s->samplerate = freq;
    }

    /* set compression option defaults based on avctx->compression_level */
    if(avctx->compression_level < 0) {
        s->options.compression_level = 5;
    } else {
        s->options.compression_level = avctx->compression_level;
    }
    av_log(avctx, AV_LOG_DEBUG, " compression: %d\n", s->options.compression_level);

    level= s->options.compression_level;
    if(level > 5) {
        av_log(avctx, AV_LOG_ERROR, "invalid compression level: %d\n",
               s->options.compression_level);
        return -1;
    }

    s->options.block_time_ms       = ((int[]){ 27, 27, 27,105,105,105})[level];
    s->options.use_lpc             = ((int[]){  0,  0,  0,  1,  1,  1})[level];
    s->options.min_prediction_order= ((int[]){  2,  0,  0,  1,  1,  1})[level];
    s->options.max_prediction_order= ((int[]){  3,  4,  4,  6,  8,  8})[level];
    s->options.prediction_order_method = ORDER_METHOD_EST;
    s->options.min_partition_order = ((int[]){  2,  2,  0,  0,  0,  0})[level];
    s->options.max_partition_order = ((int[]){  2,  2,  3,  3,  3,  8})[level];

    /* set compression option overrides from AVCodecContext */
    if(avctx->use_lpc >= 0) {
        s->options.use_lpc = !!avctx->use_lpc;
    }
    av_log(avctx, AV_LOG_DEBUG, " use lpc: %s\n",
           s->options.use_lpc? "yes" : "no");

    if(avctx->min_prediction_order >= 0) {
        if(s->options.use_lpc) {
            if(avctx->min_prediction_order < MIN_LPC_ORDER ||
                    avctx->min_prediction_order > MAX_LPC_ORDER) {
                av_log(avctx, AV_LOG_ERROR, "invalid min prediction order: %d\n",
                       avctx->min_prediction_order);
                return -1;
            }
        } else {
            if(avctx->min_prediction_order > MAX_FIXED_ORDER) {
                av_log(avctx, AV_LOG_ERROR, "invalid min prediction order: %d\n",
                       avctx->min_prediction_order);
                return -1;
            }
        }
        s->options.min_prediction_order = avctx->min_prediction_order;
    }
    if(avctx->max_prediction_order >= 0) {
        if(s->options.use_lpc) {
            if(avctx->max_prediction_order < MIN_LPC_ORDER ||
                    avctx->max_prediction_order > MAX_LPC_ORDER) {
                av_log(avctx, AV_LOG_ERROR, "invalid max prediction order: %d\n",
                       avctx->max_prediction_order);
                return -1;
            }
        } else {
            if(avctx->max_prediction_order > MAX_FIXED_ORDER) {
                av_log(avctx, AV_LOG_ERROR, "invalid max prediction order: %d\n",
                       avctx->max_prediction_order);
                return -1;
            }
        }
        s->options.max_prediction_order = avctx->max_prediction_order;
    }
    if(s->options.max_prediction_order < s->options.min_prediction_order) {
        av_log(avctx, AV_LOG_ERROR, "invalid prediction orders: min=%d max=%d\n",
               s->options.min_prediction_order, s->options.max_prediction_order);
        return -1;
    }
    av_log(avctx, AV_LOG_DEBUG, " prediction order: %d, %d\n",
           s->options.min_prediction_order, s->options.max_prediction_order);

    if(avctx->prediction_order_method >= 0) {
        if(avctx->prediction_order_method > ORDER_METHOD_SEARCH) {
            av_log(avctx, AV_LOG_ERROR, "invalid prediction order method: %d\n",
                   avctx->prediction_order_method);
            return -1;
        }
        s->options.prediction_order_method = avctx->prediction_order_method;
    }
    switch(avctx->prediction_order_method) {
        case ORDER_METHOD_EST:    av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
                                         "estimate"); break;
        case ORDER_METHOD_2LEVEL: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
                                         "2-level"); break;
        case ORDER_METHOD_4LEVEL: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
                                         "4-level"); break;
        case ORDER_METHOD_8LEVEL: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
                                         "8-level"); break;
        case ORDER_METHOD_SEARCH: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
                                         "full search"); break;
    }

    if(avctx->min_partition_order >= 0) {
        if(avctx->min_partition_order > MAX_PARTITION_ORDER) {
            av_log(avctx, AV_LOG_ERROR, "invalid min partition order: %d\n",
                   avctx->min_partition_order);
            return -1;
        }
        s->options.min_partition_order = avctx->min_partition_order;
    }
    if(avctx->max_partition_order >= 0) {
        if(avctx->max_partition_order > MAX_PARTITION_ORDER) {
            av_log(avctx, AV_LOG_ERROR, "invalid max partition order: %d\n",
                   avctx->max_partition_order);
            return -1;
        }
        s->options.max_partition_order = avctx->max_partition_order;
    }
    if(s->options.max_partition_order < s->options.min_partition_order) {
        av_log(avctx, AV_LOG_ERROR, "invalid partition orders: min=%d max=%d\n",
               s->options.min_partition_order, s->options.max_partition_order);
        return -1;
    }
    av_log(avctx, AV_LOG_DEBUG, " partition order: %d, %d\n",
           s->options.min_partition_order, s->options.max_partition_order);

    if(avctx->frame_size > 0) {
        if(avctx->frame_size < FLAC_MIN_BLOCKSIZE ||
                avctx->frame_size > FLAC_MIN_BLOCKSIZE) {
            av_log(avctx, AV_LOG_ERROR, "invalid block size: %d\n",
                   avctx->frame_size);
            return -1;
        }
        s->blocksize = avctx->frame_size;
    } else {
        s->blocksize = select_blocksize(s->samplerate, s->options.block_time_ms);
        avctx->frame_size = s->blocksize;
    }
    av_log(avctx, AV_LOG_DEBUG, " block size: %d\n", s->blocksize);

    /* set LPC precision */
    if(avctx->lpc_coeff_precision > 0) {
        if(avctx->lpc_coeff_precision > MAX_LPC_PRECISION) {
            av_log(avctx, AV_LOG_ERROR, "invalid lpc coeff precision: %d\n",
                   avctx->lpc_coeff_precision);
            return -1;
        }
        s->options.lpc_coeff_precision = avctx->lpc_coeff_precision;
    } else {
        /* select LPC precision based on block size */
        if(     s->blocksize <=   192) s->options.lpc_coeff_precision =  7;
        else if(s->blocksize <=   384) s->options.lpc_coeff_precision =  8;
        else if(s->blocksize <=   576) s->options.lpc_coeff_precision =  9;
        else if(s->blocksize <=  1152) s->options.lpc_coeff_precision = 10;
        else if(s->blocksize <=  2304) s->options.lpc_coeff_precision = 11;
        else if(s->blocksize <=  4608) s->options.lpc_coeff_precision = 12;
        else if(s->blocksize <=  8192) s->options.lpc_coeff_precision = 13;
        else if(s->blocksize <= 16384) s->options.lpc_coeff_precision = 14;
        else                           s->options.lpc_coeff_precision = 15;
    }
    av_log(avctx, AV_LOG_DEBUG, " lpc precision: %d\n",
           s->options.lpc_coeff_precision);

    /* set maximum encoded frame size in verbatim mode */
    if(s->channels == 2) {
        s->max_framesize = 14 + ((s->blocksize * 33 + 7) >> 3);
    } else {
        s->max_framesize = 14 + (s->blocksize * s->channels * 2);
    }

    streaminfo = av_malloc(FLAC_STREAMINFO_SIZE);
    write_streaminfo(s, streaminfo);
    avctx->extradata = streaminfo;
    avctx->extradata_size = FLAC_STREAMINFO_SIZE;

    s->frame_count = 0;

    avctx->coded_frame = avcodec_alloc_frame();
    avctx->coded_frame->key_frame = 1;

    return 0;
}

static void init_frame(FlacEncodeContext *s)
{
    int i, ch;
    FlacFrame *frame;

    frame = &s->frame;

    for(i=0; i<16; i++) {
        if(s->blocksize == flac_blocksizes[i]) {
            frame->blocksize = flac_blocksizes[i];
            frame->bs_code[0] = i;
            frame->bs_code[1] = 0;
            break;
        }
    }
    if(i == 16) {
        frame->blocksize = s->blocksize;
        if(frame->blocksize <= 256) {
            frame->bs_code[0] = 6;
            frame->bs_code[1] = frame->blocksize-1;
        } else {
            frame->bs_code[0] = 7;
            frame->bs_code[1] = frame->blocksize-1;
        }
    }

    for(ch=0; ch<s->channels; ch++) {
        frame->subframes[ch].obits = 16;
    }
}

/**
 * Copy channel-interleaved input samples into separate subframes
 */
static void copy_samples(FlacEncodeContext *s, int16_t *samples)
{
    int i, j, ch;
    FlacFrame *frame;

    frame = &s->frame;
    for(i=0,j=0; i<frame->blocksize; i++) {
        for(ch=0; ch<s->channels; ch++,j++) {
            frame->subframes[ch].samples[i] = samples[j];
        }
    }
}


#define rice_encode_count(sum, n, k) (((n)*((k)+1))+((sum-(n>>1))>>(k)))

static int find_optimal_param(uint32_t sum, int n)
{
    int k, k_opt;
    uint32_t nbits[MAX_RICE_PARAM+1];

    k_opt = 0;
    nbits[0] = UINT32_MAX;
    for(k=0; k<=MAX_RICE_PARAM; k++) {
        nbits[k] = rice_encode_count(sum, n, k);
        if(nbits[k] < nbits[k_opt]) {
            k_opt = k;
        }
    }
    return k_opt;
}

static uint32_t calc_optimal_rice_params(RiceContext *rc, int porder,
                                         uint32_t *sums, int n, int pred_order)
{
    int i;
    int k, cnt, part;
    uint32_t all_bits;

    part = (1 << porder);
    all_bits = 0;

    cnt = (n >> porder) - pred_order;
    for(i=0; i<part; i++) {
        if(i == 1) cnt = (n >> porder);
        k = find_optimal_param(sums[i], cnt);
        rc->params[i] = k;
        all_bits += rice_encode_count(sums[i], cnt, k);
    }
    all_bits += (4 * part);

    rc->porder = porder;

    return all_bits;
}

static void calc_sums(int pmin, int pmax, uint32_t *data, int n, int pred_order,
                      uint32_t sums[][MAX_PARTITIONS])
{
    int i, j;
    int parts;
    uint32_t *res, *res_end;

    /* sums for highest level */
    parts = (1 << pmax);
    res = &data[pred_order];
    res_end = &data[n >> pmax];
    for(i=0; i<parts; i++) {
        sums[pmax][i] = 0;
        while(res < res_end){
            sums[pmax][i] += *(res++);
        }
        res_end+= n >> pmax;
    }
    /* sums for lower levels */
    for(i=pmax-1; i>=pmin; i--) {
        parts = (1 << i);
        for(j=0; j<parts; j++) {
            sums[i][j] = sums[i+1][2*j] + sums[i+1][2*j+1];
        }
    }
}

static uint32_t calc_rice_params(RiceContext *rc, int pmin, int pmax,
                                 int32_t *data, int n, int pred_order)
{
    int i;
    uint32_t bits[MAX_PARTITION_ORDER+1];
    int opt_porder;
    RiceContext tmp_rc;
    uint32_t *udata;
    uint32_t sums[MAX_PARTITION_ORDER+1][MAX_PARTITIONS];

    assert(pmin >= 0 && pmin <= MAX_PARTITION_ORDER);
    assert(pmax >= 0 && pmax <= MAX_PARTITION_ORDER);
    assert(pmin <= pmax);

    udata = av_malloc(n * sizeof(uint32_t));
    for(i=0; i<n; i++) {
        udata[i] = (2*data[i]) ^ (data[i]>>31);
    }

    calc_sums(pmin, pmax, udata, n, pred_order, sums);

    opt_porder = pmin;
    bits[pmin] = UINT32_MAX;
    for(i=pmin; i<=pmax; i++) {
        bits[i] = calc_optimal_rice_params(&tmp_rc, i, sums[i], n, pred_order);
        if(bits[i] <= bits[opt_porder]) {
            opt_porder = i;
            *rc= tmp_rc;
        }
    }

    av_freep(&udata);
    return bits[opt_porder];
}

static int get_max_p_order(int max_porder, int n, int order)
{
    int porder = FFMIN(max_porder, av_log2(n^(n-1)));
    if(order > 0)
        porder = FFMIN(porder, av_log2(n/order));
    return porder;
}

static uint32_t calc_rice_params_fixed(RiceContext *rc, int pmin, int pmax,
                                       int32_t *data, int n, int pred_order,
                                       int bps)
{
    uint32_t bits;
    pmin = get_max_p_order(pmin, n, pred_order);
    pmax = get_max_p_order(pmax, n, pred_order);
    bits = pred_order*bps + 6;
    bits += calc_rice_params(rc, pmin, pmax, data, n, pred_order);
    return bits;
}

static uint32_t calc_rice_params_lpc(RiceContext *rc, int pmin, int pmax,
                                     int32_t *data, int n, int pred_order,
                                     int bps, int precision)
{
    uint32_t bits;
    pmin = get_max_p_order(pmin, n, pred_order);
    pmax = get_max_p_order(pmax, n, pred_order);
    bits = pred_order*bps + 4 + 5 + pred_order*precision + 6;
    bits += calc_rice_params(rc, pmin, pmax, data, n, pred_order);
    return bits;
}

/**
 * Apply Welch window function to audio block
 */
static void apply_welch_window(const int32_t *data, int len, double *w_data)
{
    int i, n2;
    double w;
    double c;

    n2 = (len >> 1);
    c = 2.0 / (len - 1.0);
    for(i=0; i<n2; i++) {
        w = c - i - 1.0;
        w = 1.0 - (w * w);
        w_data[i] = data[i] * w;
        w_data[len-1-i] = data[len-1-i] * w;
    }
}

/**
 * Calculates autocorrelation data from audio samples
 * A Welch window function is applied before calculation.
 */
static void compute_autocorr(const int32_t *data, int len, int lag,
                             double *autoc)
{
    int i, lag_ptr;
    double tmp[len + lag];
    double *data1= tmp + lag;

    apply_welch_window(data, len, data1);

    for(i=0; i<lag; i++){
        autoc[i] = 1.0;
        data1[i-lag]= 0.0;
    }

    for(i=0; i<len; i++){
        for(lag_ptr= i-lag; lag_ptr<=i; lag_ptr++){
            autoc[i-lag_ptr] += data1[i] * data1[lag_ptr];
        }
    }
}

/**
 * Levinson-Durbin recursion.
 * Produces LPC coefficients from autocorrelation data.
 */
static void compute_lpc_coefs(const double *autoc, int max_order,
                              double lpc[][MAX_LPC_ORDER], double *ref)
{
   int i, j, i2;
   double r, err, tmp;
   double lpc_tmp[MAX_LPC_ORDER];

   for(i=0; i<max_order; i++) lpc_tmp[i] = 0;
   err = autoc[0];

   for(i=0; i<max_order; i++) {
      r = -autoc[i+1];
      for(j=0; j<i; j++) {
          r -= lpc_tmp[j] * autoc[i-j];
      }
      r /= err;
      ref[i] = fabs(r);

      err *= 1.0 - (r * r);

      i2 = (i >> 1);
      lpc_tmp[i] = r;
      for(j=0; j<i2; j++) {
         tmp = lpc_tmp[j];
         lpc_tmp[j] += r * lpc_tmp[i-1-j];
         lpc_tmp[i-1-j] += r * tmp;
      }
      if(i & 1) {
          lpc_tmp[j] += lpc_tmp[j] * r;
      }

      for(j=0; j<=i; j++) {
          lpc[i][j] = -lpc_tmp[j];
      }
   }
}

/**
 * Quantize LPC coefficients
 */
static void quantize_lpc_coefs(double *lpc_in, int order, int precision,
                               int32_t *lpc_out, int *shift)
{
    int i;
    double cmax;
    int32_t qmax;
    int sh;

    /* define maximum levels */
    qmax = (1 << (precision - 1)) - 1;

    /* find maximum coefficient value */
    cmax = 0.0;
    for(i=0; i<order; i++) {
        cmax= FFMAX(cmax, fabs(lpc_in[i]));
    }

    /* if maximum value quantizes to zero, return all zeros */
    if(cmax * (1 << MAX_LPC_SHIFT) < 1.0) {
        *shift = 0;
        memset(lpc_out, 0, sizeof(int32_t) * order);
        return;
    }

    /* calculate level shift which scales max coeff to available bits */
    sh = MAX_LPC_SHIFT;
    while((cmax * (1 << sh) > qmax) && (sh > 0)) {
        sh--;
    }

    /* since negative shift values are unsupported in decoder, scale down
       coefficients instead */
    if(sh == 0 && cmax > qmax) {
        double scale = ((double)qmax) / cmax;
        for(i=0; i<order; i++) {
            lpc_in[i] *= scale;
        }
    }

    /* output quantized coefficients and level shift */
    for(i=0; i<order; i++) {
        lpc_out[i] = (int32_t)(lpc_in[i] * (1 << sh));
    }
    *shift = sh;
}

static int estimate_best_order(double *ref, int max_order)
{
    int i, est;

    est = 1;
    for(i=max_order-1; i>=0; i--) {
        if(ref[i] > 0.10) {
            est = i+1;
            break;
        }
    }
    return est;
}

/**
 * Calculate LPC coefficients for multiple orders
 */
static int lpc_calc_coefs(const int32_t *samples, int blocksize, int max_order,
                          int precision, int32_t coefs[][MAX_LPC_ORDER],
                          int *shift)
{
    double autoc[MAX_LPC_ORDER+1];
    double ref[MAX_LPC_ORDER];
    double lpc[MAX_LPC_ORDER][MAX_LPC_ORDER];
    int i;
    int opt_order;

    assert(max_order >= MIN_LPC_ORDER && max_order <= MAX_LPC_ORDER);

    compute_autocorr(samples, blocksize, max_order+1, autoc);

    compute_lpc_coefs(autoc, max_order, lpc, ref);

    opt_order = estimate_best_order(ref, max_order);

    i = opt_order-1;
    quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i]);

    return opt_order;
}


static void encode_residual_verbatim(int32_t *res, int32_t *smp, int n)
{
    assert(n > 0);
    memcpy(res, smp, n * sizeof(int32_t));
}

static void encode_residual_fixed(int32_t *res, const int32_t *smp, int n,
                                  int order)
{
    int i;

    for(i=0; i<order; i++) {
        res[i] = smp[i];
    }

    if(order==0){
        for(i=order; i<n; i++)
            res[i]= smp[i];
    }else if(order==1){
        for(i=order; i<n; i++)
            res[i]= smp[i] - smp[i-1];
    }else if(order==2){
        for(i=order; i<n; i++)
            res[i]= smp[i] - 2*smp[i-1] + smp[i-2];
    }else if(order==3){
        for(i=order; i<n; i++)
            res[i]= smp[i] - 3*smp[i-1] + 3*smp[i-2] - smp[i-3];
    }else{
        for(i=order; i<n; i++)
            res[i]= smp[i] - 4*smp[i-1] + 6*smp[i-2] - 4*smp[i-3] + smp[i-4];
    }
}

static void encode_residual_lpc(int32_t *res, const int32_t *smp, int n,
                                int order, const int32_t *coefs, int shift)
{
    int i, j;
    int32_t pred;

    for(i=0; i<order; i++) {
        res[i] = smp[i];
    }
    for(i=order; i<n; i++) {
        pred = 0;
        for(j=0; j<order; j++) {
            pred += coefs[j] * smp[i-j-1];
        }
        res[i] = smp[i] - (pred >> shift);
    }
}

static int encode_residual(FlacEncodeContext *ctx, int ch)
{
    int i, n;
    int min_order, max_order, opt_order, precision;
    int min_porder, max_porder;
    FlacFrame *frame;
    FlacSubframe *sub;
    int32_t coefs[MAX_LPC_ORDER][MAX_LPC_ORDER];
    int shift[MAX_LPC_ORDER];
    int32_t *res, *smp;

    frame = &ctx->frame;
    sub = &frame->subframes[ch];
    res = sub->residual;
    smp = sub->samples;
    n = frame->blocksize;

    /* CONSTANT */
    for(i=1; i<n; i++) {
        if(smp[i] != smp[0]) break;
    }
    if(i == n) {
        sub->type = sub->type_code = FLAC_SUBFRAME_CONSTANT;
        res[0] = smp[0];
        return sub->obits;
    }

    /* VERBATIM */
    if(n < 5) {
        sub->type = sub->type_code = FLAC_SUBFRAME_VERBATIM;
        encode_residual_verbatim(res, smp, n);
        return sub->obits * n;
    }

    min_order = ctx->options.min_prediction_order;
    max_order = ctx->options.max_prediction_order;
    min_porder = ctx->options.min_partition_order;
    max_porder = ctx->options.max_partition_order;
    precision = ctx->options.lpc_coeff_precision;

    /* FIXED */
    if(!ctx->options.use_lpc || max_order == 0 || (n <= max_order)) {
        uint32_t bits[MAX_FIXED_ORDER+1];
        if(max_order > MAX_FIXED_ORDER) max_order = MAX_FIXED_ORDER;
        opt_order = 0;
        bits[0] = UINT32_MAX;
        for(i=min_order; i<=max_order; i++) {
            encode_residual_fixed(res, smp, n, i);
            bits[i] = calc_rice_params_fixed(&sub->rc, min_porder, max_porder, res,
                                             n, i, sub->obits);
            if(bits[i] < bits[opt_order]) {
                opt_order = i;
            }
        }
        sub->order = opt_order;
        sub->type = FLAC_SUBFRAME_FIXED;
        sub->type_code = sub->type | sub->order;
        if(sub->order != max_order) {
            encode_residual_fixed(res, smp, n, sub->order);
            return calc_rice_params_fixed(&sub->rc, min_porder, max_porder, res, n,
                                          sub->order, sub->obits);
        }
        return bits[sub->order];
    }

    /* LPC */
    sub->order = lpc_calc_coefs(smp, n, max_order, precision, coefs, shift);
    sub->type = FLAC_SUBFRAME_LPC;
    sub->type_code = sub->type | (sub->order-1);
    sub->shift = shift[sub->order-1];
    for(i=0; i<sub->order; i++) {
        sub->coefs[i] = coefs[sub->order-1][i];
    }
    encode_residual_lpc(res, smp, n, sub->order, sub->coefs, sub->shift);
    return calc_rice_params_lpc(&sub->rc, min_porder, max_porder, res, n, sub->order,
                                sub->obits, precision);
}

static int encode_residual_v(FlacEncodeContext *ctx, int ch)
{
    int i, n;
    FlacFrame *frame;
    FlacSubframe *sub;
    int32_t *res, *smp;

    frame = &ctx->frame;
    sub = &frame->subframes[ch];
    res = sub->residual;
    smp = sub->samples;
    n = frame->blocksize;

    /* CONSTANT */
    for(i=1; i<n; i++) {
        if(smp[i] != smp[0]) break;
    }
    if(i == n) {
        sub->type = sub->type_code = FLAC_SUBFRAME_CONSTANT;
        res[0] = smp[0];
        return sub->obits;
    }

    /* VERBATIM */
    sub->type = sub->type_code = FLAC_SUBFRAME_VERBATIM;
    encode_residual_verbatim(res, smp, n);
    return sub->obits * n;
}

static int estimate_stereo_mode(int32_t *left_ch, int32_t *right_ch, int n)
{
    int i, best;
    int32_t lt, rt;
    uint64_t sum[4];
    uint64_t score[4];
    int k;

    /* calculate sum of 2nd order residual for each channel */
    sum[0] = sum[1] = sum[2] = sum[3] = 0;
    for(i=2; i<n; i++) {
        lt = left_ch[i] - 2*left_ch[i-1] + left_ch[i-2];
        rt = right_ch[i] - 2*right_ch[i-1] + right_ch[i-2];
        sum[2] += ABS((lt + rt) >> 1);
        sum[3] += ABS(lt - rt);
        sum[0] += ABS(lt);
        sum[1] += ABS(rt);
    }
    /* estimate bit counts */
    for(i=0; i<4; i++) {
        k = find_optimal_param(2*sum[i], n);
        sum[i] = rice_encode_count(2*sum[i], n, k);
    }

    /* calculate score for each mode */
    score[0] = sum[0] + sum[1];
    score[1] = sum[0] + sum[3];
    score[2] = sum[1] + sum[3];
    score[3] = sum[2] + sum[3];

    /* return mode with lowest score */
    best = 0;
    for(i=1; i<4; i++) {
        if(score[i] < score[best]) {
            best = i;
        }
    }
    if(best == 0) {
        return FLAC_CHMODE_LEFT_RIGHT;
    } else if(best == 1) {
        return FLAC_CHMODE_LEFT_SIDE;
    } else if(best == 2) {
        return FLAC_CHMODE_RIGHT_SIDE;
    } else {
        return FLAC_CHMODE_MID_SIDE;
    }
}

/**
 * Perform stereo channel decorrelation
 */
static void channel_decorrelation(FlacEncodeContext *ctx)
{
    FlacFrame *frame;
    int32_t *left, *right;
    int i, n;

    frame = &ctx->frame;
    n = frame->blocksize;
    left  = frame->subframes[0].samples;
    right = frame->subframes[1].samples;

    if(ctx->channels != 2) {
        frame->ch_mode = FLAC_CHMODE_NOT_STEREO;
        return;
    }

    frame->ch_mode = estimate_stereo_mode(left, right, n);

    /* perform decorrelation and adjust bits-per-sample */
    if(frame->ch_mode == FLAC_CHMODE_LEFT_RIGHT) {
        return;
    }
    if(frame->ch_mode == FLAC_CHMODE_MID_SIDE) {
        int32_t tmp;
        for(i=0; i<n; i++) {
            tmp = left[i];
            left[i] = (tmp + right[i]) >> 1;
            right[i] = tmp - right[i];
        }
        frame->subframes[1].obits++;
    } else if(frame->ch_mode == FLAC_CHMODE_LEFT_SIDE) {
        for(i=0; i<n; i++) {
            right[i] = left[i] - right[i];
        }
        frame->subframes[1].obits++;
    } else {
        for(i=0; i<n; i++) {
            left[i] -= right[i];
        }
        frame->subframes[0].obits++;
    }
}

static void put_sbits(PutBitContext *pb, int bits, int32_t val)
{
    assert(bits >= 0 && bits <= 31);

    put_bits(pb, bits, val & ((1<<bits)-1));
}

static void write_utf8(PutBitContext *pb, uint32_t val)
{
    int bytes, shift;

    if(val < 0x80){
        put_bits(pb, 8, val);
        return;
    }

    bytes= (av_log2(val)+4) / 5;
    shift = (bytes - 1) * 6;
    put_bits(pb, 8, (256 - (256>>bytes)) | (val >> shift));
    while(shift >= 6){
        shift -= 6;
        put_bits(pb, 8, 0x80 | ((val >> shift) & 0x3F));
    }
}

static void output_frame_header(FlacEncodeContext *s)
{
    FlacFrame *frame;
    int crc;

    frame = &s->frame;

    put_bits(&s->pb, 16, 0xFFF8);
    put_bits(&s->pb, 4, frame->bs_code[0]);
    put_bits(&s->pb, 4, s->sr_code[0]);
    if(frame->ch_mode == FLAC_CHMODE_NOT_STEREO) {
        put_bits(&s->pb, 4, s->ch_code);
    } else {
        put_bits(&s->pb, 4, frame->ch_mode);
    }
    put_bits(&s->pb, 3, 4); /* bits-per-sample code */
    put_bits(&s->pb, 1, 0);
    write_utf8(&s->pb, s->frame_count);
    if(frame->bs_code[0] == 6) {
        put_bits(&s->pb, 8, frame->bs_code[1]);
    } else if(frame->bs_code[0] == 7) {
        put_bits(&s->pb, 16, frame->bs_code[1]);
    }
    if(s->sr_code[0] == 12) {
        put_bits(&s->pb, 8, s->sr_code[1]);
    } else if(s->sr_code[0] > 12) {
        put_bits(&s->pb, 16, s->sr_code[1]);
    }
    flush_put_bits(&s->pb);
    crc = av_crc(av_crc07, 0, s->pb.buf, put_bits_count(&s->pb)>>3);
    put_bits(&s->pb, 8, crc);
}

static void output_subframe_constant(FlacEncodeContext *s, int ch)
{
    FlacSubframe *sub;
    int32_t res;

    sub = &s->frame.subframes[ch];
    res = sub->residual[0];
    put_sbits(&s->pb, sub->obits, res);
}

static void output_subframe_verbatim(FlacEncodeContext *s, int ch)
{
    int i;
    FlacFrame *frame;
    FlacSubframe *sub;
    int32_t res;

    frame = &s->frame;
    sub = &frame->subframes[ch];

    for(i=0; i<frame->blocksize; i++) {
        res = sub->residual[i];
        put_sbits(&s->pb, sub->obits, res);
    }
}

static void output_residual(FlacEncodeContext *ctx, int ch)
{
    int i, j, p, n, parts;
    int k, porder, psize, res_cnt;
    FlacFrame *frame;
    FlacSubframe *sub;
    int32_t *res;

    frame = &ctx->frame;
    sub = &frame->subframes[ch];
    res = sub->residual;
    n = frame->blocksize;

    /* rice-encoded block */
    put_bits(&ctx->pb, 2, 0);

    /* partition order */
    porder = sub->rc.porder;
    psize = n >> porder;
    parts = (1 << porder);
    put_bits(&ctx->pb, 4, porder);
    res_cnt = psize - sub->order;

    /* residual */
    j = sub->order;
    for(p=0; p<parts; p++) {
        k = sub->rc.params[p];
        put_bits(&ctx->pb, 4, k);
        if(p == 1) res_cnt = psize;
        for(i=0; i<res_cnt && j<n; i++, j++) {
            set_sr_golomb_flac(&ctx->pb, res[j], k, INT32_MAX, 0);
        }
    }
}

static void output_subframe_fixed(FlacEncodeContext *ctx, int ch)
{
    int i;
    FlacFrame *frame;
    FlacSubframe *sub;

    frame = &ctx->frame;
    sub = &frame->subframes[ch];

    /* warm-up samples */
    for(i=0; i<sub->order; i++) {
        put_sbits(&ctx->pb, sub->obits, sub->residual[i]);
    }

    /* residual */
    output_residual(ctx, ch);
}

static void output_subframe_lpc(FlacEncodeContext *ctx, int ch)
{
    int i, cbits;
    FlacFrame *frame;
    FlacSubframe *sub;

    frame = &ctx->frame;
    sub = &frame->subframes[ch];

    /* warm-up samples */
    for(i=0; i<sub->order; i++) {
        put_sbits(&ctx->pb, sub->obits, sub->residual[i]);
    }

    /* LPC coefficients */
    cbits = ctx->options.lpc_coeff_precision;
    put_bits(&ctx->pb, 4, cbits-1);
    put_sbits(&ctx->pb, 5, sub->shift);
    for(i=0; i<sub->order; i++) {
        put_sbits(&ctx->pb, cbits, sub->coefs[i]);
    }

    /* residual */
    output_residual(ctx, ch);
}

static void output_subframes(FlacEncodeContext *s)
{
    FlacFrame *frame;
    FlacSubframe *sub;
    int ch;

    frame = &s->frame;

    for(ch=0; ch<s->channels; ch++) {
        sub = &frame->subframes[ch];

        /* subframe header */
        put_bits(&s->pb, 1, 0);
        put_bits(&s->pb, 6, sub->type_code);
        put_bits(&s->pb, 1, 0); /* no wasted bits */

        /* subframe */
        if(sub->type == FLAC_SUBFRAME_CONSTANT) {
            output_subframe_constant(s, ch);
        } else if(sub->type == FLAC_SUBFRAME_VERBATIM) {
            output_subframe_verbatim(s, ch);
        } else if(sub->type == FLAC_SUBFRAME_FIXED) {
            output_subframe_fixed(s, ch);
        } else if(sub->type == FLAC_SUBFRAME_LPC) {
            output_subframe_lpc(s, ch);
        }
    }
}

static void output_frame_footer(FlacEncodeContext *s)
{
    int crc;
    flush_put_bits(&s->pb);
    crc = bswap_16(av_crc(av_crc8005, 0, s->pb.buf, put_bits_count(&s->pb)>>3));
    put_bits(&s->pb, 16, crc);
    flush_put_bits(&s->pb);
}

static int flac_encode_frame(AVCodecContext *avctx, uint8_t *frame,
                             int buf_size, void *data)
{
    int ch;
    FlacEncodeContext *s;
    int16_t *samples = data;
    int out_bytes;

    s = avctx->priv_data;

    s->blocksize = avctx->frame_size;
    init_frame(s);

    copy_samples(s, samples);

    channel_decorrelation(s);

    for(ch=0; ch<s->channels; ch++) {
        encode_residual(s, ch);
    }
    init_put_bits(&s->pb, frame, buf_size);
    output_frame_header(s);
    output_subframes(s);
    output_frame_footer(s);
    out_bytes = put_bits_count(&s->pb) >> 3;

    if(out_bytes > s->max_framesize || out_bytes >= buf_size) {
        /* frame too large. use verbatim mode */
        for(ch=0; ch<s->channels; ch++) {
            encode_residual_v(s, ch);
        }
        init_put_bits(&s->pb, frame, buf_size);
        output_frame_header(s);
        output_subframes(s);
        output_frame_footer(s);
        out_bytes = put_bits_count(&s->pb) >> 3;

        if(out_bytes > s->max_framesize || out_bytes >= buf_size) {
            /* still too large. must be an error. */
            av_log(avctx, AV_LOG_ERROR, "error encoding frame\n");
            return -1;
        }
    }

    s->frame_count++;
    return out_bytes;
}

static int flac_encode_close(AVCodecContext *avctx)
{
    av_freep(&avctx->extradata);
    avctx->extradata_size = 0;
    av_freep(&avctx->coded_frame);
    return 0;
}

AVCodec flac_encoder = {
    "flac",
    CODEC_TYPE_AUDIO,
    CODEC_ID_FLAC,
    sizeof(FlacEncodeContext),
    flac_encode_init,
    flac_encode_frame,
    flac_encode_close,
    NULL,
    .capabilities = CODEC_CAP_SMALL_LAST_FRAME,
};